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carries a missense mutation in the Edaradd gene
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Abstract

activate NF-xB.

Background: Hypohidrotic ectodermal dysplasia (HED) is a congenital disorder characterized by sparse hair,
oligodontia, and inability to sweat. It is caused by mutations in any of three Eda pathway genes: ectodysplasin
(Eda), Eda receptor (Edar), and Edar-associated death domain (Edaradd), which encode ligand, receptor, and
intracellular adaptor molecule, respectively. The Eda signaling pathway activates NF-xB, which is central to
ectodermal differentiation. Although the causative genes and the molecular pathway affecting HED have been
identified, no curative treatment for HED has been established. Previously, we found a rat spontaneous mutation
that caused defects in hair follicles and named it sparse-and-wavy (swh). Here, we have established the swh rat as
the first rat model of HED and successfully identified the swh mutation.

Results: The swh/swh rat showed sparse hair, abnormal morphology of teeth, and absence of sweat glands. The
ectoderm-derived glands, meibomian, preputial, and tongue glands, were absent. We mapped the swh mutation to
the most telomeric part of rat Chr 7 and found a Pro153Ser missense mutation in the £daradd gene. This mutation
was located in the death domain of EDARADD, which is crucial for signal transduction and resulted in failure to

Conclusions: These findings suggest that swh is a loss-of-function mutation in the rat Edaradd and indicate that
the swh/swh rat would be an excellent animal model of HED that could be used to investigate the pathological
basis of the disease and the development of new therapies.

Background

Hypohidrotic ectodermal dysplasia (HED) is a genetic
disorder characterized by sparse hair, oligodontia,
reduced sweating, and defects in a number of other
ectodermal organs [1]. A lack of sweat glands can lead
to recurrent severe overheating. Thus, children with
HED are at substantial risk of sudden death in infancy
due to fatal hyperpyrexia [2].

HED is caused by mutations in any of the three Eda
pathway genes: ectodysplasin (Eda) [3,4], ED receptor
(Edar) [5], and EDAR-associated death domain (Edaradd)
[6]. They encode the ligand, receptor, and intracellular sig-
nal mediator of a single linear pathway, respectively. The
Eda signaling pathway activates transcription factor NF-xB
thereby playing an important role in embryonic develop-
ment, especially in the development of ectodermally
derived organs [1].
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In humans, there are three types of HED with different
inheritance: X-linked HED, autosomal dominant HED,
and autosomal recessive HED. X-linked HED is the most
common form of HED and is caused by mutations in
EDA. Autosomal HED is caused by mutations in EDAR or
EDARADD. Currently, over 100 different mutations in the
EDA gene are known, while only ~20 and 4 causative
mutations have been found in EDAR and EDARADD,
respectively [7].

To date, four mouse models of HED are available:
Tabby, downless, Sleek, and crinkled. The mutant pheno-
type of the Tabby mouse is inherited in an X-linked man-
ner and the Tabby mouse carries a mutation in the Eda
gene [4]. The recessive downless and dominant Sleek mice
carry mutations in the Edar gene [8]. The crinkled mouse
carries a mutation in the Edaradd gene [6]. The pheno-
types in Eda, Edar, and Edaradd mutant mice are almost
identical and include abnormalities in teeth, hair, and
sweat glands, the triad of symptoms of HED. Over 20 dif-
ferent glands, including lacrimal, meibomian, salivary,
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submandibular, and mammary glands, are also affected
[9-11]. These mutant mice have been used to study the
roles of the Eda pathway in the development and morpho-
genesis of ectoderm-derived organs and to develop a novel
treatment for HED using a recombinant EDA protein [12].

Mutations in some of the genes in the Eda pathway have
been identified in various species, such as medaka [13],
zebrafish [14], cattle [15-18], and dog [19]. Analyses of
these mutations showed critical roles of the Eda pathway
in the development of epithelial appendages, as well as in
morphological evolution. Thus, the identification of novel
mutations in different species emphasized the importance
of the Eda pathway, and enabled the phenotypes of the
mutated animals to be compared, giving new insights into
the functions of the Eda pathway. If such novel mutations
can be identified in mammals, then the affected species
could be used as a disease model of HED.

