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Abstract

Background: The evaluation of associations between genotypes and diseases in a case-control framework plays an
important role in genetic epidemiology. This paper focuses on the evaluation of the homogeneity of both genotypic
and allelic frequencies. The traditional test that is used to check allelic homogeneity is known to be valid only under
Hardy-Weinberg equilibrium, a property that may not hold in practice.

Results: We first describe the flaws of the traditional (chi-squared) tests for both allelic and genotypic homogeneity.
Besides the known problem of the allelic procedure, we show that whenever these tests are used, an incoherence
may arise: sometimes the genotypic homogeneity hypothesis is not rejected, but the allelic hypothesis is. As we
argue, this is logically impossible. Some methods that were recently proposed implicitly rely on the idea that this does
not happen. In an attempt to correct this incoherence, we describe an alternative frequentist approach that is
appropriate even when Hardy-Weinberg equilibrium does not hold. It is then shown that the problem remains and is
intrinsic of frequentist procedures. Finally, we introduce the Full Bayesian Significance Test to test both hypotheses and
prove that the incoherence cannot happen with these new tests. To illustrate this, all five tests are applied to real and
simulated datasets. Using the celebrated power analysis, we show that the Bayesian method is comparable to the
frequentist one and has the advantage of being coherent.

Conclusions: Contrary to more traditional approaches, the Full Bayesian Significance Test for association studies
provides a simple, coherent and powerful tool for detecting associations.

Keywords: Allelic homogeneity test, Bayesian methods, Chi-squared test, Hardy-Weinberg equilibrium, FBST,
Monotonicity

Background
One of the main goals in genetic epidemiology is the
evaluation of associations between specific genotypes or
alleles and a certain disease. Association studies are usu-
ally performed in a case-control framework in which one
or several polymorphisms of candidate genes are eval-
uated in a group of cases (that is, patients that have a
disease) and in a group of controls from the same popu-
lation (that is, healthy individuals) [1]. The frequencies of
each of the genotypes are then computed so that statis-
tical tests that aim at checking for associations between
genes and the disease can be performed. The population
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studied usually must be homogeneous regarding ethnic-
ity, gender distribution and other factors that may bias the
results rendering false-positive associations. See [2] for
nontechnical summary of reasons that may render false
discoveries in case-control studies and [3] for a theoret-
ical analysis of the consequences of population stratifi-
cation. For more on case-control studies, the reader is
referred to [4].
Several statistical tests are usually employed for this sce-

nario. Among them, Cochran-Armitage test for trends [5],
homogeneity chi-square tests for contingency tables of
both genotypic and allelic frequencies [6], likelihood ratio
tests and Wald tests [7] are performed. See, for exam-
ple, [8] and [9] for a summary of these tests. Some of
these statistics are specifically designed to work under
assumptions such as dominance models, recessive models
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or Hardy-Weinberg Equilibrium (HWE). However, a big
importance is being given on newmethods that are robust
to model misspecification, mainly because power is usu-
ally small when the model is wrong and type 1 error rates
are usually incorrect (see e.g. [7,10,11]).
HWE plays an important role in genetic studies, in par-

ticular when testing for allelic homogeneity [12]. Themain
reason is that the traditional test for allelic homogeneity
fails when HWE does not hold, a point to which we will
get back later. In words, HWE is a constrain on the geno-
typic proportions that implies, under some assumptions,
stability of the different genotypes over the generations of
the population (see e.g. [13] and [14]). These assumptions
include, for example, random mating between individu-
als. For many diseases, random mating is not expected to
be satisfied. The same holds for other conditions required
for HWE, that in practice may be unrealistic in some
situations. In fact, as stated by [15], “a population will
never be exactly in HWE”. Hence, the need to design tests
that are robust to departures from HWE is evident. A
common practice in such problems is to first test HWE,
discarding genes that are not in equilibrium. This is done
in an attempt of identifying genotyping errors. Such an
approach should be avoided, as discussed by [12]. The
main reason is that the 2 steps procedure alters type-1
errors. They also emphasize that the correct way to deal
with this problem is to inherently account for deviations
fromHWEwith adjusted tests, the approach we take here.
In the present paper, we focus on two hypotheses: 1.

