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Abstract

Background: Segregation distortion is a phenomenon that the observed genotypic frequencies of a locus fall
outside the expected Mendelian segregation ratio. The main cause of segregation distortion is viability selection on
linked marker loci. These viability selection loci can be mapped using genome-wide marker information.

Results: We developed a generalized linear mixed model (GLMM) under the liability model to jointly map all
viability selection loci of the genome. Using a hierarchical generalized linear mixed model, we can handle the
number of loci several times larger than the sample size. We used a dataset from an F2 mouse family derived from
the cross of two inbred lines to test the model and detected a major segregation distortion locus contributing
75% of the variance of the underlying liability. Replicated simulation experiments confirm that the power of
viability locus detection is high and the false positive rate is low.

Conclusions: Not only can the method be used to detect segregation distortion loci, but also used for mapping
quantitative trait loci of disease traits using case only data in humans and selected populations in plants and
animals.

Background
Segregation distortion refers to a phenomenon that the
observed genotypic frequencies deviate significantly
from the expected Mendelian frequencies [1]. Different
populations have different Mendelian ratios, e.g., the
typical Mendelian ratio for an F2 population is 1:2:1 for
the three genotypes A1A1: A1A2: A2A2. Many reasons
can explain the observed distortion [2-7]. The most pro-
mising explanation is viability selection on the distorted
markers or loci linked to the markers [8]. In genetic
mapping for quantitative traits, the basic assumption is
Mendelian segregation [9]. Therefore, distorted markers
are usually discarded prior to QTL mapping because
people usually fear unexpected consequences of dis-
torted markers on the results. In a recent study [10], we
found that segregation distortion is not necessarily
harmful to QTL mapping; rather, it can help in some
circumstances. Consequently, we can incorporate segre-
gation distortion into existing QTL mapping programs
[11].

It appears that segregation distortion is common
rather than rare. If segregation distortion is indeed
caused by viability selection loci, these loci themselves
are of interest because they may help to understand the
mechanism of natural selection and evolution. Chi-
square tests are commonly used to test segregation dis-
tortion. Fu and Ritland [12] and Lorieux et al. [13]
developed maximum likelihood methods to map segre-
gation distortion loci. The methods are interval mapping
approaches in which one distortion locus is tested at a
time. Vogl and Xu [14] used an MCMC implemented
Bayesian algorithm to detect multiple segregation loci
simultaneously. These methods are quite different from
the usual QTL mapping procedures in quantitative trait
genetic mapping. Luo and Xu [15] first developed an
expectation and maximization (EM) algorithm for map-
ping viability selection loci. This method takes advan-
tage of the well known EM algorithm in interval
mapping. Recently, Luo et al. [16] developed a quantita-
tive genetic model to map viability loci. The authors
postulated a hidden underlying liability for each indivi-
dual. The liability is an unobserved quantitative trait
and natural selection acts on the liability. The method
of Luo et al. [16] actually maps loci controlling the
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hidden liability (a quantitative trait). Therefore, methods
of QTL mapping and viability locus mapping have been
unified into the same framework of interval mapping.
Both methods are called QTL mapping, but the traits
mapped are different, the former maps observed quanti-
tative traits and the latter maps unobserved liability.
The quantitative genetic model of Luo et al. [16] is an

interval mapping approach. The state-of-the-art QTL
mapping procedure is the Bayesian shrinkage method
[17-19] because it simultaneously evaluates the entire
genome. It is natural to extend the Bayeisan shrinkage
method to map multiple viability loci. The Markov
chain Monte Carlo (MCMC) algorithm is commonly
used to implement the Bayesian method. Such a sam-
pling based method is time consuming. A fast version of
the Bayesian method is the empirical Bayesian method
[20] where the variance components in the prior distri-
butions of QTL effects are first estimated from the data
and then used as the priors to estimate the QTL effects
under the general Bayesian framework. This method is
essentially the linear mixed model approach. When
applied to discrete traits, the method is called the gener-
alized linear mixed model [21,22].
Numerous algorithms have been developed to imple-

ment the generalized linear mixed model. The pseudo
likelihood algorithm [23-25] appears to be the most
popular one. The method requires a normal transforma-
tion of the original data point using the first step New-
ton-Raphson update. Once the data points are normally
transformed, they are treated as normal quantitative
phenotypes. The usual linear mixed model applies to
the transformed data points. The difference between the
Newton-Raphson transformation and the data transfor-
mation commonly seen in data analysis is that the New-
ton-Raphson transformation is a function of the data
point and parameters while the usual data transforma-
tion is a function of the data point only. Therefore, the
Newton-Raphson transformation is required for each
cycle of the iteration process.
It is not clear how to use the pseudo likelihood

approach to mapping viability loci because there is no
phenotypic data point to transform. However, the
method of McGilchrist [26] for generalized linear mixed
model can be applied here. This method only requires a
linear predictor, a likelihood and a prior distribution for
each effect in the linear predictor. In this study, we used
the McGilchrist’s [26] method to perform parameter
estimation.