In a previous study, we described a mutant rat, sparse
and wavy hair (swh), which arose spontaneously in a col-
ony of inbred WTC rats in 1998 [20]. The mutant pheno-
type is characterized by sparse and wavy hair, impaired
body weight gain, and hypoplasticity of the mammary
gland. The hair follicles in these rats were reduced both
in number and size, a characteristic associated with hypo-
plasia of both the sebaceous glands and the subcutaneous
fat tissues. The mammary glands of swh/swh female rats
were hypoplastic and differentiation of mammary epithe-
lial and myoepithelial cells was impaired. Thus, it is con-
ceivable that the swh/swh rat will provide a good
experimental model to clarify the mechanisms involved
in the development of skin appendages, most of which
are derived from ectoderm [20].

In our previously reported linkage analysis, swh
mapped to the telomeric part of rat Chr 17. At that time,
the physical location of the swh locus could not be accu-
rately determined because a SSLP marker, DI17Rat140,
which defined the distal side of the swh locus was, in the
earlier public rat genome linkage map, erroneously
assigned to the middle part of Chr 17 and not to the telo-
meric part of Chr 17. Recently, with the development of
more than 20,000 single nucleotide polymorphism (SNP)
markers for 167 rat inbred strains and with the haplotype
mapping data from the genotyping of these SNPs, the
genome linkage map has been improved [21]. In the
improved rat genome map, DI17Rat140 and its neighbor-
ing genes are correctly mapped to the telomeric part of
rat Chr 17. Thus, in addition to the 24 candidate genes
selected from our previous linkage analysis, we also con-
sidered these newly mapped genes to be candidates of
swh [20].

In this study, to demonstrate the suitability of the swh
rat as an HED model, we investigated the pathology of
tissues and organs in which morphological abnormalities
in HED are known to occur. Furthermore, we identified
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the causative mutation of the swh phenotype using a
positional cloning approach, and found a missense muta-
tion in the death domain of EDARADD, that might
explain the inability of the mutant Edaradd gene to acti-
vate NF-xB. Our findings suggest that swh is a loss-of-
function mutation of the rat Edaradd and support the
swh/swh rat as an excellent animal model of HED that
can be used to investigate the pathological basis of the
disease and to develop new therapies.

Methods

Animals

ACI/NKyo, WTC/Kyo, and WTC-swh/Kyo rats were
provided by the Japanese National BioResource Project
for the Rat and kept in our animal facility for all experi-
ments in this study. Animal care and experimental proce-
dures were approved by the Animal Research Committee,
Kyoto University, Japan, and were conducted according
to the Regulation on Animal Experimentation at Kyoto
University.

Histopathology

For light microscopy, the tongue, eyelid, ventral skin,
footpad, and preputial gland were harvested from WTC-
swh/swh and WTC rats at 8 weeks of age. Tissues were
fixed in 10% neutral-buffered formalin, embedded in
paraffin, and stained with hematoxylin and eosin (HE).

Sweat tests and whole mount staining of mammary
glands

The sweat test was performed as described previously
[12]. Briefly, the hind paws of rats anesthetized with
sevoflurane were painted with a solution of 3% (wt/vol)
iodine in ethanol. Once dry, the paws were painted with
a suspension of 40% (wt/vol) starch I mineral oil. Photo-
graphs were taken 1 min later and sweat was detected
as dark spots. Mammary glands were prepared as a
whole mount and stained as described previously [22].

Fine mapping of swh

For fine mapping of swh, F2 animals (n = 769) were pro-
duced by intercrossing (ACI/NKyo x WTC-swh) F1 rats.
Homozygous swh/swh animals were identified at 3-4
weeks of age based on the appearance of the sparse-and-
waved hair phenotype. One hundred and ninety-eight
swh/swh homozygotes were used for fine mapping of swh.
Genomic DNA was prepared from tail biopsies using the
automatic DNA purification system (PI-200; Kurabo,
Japan).

RNA extraction, RT-PCR and direct sequencing

Total RNA was extracted from the skin of 2-week-old
animals. RNA preparation, RT-PCR and direct sequen-
cing of PCR products were performed as described
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previously [23]. Rat Edaradd cDNAs were amplified
with 6 sets of primers (Table 1). The PCR products
overlapped each other and spanned the entire coding
sequence of Edaradd.

Transient transfection and reporter assays

The NF-xB assay was designed to test for activation of
the NF-xB responsive promoter. HEK293T cells grown
in poly-L-lysine coated 24-well plates were transfected
using SuperFect (Qiagen) with 1.2 pg pNF-xB-Luc
(Clontech), 2 pg pRL-TK, and an increasing amount of
expression vectors encoding the wild-type EDARADD
or the swh-type EDARADD (Pro153Ser). The Luc repor-
ter of the pNF-xB-Luc encodes firefly luciferase. The
HSV-TK (herpes simplex virus thymidine kinase) pro-
moter drives renilla luciferase in pRL-TK. Total DNA
was adjusted to 2.6 pug by adding pCMV-HA (Clontech)
vector as necessary. Luciferase activity was measured
using the Dual-Luciferase Reporter Assay System (Pro-
mega) 48 h after transfection, according to the manufac-
turer’s protocol.

Results

Phenotypes of swh/swh rat as hypohidrotic ectodermal
dysplasia (HED)

Patients with HED display defective development of hair,
teeth, sweat glands, and several exocrine glands, such as
sebaceous, salivary, meibomian, and lacrimal [1,24]. To
evaluate the relevance of the swh/swh rat as a HED
model, we looked for developmental defects in those tis-
sues of swh/swh rats. In addition to defects of the hair,
skin, and mammary glands, which have been reported
previously [20] (Figure 1A, B), we found defects in the
sweat, meibomian, preputial, and tongue glands. In these
tissues, the exocrine glands were absent in the swh/swh
rats (Figure 1C, D, E, F). In the sweat test, no sweat was
detected in swh/swh rats, indicating that the sweat glands
were functionally defective (Figure 1C). We also found a
reduced number of cusps in the lower first molars in the
swh/swh rats (Figure 1G).

In the Eda pathway mutant mice, Tabby, downless,
and crinkled, a kinked tail tip, a bald patch behind the
ear, and abnormal pelage hair composition are charac-
teristic. Similarly, in swh/swh rat, the pelage hair was

Table 1 PCR primers used to amplify rat Edaradd cDNA
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composed of only an abnormal awl hair (Figure 1A);
however, the tail had hair on it, the frequency of kinked
tail was low, and the bald patch behind the ear was not
found (Figure 1G).

These findings indicate that the mutant phenotypes of
swh/swh rats are similar to developmental defects in
HED patients and in the established mouse models;
therefore, it is likely that the swh/swh rat will be suitable
as a model of HED.

Positional cloning of swh

In a previous study, we mapped swh to rat Chr 17 [20].
To more specifically map the position of the swh locus,
we genotyped F2 intercross progeny for markers known
to be closely linked to swh. There was only one recombi-
nant chromosome between swh and either D17Rat132 or
D17Ratl140 in 396 meioses (= 198 x 2) and we were able
to map swh to the most distal part of Chr17 (Figure 2A).
The rat genome map (RGSC v3.4) showed two genes in
the swh locus, Erollb (ERO1-like beta (S. cerevisiae)) and
Edaradd (ectodysplasin-A receptor-associated death
domain). The mouse mutant of Edaradd is called
crinkled (cr) and mice that carry this mutation show a
sparse hair phenotype that is similar to that of the swh
rat [25]. Additionally, mutations in the human EDAR-
ADD gene have been found in families affected with
HED [6,26]. Thus, we considered Edaradd as a good can-
didate of swh. Although the abnormal expression of
Edaradd mRNA was not detected in the skin of swh/swh
rats (data not shown), we found a missense mutation (C
to T) in exon 6 of the swh/swh Edaradd gene. This muta-
tion was deduced to change proline to serine at the 153rd
amino acid (Prol53Ser) of the rat EDARADD protein
(Figure 2B). The 153rd amino acid is located in the death
domain of EDARADD and is highly conserved in verte-
brates (Figure 2C). These findings suggest that the
Prol53Ser missense mutation of the Edaradd gene is
causative of the phenotypes of swh/swh rats.

Reporter assay for the Pro153Ser mutant EDARADD

Overexpression of Edaradd in 293T cells activates NF-xB
in a dose-dependent manner [25]. To examine whether
Prol53Ser Edaradd can activate NF-xB, we carried out a
reporter assay. As shown in Figure 3, wild-type Edaradd

Primer set Forward (5’ > 3’) Reverse (5’ > 3')