Method
Liability model and viability selection
Let us define a continuous variable yj as the liability for
individual j,

yj = Xjβ +
p∑

k=1
Zjkγk + εj (1)

where εj ~ N(0,1) is a residual error with a standar-
dized normal distribution. Other model effects are
defined as follows. There may be some effects not
related to genetics, such as age, location and other sys-
tematic effects, and these effects are captured by b and
the design matrix X. There are p genetic loci each with
an effect gk for k = 1, ..., p. The value of Zjk is deter-
mined by the genotype of individual j at locus k. For
example, an F2 individual derived from the cross of two
inbred lines can take one of three genotypes, A1A1,
A1A2 and A2A2. Under the additive genetic model, Zjk is
defined as

Zjk =

⎧⎨
⎩

+1
0

−1

for
for
for

A1A1

A1A2

A2A2

(2)

and gk = ak is the additive genetic effect for locus k.
Under the dominance effect model, the genetic effect
for locus k is a 2 × 1 vector gk = [ak dk]

T, where dk is
called the dominance effect. The corresponding Z vari-
able is also a vector and defined as

Zjk =

⎧⎨
⎩
H1

H2

H3

for
for
for

A1A1

A1A2

A2A2

(3)

where Hi is the i-th row of matrix H, as shown below,

H =

⎡
⎣ +1 −1

0 +1
−1 −1

⎤
⎦ (4)

The liability yj is not observed but it determines the
viability of individual j. It is assumed that individual j
will survive if yj > 0 and die otherwise. Since we can
only observe the surviving individuals, all individuals in
the sample have liabilities greater than zero. This will
cause the selected population to deviate from the
expected Mendelian segregation ratio for loci responsi-
ble for viability selection and all loci linked to the viabi-
lity loci. Although all individuals have survived, some
may have a high liability and some may have a low liabi-
lity, but all have a liability greater than zero. We now
use the concept of penetrance to describe the survivabil-
ity of an individual. Let

E(yj) = ηj = Xjβ +
p∑

k=1
Zjkγk (5)

be the expectation of the unobserved liability (a linear
predictor). We use the normal or the logistic function
to model the probability of survival for individual j, i.e.,
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F(hj) or logistic(hj) = exp(hj)/[1 + exp(hj)]. Conditional
on the genotypes of all other loci, the penetrances for
the three genotypes of locus k are defined as⎧⎨

⎩
�(H1γk + ηj(−k))
�(H2γk + ηj(−k))
�(H3γk + ηj(−k))

for
for
for

Gjk = A1A1

Gjk = A1A2

Gjk = A2A2

(6)

where

ηj(−k) = Xjβ +
p∑

k′ �=k
Zjk′γk′ (7)

is the linear predictor excluding locus k. This model
was first introduced by Luo et al. (2005) for single locus
analysis, which does not include hj(-k) in equation (6).
The data that allow us to estimate gk is the genotype
array for all individuals at locus k. Define

wj =
[
wj(11) wj(12) wj(22)

]
(8)

as a multivariate Bernoulli variable with three cate-
gories (i.e., a multinomial variable with sample size one).
If individual j has a genotype A1A1, then wj(11) = 1 and
wj(12) = wj(22) = 0. The probabilities of individual j taking
the three genotypes are derived from the Bayes’ theo-
rem,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

πj(11) =
1
π̄j

φ11�(H1γk + ηj(−k))

πj(12) =
1
π̄j

φ12�(H2γk + ηj(−k))

πj(22) =
1
π̄j

φ22�(H3γk + ηj(−k))

(9)

where

π̄j = φ11�(H1γk + ηj(−k))

+ φ12�(H2γk + ηj(−k))

+ φ22�(H3γk + ηj(−k))

(10)

is the mean of the three penetrances and

φ =
[
φ11 φ12 φ22

]
(11)

is the expected Mendelian ratio. In an F2 population,
the expected Mendelian ratio is φ =

[ 1
4

2
4

1
4

]
. Note that

if gk = 0, vector πj = [πj(11) πj(12) πj(22)] will be equivalent
to the expected Mendelian ratio for every individual at
the locus.
If there is no factor to be considered other than the

markers, the term Xjb should disappear here. This is dif-
ferent from the usual linear regression analysis where an
intercept should always appear in the model. With the
liability selection model, there is no intercept. We now
assume only one co-factor to consider. The Xj variable

can be discrete or continuous, but the distribution in
the unselected population must be known. In this study,
we first assume that Xj is discrete, say gender, a variable
indicating the gender of individual j with Xj = 1 repre-
senting male and Xj = -1 representing female. In the
unselected population, the sex ratio should be 1:1. If the
population evaluated has a biased sex ratio, this means
that the gender has an effect on the liability. We can
estimate the gender effect b on the liability. Let
ϕ =

[
ϕ1 ϕ2

]
=

[ 1
2

1
2

]
be the expected sex ratio (prior to

the selection). Define ξj(1) or ξj(2) as the posterior prob-
ability that individual j is male or female, respectively.
These posteriors are calculated using⎧⎪⎪⎨

⎪⎪⎩
ξj(1) =

1

ξ̄j
ϕ1�(ηj(−β) + β)

ξj(2) =
1

ξ̄j
ϕ2�(ηj(−β) − β)

(12)

where

ξ̄j = ϕ1�(ηj(−β) + β) + ϕ2�(ηj(−β) − β) (13)

is the mean penetrance of the two genders and

ηj(−β) =
p∑

k=1
Zjkγk (14)

is the linear predictor excluding the gender effect.
We now assume that Xj is a continuous non-genetic

effect, e.g., age. Let us assume that Xj follows a normal
distribution in the unselected population, i.e., p(Xj) = N
(Xj|μ, s2), where μ and s2 are known. Let b be the effect
of Xj on the liability. Define F(Xjb + hj(-b)) as the prob-
ability that individual j has survived the selection. The
posterior probability is defined as

ξj =
1

ξ̄j
N(Xj|μ, σ 2)�(Xjβ + ηj(−β)) (15)

where

ξ̄j =
∫ ∞

−∞
N(Xj|μ, σ 2)�(Xjβ + ηj(−β))dXj

= �
[
(μβ + ηj(−β))/(σ 2β2 + 1)

1/2
] (16)

Proof of this equation (16) is straightforward and thus
given in the next paragraph.
Let f(Xj) = N(Xj|μ, s2) be the normal density for vari-

able Xj with known μ and s2. The following Lemma
[27] is used to derive equation (16).

+∞∫
−∞

f (Xj)�
(
Xj − ξ

λ

)
dXj = �

(
μ − ξ√
σ 2 + λ2

)
(17)
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Let us rewrite equation (16) as

ξ̄j =

+∞∫
−∞

f (Xj)�(Xjβ + ηj(−β))dXj

=

+∞∫
−∞

f (Xj)�
[
Xj − (−ηj(−β)/β)

1/β

]
dXj

(18)

Comparing equation (18) with equation (17), we can
see that ξ = -hj(-b)/b and l2 = 1/b2. Substituting these
into equation (17), we get

ξ̄j =

+∞∫
−∞

f (Xj)�
[
Xj − (−ηj(−β)/β)

1/β

]
dXj

= �

(
μ − (−ηj(−β)/β)√

σ 2 + 1/β2

)

= �

(
μβ + ηj(−β)√

σ 2β2 + 1

)
(19)

This concludes the derivation of equation (16) pre-
sented in the previous paragraph.

Likelihood, prior and posterior
It is difficult (if not impossible) to construct the joint
likelihood for all loci, but conditional on the effects and
the genotypes of other loci, the likelihood for locus k
can be derived based on the multivariate Bernoulli dis-
tribution, that is

L(γk) =
n∑
j=1

[
wj(11) ln(πj(11)) + wj(12) ln(πj(12)) + wj(22) ln(πj(22))

]
(20)

The exact notation for this log likelihood should be L
(gk|h(-k)) because it is conditioned on the gender effect
and effects of other loci. We use the simplified notation
to improve the readability. Let us assign a normal prior
to gk, i.e.,

p(γk) = N(γk|0,
k) (21)

Furthermore, we assign a hierarchical prior to ∑k,

p(
k) = Inv - Wishart(
k|τ ,ω) (22)

where τ is the prior degree of freedom and ω is the
prior scale matrix with the same dimension as ∑k. The
reason for assigning these prior distributions is to han-
dle a possible large number of loci involved in the
model. Uniform prior for the gender effect is assumed.
The log posterior (denoted by LogPost) is

LogPost(γk) = L(γk) + lnN(γk|0,
k) + ln[Inv - Wishart(
k|τ ,ω)] (23)

where a constant has been ignored.