Edaradd-1&2 CTGAGAGAGAGTCGCGCATT GCCACAGCTGTTCCCATAG
Edaradd-3&4 GCCCAGAAAAGGCAGCTC GGAAAACCTTTGGAGTTTCTGA
Edaradd-5&6 CGATGAGCCAGCTTTACCTC GGATAATTGGGTAACTATTCTCAACC
Edaradd-7&8 TCCATCCCAATTTTACCAACA CGGCAAGCATTTTAATGACC
Edaradd-9&10 CAGTCAGCCCCTTGCACT GCATGCTCTCATCAACATGG
Edaradd-11&12 TGTCACCAATGTGGTAGAAAAA CAGGGATAACCACTGCCTGT
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Figure 1 Phenotypes of the swh/swh rat as hypohidrotic ectodermal dysplasia (HED). A, Sections of the dorsal skin (left) and hair (right).
Incomplete hair follicles are evident in swh/swh rat. Scale bar, 0.5 mm. The WTC rat has four hair types; auchene, zigzag, awl and guard, while
the swh/swh rat have only the abnormal awl hair. B, Whole mount stained mammary glands; 6-week-old (left), 8-week-old (center), and pregnant
day 9 (right). Mammary gland branching is poor in swh/swh rat. Scale bar, 1 mm. C, Sweat test results (left) and section of the footpads. Sweat,
detected as dark spots, is not seen in swh/swh rat. Sweat glands (arrowhead) are present in WTC rat and absent in swh/swh rat. Scale bar, 100
um. D, Sections of the eyelid. The meibomian glands (arrowhead) are present in WTC rat and absent in swh/swh rat. Scale bar, 100 pm. E, An
entire view (left) and a section of the preputial gland (right). The preputial gland is atrophied in male swh/swh rat. Acinous glands (arrowhead)
are present in WTC rat and absent in swh/swh rat. Scale bar, 100 um. F, Section of the tongue. Both mucous (open arrowhead) and serous (filled
arrowhead) glands are present in WTC rat and neither is seen in swh/swh rat. Scale bar, 0.5 mm. G, Buccal views of lower molars (left), tip of tail
(center), and posterior auricular region (right). Cusp number is reduced in the first molar (arrow head) in swh/swh rat. Some swh/swh rats show
the kink tail. The bald patch behind the ear was not evident in the swh/swh rat.
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Figure 2 Identification of the rat swh mutation. A, Fine mapping of swh (left) and physical mapping of swh (right). The swh genetically
mapped to the most telomeric part of rat Chr17, 0.25-cM distal from D17Rat132 and D17Rat140. In the physical map, the swh locus is localized
to a ~0.2-Mb region between D17Rat140 and the telomere. Both Erol/b and Edaradd have been mapped within the swh locus. B, Sequence
analysis of Edaradd gene of wild-type and swh/swh rats. In the genomic DNA of swh/swh rat, a C to T (red) transition is present in exon 6 of rat
Edaradd gene. This changes proline to serine at codon 153 of the deduced EDARADD protein. Rat codon 153 corresponds to codon 156 of
mouse EDARADD isoform 1 (NP_598398) and codon 153 human EDARADD isoform B (NP_542776). C, Amino-acid sequence alignment of a
region of the EDARADD death domain from different species. The 153rd amino acid that is altered in swh/swh rat is highly conserved in the
vertebrates.
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Figure 3 Loss of NF-xB activation by the Pro153Ser Edaradd
mutant protein. 293T cells were transfected with 1.2 ug pNF-xB-
luciferase reporter gene plasmid, 2 pg pRL-TK, and the amounts of
each expression construct were measured in a reporter assay. The
expression levels of luciferase were normalized to those of the
internal control. Relative NF-xB activity in wild-type transfected cells
increased in a dose-dependent manner, while significantly lower
relative NF-xB activity was observed in the Pro153Ser Edaradd-
transfected cells. *P < 0.01, **P < 0.001.

activated NF-xB in a dose-dependent manner. Mean-
while, Pro153Ser Edaradd showed significantly lower
transcriptional activity of NF-xB than the wild type. The
expression level of the Pro153Ser EDARADD protein
detected by western blotting was not different from that
of the wild type (data not shown). These findings indicate
that the Pro153Ser missense mutation of the rat Edaradd
gene could not activate NF-«xB and that the Eda signaling
pathway failed to function in swh/swh rats.

Discussion

In this study, we demonstrated that the swh/swh rat har-
bored a Prol53Ser mutation in the Edaradd gene and
showed typical symptoms of HED, such as sparse hair,
oligodontia, inability to sweat, and developmental
defects of the ectoderm-derived glands [27]. Hence, we
successfully established the swh/swh rat as a genetically
and phenotypically well-characterized disease model of
HED.