For the sex effect (discrete co-factor), the likelihood
for b conditional on hj(-b) is

L(β) =
n∑
j=1

[ 1
2 (Xj + 1) ln(ξj(1)) + 1

2(1 − Xj) ln(ξj(2))
]
(24)

For the continuous co-factor, the log likelihood for
parameter b can be written as

L(β) =
n∑
j=1

ln(ξj)

=
n∑
j=1

{
ln�(Xjβ + ηj(−k)) − ln�

[
(μβ + ηj(−β))/(σ 2β2 + 1)

1/2
]} (25)

Prior distribution for the non-genetic effect is assumed
to be uniform (uninformative prior) and thus only the
likelihood is needed to find the posterior mode estimate
of b.

Posterior mode estimation
Due to the possible large number of parameters, we take
a sequential approach to estimating the posterior mode
parameters with one locus at a time. This approach is
also called the coordinate descent algorithm. Once the
parameters of all loci are updated, the sequence is
repeated until a certain criterion of convergence is
reached.
Let us define the first step of the Newton-Raphson

iteration as

γ
(t+1)
k = γ

(t)
k −

[
∂2LogPost(γk)

∂γk∂γ T
k

]−1 [
∂LogPost(γk)

∂γk

]
(26)

and denote the variance of this updated parameter by

Vk = −
[

∂2LogPost(γk)

∂γk∂γ T
k

]−1

(27)

where the first and second partial derivatives are eval-

uated at γk = γ
(t)
k
. The posterior mean and posterior var-

iance matrix for gk at iteration t are denoted by

E(γk) = γ
(t+1)
k

and var(gk) = Vk, respectively. Since the

posterior distribution of gk is approximately multivariate
normal (asymptotical theory), the posterior mean is
identical to the posterior mode. The posterior of ∑k

remains scaled inverse Wishart due to the conjugate
property of the prior. Therefore, the posterior mode of
∑k is



(t+1)
k =

E(γkγ
T
k ) + ω

(τ + 1) + 2 + 1
=
E(γk)E(γ

T
k ) + var (γk) + ω

(τ + 1) + 2 + 1
(28)

where τ + 1 is the degree of freedom for the inverse
Wishart posterior and the number 2 represents the
dimension of vector gk.
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The posterior mode estimation of b conditional on the
effects of all loci is

β(t+1) = β(t) −
[

∂2L(β)
∂β∂βT

]−1 [
∂L(β)

∂β

]
(29)

with an estimation error variance approximated by

var (β) = −
[

∂2L(β)
∂β∂βT

]−1

(30)

The iteration process of the posterior mode estimation
is summarized as follows.
Step 0: Initialize all parameters.
Step 1: Update the non-genetic effect using equation

(29).
Step 2: Update effect of marker k for k = 1, ..., p using

equation (26).
Step 3: Update ∑k for k = 1, ..., p using equation (28).
Step 4: Repeat step 1 to step 3 until the iteration pro-

cess converges.

Genetic contribution from an individual locus
An obvious advantage of the liability model is that we
are able to calculate the proportion of the liability var-
iance contributed by each SDL, similar to the proportion
of quantitative trait variance contributed by each QTL.
Suppose that we have detected one SDL with both addi-
tive and dominance effects. The theoretical variances of
the Z variables in an F2 population are 0.5 for the addi-
tive part and 1.0 for the dominance part. The reason is
that the three genotypes are coded as +1, 0 and -1 for
the additive Z and -1, 1 and -1 for the dominance Z
[28]. Let ak and dk be the additive and dominance
effects of this SDL. The genetic variance explained by
this locus is

VG =
1
2
a2k + d2k (31)

The residual variance of the liability is set at unity and
thus the variance of the liability is

VP = VG + 1 =
1
2
a2k + d2k + 1 (32)

The broad sense heritability is defined as

H =
VG

VP
=

1
2a

2
k + d2k

1
2a

2
k + d2k + 1

(33)

This is the proportion of the liability variance contrib-
uted by the kth SDL. Assuming that the multiple SDL
are not closely linked, the overall contribution from all
SDL is approximated by

H =
VG

VP
=

∑p
k=1 (

1
2a

2
k + d2k )∑p

k=1 (
1
2a

2
k + d2k ) + 1

(34)

The liability model has unified QTL mapping and SDL
mapping in the same framework of quantitative genetics.

Results
Mouse experiment
We used a published dataset of an F2 mouse experiment
to demonstrate the application of the method. The data-
set was published by Lan et al. [29] and is freely avail-
able from the internet. The mouse genome has 19
chromosomes (excluding the sex chromosome). The
data contains 110 F2 ob/ob mice derived from the cross
of two inbred lines (BT×BTBR) and 193 markers cover-
ing 1,800 cM of the entire mouse genome. The average
marker distance was 9.35 cM per marker interval. We
inserted one or more pseudo markers in intervals larger
than 5 cM to make sure that the entire genome is
evenly covered by (pseudo or true) markers with no
intervals larger than 5 cM. The number of pseudo mar-
kers inserted was 273, resulting in a total of 466 markers
(193 true and 273 pseudo markers). For the pseudo
markers, the genotype indicator variable, wj = [wj(11) Wj

(12) wj(22)], is missing for every individual. In the data
analysis, the missing variable was replaced by the condi-
tional probability calculated using the multipoint
method [30].
The top panel of Figure 1 shows the frequencies of the

three genotypes, A1A1, A1A2 and A2A2, plotted against
the mouse genome. It is obvious that there is a severe
distortion in the beginning of chromosome 6 where the
population contains almost exclusively the A2A2 geno-
types with A1A1 and A1A2 almost eliminated from the
population. Chromosomes 14 and 18 also show mild
segregation distortion. Interval mapping for segregation
distortion using the QTL procedure in SAS [31] showed
that the LOD score for chromosome 6 is 43.25 (see the
bottom panel of Figure 1 for the LOD score profile
obtained from the interval mapping analysis). The inter-
val mapping procedure [31] is a separate analysis for
each marker. With the interval mapping, the position
with the highest LOD score (43.25) occurred at a
pseudo marker (at position 15.69 cM) between the first
true marker (D6Mit86, 0 cM) and the second true mar-
ker (D6Mit224, 30.4 cM) on chromosome 6. The esti-
mated frequencies of this pseudo marker are 0.0000,
0.0001 and 0.9999 for the three genotypes (A1A1, A1A2

and A2A2), respectively.
We used the generalized linear mixed model to ana-

lyze all the 466 markers (193 true and 273 pseudo)
jointly. In the mouse data, among the 110 mice, 52 were
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male and 58 were female. Apparently, the sex ratio is
not biased and thus sex appears to have no effect on the
survivorship. However, we included the sex factor as a
fixed effect in the model to test the robustness of our

model. We expected that our model would detect no
sex effect on the survivorship. The generalized linear
mixed model had 466 × 2 + 1 = 933 model effects,
including 466 additive effects, 466 dominance effects

Figure 1 Frequencies of the three genotypes and LOD score profiles of the mouse genome. This is an F2 population derived from the
cross of two inbred lines (BT×BTBR). (a) The top panel shows the frequencies of three genotypes with the blue, red and green patterns
representing the A1A1, A1A2 and A2A2 genotypes, respectively. (b) The bottom panel shows the LOD score profiles for the mouse genome
obtained from the interval mapping of segregation distortion. The profile in red (LOD SDL) represents the LOD score for segregation distortion.
The curves in blue and black are the LOD scores for QTL of the 10 week body weight and joint testing of the QTL and segregation distortion.
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and one sex effect. This GLMM with 110 individuals
was indeed able to handle such a large model (933
model effects). The hyper parameters used in the analy-
sis was (τ, ω) = (0,0), equivalent to the Jeffrey’s prior for

the variance components. The estimated additive and
dominance effects along with the corresponding LOD
scores are depicted in Figure 2. One segregation distor-
tion locus was detected on chromosome 6 (same as that

Figure 2 QTL effects and LOD scores of the mouse genome estimated by GLMM. The additive effect and the dominance effect are shown
in the top panel and LOD score of additive effect and dominance effect are in the bottom panel. Additive effect and the LOD score profiles are
colour coded in blue and the dominance effect and LOD score profiles are coded in red. Positions of the 193 true markers are indicated by the
barcode like ticks on the horizontal axis. The critical value (95% of the LOD score generated under the null model) is 2.99, which is smaller than
the observed LOD score of 25.0.
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of the interval mapping). The location of this distortion
locus is right at the first marker of chromosome 6
(D6Mit86, 0 cM). The interval mapping approach
described in the previous paragraph also detected a seg-
regation distortion locus. However, the SDL detected by
interval mapping was located halfway (15.69 cM)
between markers D6Mit86 (0 cM) and D6Mit224 (30.4
cM) (see Figure 1 for the result of interval mapping).
The GLMM analysis also showed some distortion for
the second marker (D6Mit224, 30.4 cM), but the LOD
score is only 3, barely significant. Therefore, we can
safely ignore this locus due to linkage with the first mar-
ker. Let us go back to the first marker D6Mit86, the
major SDL detected by the GLMM method. This segre-
gation distortion locus is caused by both the additive
and dominance effects. The estimated additive effect (±
standard error) is â = 4.6230 ± 0.4248 while the esti-
mated dominance effect (± standard error) is

d̂ = −1.6656 ± 0.1833. The LOD scores are 25.69 and
17.92, respectively, for the additive and dominance
effects. Simulation experiment under the null hypothesis
(Mendelian segregation) showed that the 95% value of
the null distribution of the LOD scores is 3.8, much
smaller than the actual LOD score of 25.69. Therefore,
we are very confident for this detected segregation dis-
tortion locus. As expected, the estimated sex effect is