EDARADD is a 208 amino acid protein consisting of an
N-terminal Tnf receptor-associated factor (Traf)-binding
consensus sequence and a C-terminal death domain (DD).
The Traf-binding consensus sequence of EDARADD is
used as a docking site for Trafl, Traf2, and Traf3, thereby
recruiting Traf members and leading eventually to the acti-
vation of NF-xB [6]. The DD is involved in self-association
of EDARADD and its interaction with EDAR [6,25]. Thus,
EDARADD is central to Edar signaling. The N-terminal
region is responsible for signal transduction and the C-
terminal DD is required for receptor engagement.

To date, four EDARADD mutations have been found
in a subset of human HED, one leads to autosomal
dominant inheritance (Leul12Arg) [26], while the others
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lead to autosomal recessive inheritance (Glul42Lys,
Prol21Ser, and Thr135-Vall36del) [6,28,29]. All of these
mutations are located in the DD and functional analyses
showed that they resulted in the failure of EDARADD
to interact with EDAR and to activate NF-xB. In the
crinkled mouse, a genomic region of ~66-kb or more
which includes exon 6 that encodes the entire DD, is
deleted [25]. The crinkled mouse displays developmental
defects in hair follicles, teeth, and sweat glands [30,31].
Hence, it is possible that a mutation in the DD of
EDARADD is necessary for the HED syndrome to be
manifested both in human and mouse.

All members of the DD superfamily form a highly com-
pact structure comprising six antiparallel o.-helix that is
involved in homotypic and heterotypic protein-protein
complex formation [32]. The region spanning the a1 to
04 helices of the DD of MyD88, a member of the death
receptor superfamily, is required for its interaction with a
downstream kinase [33]. A comparison of the amino acid
sequences of the DD superfamily revealed that the Pro153-
Ser missense mutation found in the present study is
located in the a4 helix of the DD of EDARADD. This
mutation may cause a profound change in the polarity of a
crucial region and eventually diminish NF-xB signaling. It
is likely that Pro153Ser affects the structure of the DD
thereby interfering in the interaction of EDARADD with
EDAR.

Mutations affecting the Eda pathway are known in
medaka [13], zebrafish [14], mouse [4,6,8], cattle [15-18],
dog [19], and human [3,5,6]. Of them, the mouse mutants
have been widely characterized as a model organism of
HED. Here we report the swh mutation as the first exam-
ple of a mutation in the Eda pathway in the rat.

Because the rat is closely related to the mouse, it is
important to recognize how the rat Edaradd mutant phe-
notype matches the mouse Eda pathway mutant pheno-
types. Similar to the mouse mutants, the swh/swh rat
displayed sparse hair, misshapen teeth, and absence of
sweating. Additionally, like the Eda pathway mutant, the
swh/swh rat had only abnormal awl hair in the coat. The
swh/swh rat showed a lack of the ectoderm-derived
glands, meibomian, preputial, and tongue. Interestingly,
both serous and mucous glands were absent in the ton-
gue of the swh/swh rat. This is a clear difference from the
mouse Eda pathway mutants that lacked mucous glands
but had serous glands in the tongue [34]. Moreover, in
contrast to the complete absence of tail hair in the Eda
pathway mutant mice, the swh/swh rat had hair on its
tail. The penetrance of the kink tail phenotype was low in
the swh/swh rat, while almost all Eda pathway mutant
mice showed the kink tail. Lastly, the bald patch behind
the ear was not present in the swh/swh rat, although it
was a very characteristic phenotype of the Eda pathway
mutant mice.



Kuramoto et al. BMC Genetics 2011, 12:91
http://www.biomedcentral.com/1471-2156/12/91

Why these phenotypes are different between the Eda
pathway mutant mice and the swh/swh rats is yet to be
explained. However, different types of mutations could
possibly explain the differences. The mouse crinkled muta-
tion is a deletion [6], while the swh mutation is missense.
Although the Luc-reporter assay strongly suggested that
swh is a null mutation, the possibility that swhk might be a
hypomorphic mutation cannot be eliminated because the
activation of NF-xB found in the assay was very low. In
the Eda pathway mutant mice, the mammary, salivary and
tracheal submucosal glands have been well characterized
[9,10]. Further analyses of these glands in swh/swh rats
will give further insights into the functions of the Eda
pathway genes in the development of these glands.

Conclusions

We successfully established the swh/swh rat as the first rat
model of HED and identified swk as a Pro135Ser missense
mutation in the Edaradd gene. The Prol35Ser mutant
protein failed to activate NF-«B in the Eda signaling path-
way. Thus, the swh/swh rat is a good model that can be
used to investigate the pathological basis of HED.
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