β̂ = 0.1969 ± 0.3002 with a LOD score of 0.0934, smal-
ler than 1.0255, the 95% value of the LOD score gener-
ated under the null model. Therefore, we can safely
claim that the gender effect is insignificant.
In the GLMM analysis, the QTL effect has been inter-

preted as an effect on a hypothetical liability. The total
variance of the liability is (see the Method section)

σ 2
Liability = 0.5 × â2 + d̂2 + 1

= 0.5 × 4.62302 + (−1.6556)2 + 1

= 14.4606

(35)

Therefore, the proportion of the liability variance
explained by this segregation distortion locus is

H =
0.5 × â2 + d̂2

0.5 × â2 + d̂2 + 1
=
13.4606
14.4606

= 0.9308 (36)

which is also called the broad sense heritability. This
single locus contributes approximately 93% of the liabi-
lity variance. We can also calculate the expected fre-
quencies of the three genotypic based on the estimated
QTL effect. Let

π̄ = 0.25 × �(−â − d̂) + 0.5 × �(d̂) + 0.25 × �(â − d̂)

= 0.0003878 + 0.0239483 + 0.25

= 0.2743361

(37)

The expected frequencies for the three genotypes are

π11 =
1
π̄

× 0.25 × �(−â − d̂) = 0.0014

π12 =
1
π̄

× 0.50 × �(d̂) = 0.0873

π22 =
1
π̄

× 0.25 × �(â − d̂) = 0.9113

(38)

respectively, for A1A1, A1A2 and A2A2.

Simulation experiment
We simulated a single chromosome with 2400 cM in
length covered by 481 markers evenly placed on the
genome with 5 cM per marker interval. The additive
QTL effects of six markers were simulated with the true
positions and true effects as presented in Figure 3 (bot-
tom panel). Dominance effects were not simulated (zero
values) although they were included in the data analysis.
Frequencies of the three genotypes of a simulated F2
family with 500 individuals are also presented in Figure
3 (top panel). We also simulated two co-factors that
influence the liability. The first co-factor was the sex
effect coded as 1 for male and -1 for female with an
effect value of b1 = 1.0. The second co-factor was a con-
tinuous variable with μ = 0 and s2 = 0.025. The effect of
this co-factor on the liability was b2 = 1.0. The liability
of each individual was generated using the linear model
containing the two cofactors and the six QTL. An indi-
vidual with a liability greater than 0 survived the selec-
tion, otherwise, it was eliminated. All the 500
individuals in the sample survived the selection. The
simulated data were analyzed using the generalized lin-
ear mixed model with (τ, ω) = (0,0) as the hyper-para-
meter values.
The estimated additive effects and the LOD scores are

given in Figure 4. The estimated dominance effects and
LOD scores were all near zero and thus not presented
in the figure. Critical value of the LOD score generated
from the null model was 2.99, which is smaller than the
LOD score of each identified QTL. Therefore, all the six
QTL have been identified by the method with no false
positive identification. Figure 5 gives the estimated QTL
effects and LOD scores for a dataset simulated under
the null model. We can see that both the effects and the
LOD scores are extremely small. The estimated QTL
effects from simulation experiment (not the null model)
are also presented in Table 1 along with the true values.
Except QTL 5, all other QTL have been identified at the
positions where they were simulated. QTL 5 was missed
at the simulated position (1750 cM) but the effect was
picked up at position 1735 cM, 15 cM away from the
true position. The six QTL plus the two co-factors con-
tributed 84.55% of the total variation of the liability and
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the estimated proportion was 82.74%, very close to the
true proportion. The simulated data analysis demon-
strates that the generalized linear mixed model success-
fully identified the simulated QTL and the two co-
factors.

This paragraph describes the result of 100 repeated
simulations generated from the same set of parameters.
This experiment allowed us to evaluate the power and
false positive rate of QTL identification. The critical
value for the LOD score was 2.99, which was generated

Figure 3 Genotype frequencies and the true QTL effects for segregation distortion in the simulation experiment. In the top panel, blue
and green areas represent the frequencies of the two types of homozygote while the red area represents the frequency of the heterozygote.
The true QTL effects are shown in the bottom panel.
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empirically from multiple simulations under the null
model (see the Method section). For each of the true
QTL, if any marker with 15 cM away from the true
QTL had a LOD score greater than 2.99, this QTL was
declared as being detected. Since each marker interval

was 5 cM, the 30 cM (15 cM left and right) coverage
contained five markers (including the one with the true
effect). If any marker more than 15 cM away from a
simulated true QTL had a LOD score greater than 2.99,
that marker was declared as a false positive. Results of

Figure 4 Estimated additive QTL effects and the LOD scores for segregation distortion in the simulation experiment. The additive QTL
effects (top panel) and LOD scores for the additive effects (bottom panel) are estimated by GLMM. The true effect is colour coded in red and
the estimated effect is coded in blue.
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the replicated simulation experiments are given in Table
2. The average estimated effects (QTL and co-factors)
are consistently smaller than the true values due to the
shrinkage nature of the estimation. The biases, however,
are not too strong to affect the powers because all
effects have been detected with very high powers

(ranging from 71% to 100%). For the entire 100 replica-
tions, we only detected five false positives (positive mar-
kers that are 15 cM away from a true effect). The
overall false positive rate is 5/[100 ×(481-5 × 6) =
0.0001111, extremely low. The number 481 in the
denominator is the total number of markers, the

Figure 5 The estimated QTL effects (top panel) and LOD scores (bottom panel) under the null model. The data was simulated with no
segregation distortion.
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number 6 is the number of markers with true effects
and the number 5 is the number of markers in the win-
dow covering a true QTL.

Discussion and conclusions
Genome-wide segregation distortion is a common phe-
nomenon in genetic mapping, but it is usually ignored.
The main reason is the difficulty in joint estimation and
tests of the segregation distortion loci. We formulated
the problem as a typical quantitative genetics problem
using a hypothetical liability to describe the fitness of
each individual. Using a generalized linear mixed model,
we were able to estimate and test genome-wide quanti-
tative trait loci controlling the hidden liability. We used
a mouse dataset to demonstrate the method and
detected a major QTL for the liability that explains 93%
of the liability variance. The simulated data experiment
showed that the method can detect a QTL (e.g., the sec-
ond QTL simulated) explaining 7.71% of the liability

variation with 71% power. The method was implemen-
ted in a SAS/IML program. The code is posted on our
website (http://www.statgen.ucr.edu) for general applica-
tion. With this method and the program, genome-wide
segregation distortion can be investigated routinely in
future genetic data analysis.
As a Bayesian method, there are a rich array of prior

distributions can be explored. In this study, we used the
inverse Wishart as the prior distribution for the prior
variance matrix of QTL effects. For the additive genetic
model (one effect per locus), the inverse Wishart distri-
bution becomes a scaled inverse Chi-square distribution.
It is possible to use the exponential distribution (the
Lasso prior) as an alternative prior [32]. Because the
method uses multiple levels of prior choice, the model
can also be called hierarchical generalized linear mixed
model [24,33]. This study opens a new area in statistical
genetics and further studies are expected to arise. For
example, how to use the adaptive Lasso [34] to address
this problem is entirely unknown and can be explored
in the future.
A caveat of this method is the requirement of Mende-

lian segregation ratio (before the selection). For popula-
tions generated through line crossing experiments,
Mendelian ratios are known. However, for uncontrolled
populations, the theoretical Mendelian frequencies are
not available. In this case, one needs to survey the unse-
lected population to obtain the genotypic frequencies as
the controlled “Mendelian segregation”. If one can geno-
type both the selected and unselected individuals, one
may simply use the case-control study and there is little
reason to use this case-only study approach. In reality,
genotyping individuals is much more costly than pooling
the DNA of a sample of individuals. The cost effective
approach is to genotype each individual in the surviving
sample and genotype the pooled DNA sample for the
unselected population because we only need the fre-
quencies of genotypes (not the genotypes of individuals)

Table 1 Estimated parameters of the QTL identified by GLMM compared to true values in the simulation.

True effect True proportion Estimate StdErr Position (cM) LOD Proportion

QTL 1 1.4135 0.1543 1.1905 0.1357 50 16.6828 0.1224

QTL 2 -0.9993 0.0771 -0.8296 0.1252 125 9.5271 0.0594

QTL 3 0.9993 0.0771 0.9605 0.1328 360 11.3536 0.0796

QTL 4 -1.2048 0.1121 -1.1991 0.1353 905 17.0304 0.1241

QTL 5 1.0000 0.0772 0.8593 0.1310 1735a 9.3347 0.0637

QTL 6 -1.41354 0.1543 -1.2959 0.1380 2115 19.1230 0.1450

Co-factor 1 1.0000 0.1545 1.0217 0.1020 – 21.7673 0.1803

Co-factor 2 1.0000 0.0386 1.1007 0.1809 – 8.0412 0.0523

0.8455b 0.8272c

a1735 The true location is 1750 cM and the estimated location is 15 cM away from the true location.
b0.8455 This is the true (total) proportion of the liability variance contributed by the six QTL and the two co-factors.
c0.8272 This is the estimated (total) proportion of the liability variance contributed by the six QTL and the two co-factors.

Table 2 Average estimates of effects and powers of
simulated QTL and co-factors from 100 replicated
simulations.

True Estimate StdEv Power (%)

QTL 1 1.4135 1.1028 0.1329 99

QTL 2 -0.9993 -0.5964 0.1270 71

QTL 3 0.9993 0.7663 0.1474 91

QTL 4 -1.2048 -0.9858 0.1310 98

QTL 5 1.0000 0.7166 0.1375 87

QTL 6 -1.41354 -1.1977 0.1488 100

Co-factor 1 1.0000 0.9192 0.1299 100

Co-factor 2 1.0000 0.8894 0.1895 95

True - The true effects used to simulate the data.

Estimate - The average estimated effects obtained from 100 replicated
simulation experiments.

StdEv - The standard deviation of effects from the 100 replications.

Power - The number of replicates in which the effect was detected out of 100
replicated samples
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in the unselected population. For the co-factors, we also
need the expected frequencies of the co-factors in the
unselected population. We examined the sex effect (dis-
crete co-factor) and a normally distributed co-factor.
The expected 1:1 sex ratio was used as the expected fre-
quency. For the normal co-factor, we used the mean
and variance of the co-factor used in the simulation (the
true values) to construct the expected distribution. In
reality, one needs to survey the entire population to
obtain the expected distribution. For continuous vari-
ables deviating from normality, one may discretize a
variable to a few groups. For example, age is a quantita-
tive variable but one can arbitrarily divide individuals
into a few age groups. This discretization will eliminate
the restriction of normal distribution.
The method developed here can be applied to more

broad situations beyond genetics without much modifi-
cation. For example, if we know the joint distribution of
k variables in a base (unselected) population and the
joint distribution of the variables in a selected sample.
We can simply test the difference between the two dis-
tributions to see which variables influence more on the
selection. However, the pair-wise covariance may not
allow us to make a precise decision on the importance
of each variable. If two variables both influence the
selection and they are highly correlated, the influence of
one variable may be simply caused by the high correla-
tion with the true causal variable. The proposed method
here can help separate the true causality from the influ-
ence due to correlation.
QTL mapping is usually conducted in unselected

populations. Individuals with undesired phenotypes
must also be evaluated to obtain unbiased estimates of
QTL effects. This is not a cost effective approach in
breeding companies. Breeders wish to use only selected
individuals to breed and keep no records for the unse-
lected individuals. If we only evaluate the selected indi-
viduals, markers associated with the traits of interest
will show distorted segregation. If the selection criterion
is not well defined, for example, drought resistance, it is
hard to map QTL. The segregation distortion loci are
actually the QTL for drought resistance if one knows
that there is no segregation distortion in the unselected
population. The method developed here can be directly
applied to mapping drought resistance QTL. Because we
can perform QTL mapping using selected population,
this approach may be called “mapping while selecting”.
For example, breeders may want to evaluate drought
resistance of a family of recombinant inbred lines (RIL)
by planting all seeds in a harsh drought environment.
Eventually all plants die except the ones with strong
resistance of drought. Breeders may have no records of
the plants eliminated, but they can still perform QTL
mapping for this trait (drought resistance) using all

plants that have survived the selection. Other stress
related traits can also be mapped using this approach, e.
g., pest and salinity resistances.
In human genetics, case-control study is a common

approach for mapping disease loci. In situations where
there are no records for the control but the case, this
case-only study may benefit from the new method. For
example, one may easily get patient data from hospitals
but hardly has individual records for the entire popula-
tion. QTL mapping for the disease trait is still possible
if we have the population records (frequencies) of geno-
types in the entire population.
In summary, we developed a hierarchical generalized

linear mixed model to map QTL for liability. This is a
new approach to genetic mapping. It incorporates a see-
mingly different problem (segregation distortion) into
the same QTL mapping framework for quantitative
traits. Statistically, it shows that the generalized linear
mixed model can be applied to situations where there
are no phenotypic records; one only needs a likelihood
function, a linear predictor and a prior distribution to
infer the posterior mode estimation of the model effects.
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