homogeneity of the genotypic frequencies; and 2. homo-
geneity of the allelic frequencies. Usually, data in such
studies are summarized in two different ways [9]. The
first one consists of a table with the genotypic frequen-
cies of case and control groups. The second, a table with
the allelic frequencies. Tables 1 and 2 illustrate this rep-
resentation using data presented in [16], which was also
considered by [12]. Their study was designed to test the
hypothesis that GABAA sub genes would contribute to a
disorder due to methamphetamine use. It is worth not-
ing that Table 2 contains twice as many observations as
Table 1. [9] discusses in details the problem of doubling
the sample size. In particular, it is shown thatmethods that
“treat alleles as individual entities” [9] have wrong nom-
inal type-1 errors when HWE does not hold. We must
recall that the power of a test can increase considerably
by increasing the sample size, a nominal increase that can
be misleading when it is not reasonable to “treat alleles

Table 1 Genotypic frequencies

Group AA AB BB Total

Case 55 83 50 188

Control 24 42 39 105

Genotypic frequencies for the data set presented in [16].

Table 2 Allelic frequencies

Group A B Total

Case 193 183 376

Control 90 120 210

Allelic frequencies derived from Table 1.

as individual entities”. This issue we will be discussed in
further details later.
The aims of this paper are four-fold: 1 - to describe

how the analysis of such data is usually conducted and
to emphasize its known flaw (namely lack of robustness
to departures from HWE); 2 - to describe one exact fre-
quentist approach which is correct from a classical point
of view; 3 - to present a Bayesian method to deal with
the problem, and 4 - to advocate the use of the Bayesian
solution by demonstrating why this is the best solution
compared to the others. The main argument is based
on an undesirable logical inconsistency that can happen
whenever p-values are used to test nested hypotheses. We
prove that this does not happen when using the Bayesian
method proposed. We also show that the Bayesian and
the correct frequentist solutions have comparable power.
Simulations and analyses of real data are shown in order
to illustrate the problem.
The paper is organized as follows. SectionMethods con-

tains three subsections: Usual Procedures, which intro-
duces the notation that is used throughout the paper,
discusses the usual methods to deal with the problem and
argues why the test for allelic homogeneity is wrong when
there are departures from HWE; A Different Frequentist
Test, which introduces a frequentist test that works even
when departures of HWE happen and Bayesian Solution,
which introduces the FBST approach to solve the prob-
lem. Section Results and Discussion first focuses on the
issue of the logical incoherence that happens when using
the frequentist procedures discussed in the paper and also
shows that the same does not happen to the Bayesian
method FBST. A brief discussion on Bayes factors is also
provided. Finally, we address the question of whether the
Bayesian method has good frequentist properties. Section
Conclusions summarizes the findings of the paper.

Methods
Here, we formally describe three different approaches to
deal with the problem described: the usual procedure, a
correct frequentist proposal and a Bayesian solution.

Usual Procedures
Webegin by describing the statistical model that is used to
deal with the problem approached in this paper (namely,
product of multinomials) and also how the hypotheses of
interest are usually tested in genetic literature. For more
details, see [9].
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Let G = {AA,AB,BB} be the set of all possible geno-
types for the locus of interest. As in Table 3, denote by
X = (XAA,XAB,XBB) and Y = (YAA,YAB,YBB) the ran-
dom vectors with the genotypic frequencies from the
case and control groups sample, with

∑
i∈G Xi = n and∑

i∈G Yi = m being the total of individuals observed in
each group. Also, let γ = (γAA, γAB, γBB), where γi is
the probability that an individual from the case group has
genotype i, and π = (πAA,πAB,πBB), where πi is the
probability that an individual from the control group has
genotype i, i ∈ G. The parametric space is

� =
{

(γAA, γAB, γBB,πAA,πAB,πBB) ∈ �6+ :
∑
i∈G

γi

=
∑
i∈G

πi = 1
}
.

Considering observations from different individu-
als to be statistically independent, we have X|θ ∼
Multinomial(n, γ ) and Y |θ ∼ Multinomial(m,π) with
itX and itY being conditionally independent as well. The
likelihood function is then given by

L(θ ; x, y) ∝
∏
i∈G

γ
xi
i

∏
i∈G

π
yi
i , θ ∈ �,

which is the product of two multinomial distributions.
The first hypothesis to be tested (null hypothesis),

namely that there is no difference in genotypic frequencies
between the groups, may be formally expressed as

HG
0 : γ = π . (1)

The usual procedure to test HG
0 is the chi-square test,

i.e., the test based on the statistic

QG =
∑

i∈{AA,AB,BB}

{
(Xi − X̂G

i )2

X̂G
i

+ (Yi − ŶG
i )2

ŶG
i

}
,

X̂G
i = nθ̂Gi , ŶG

i = mθ̂Gi ,

where θ̂Gi is the maximum likelihood estimator for the
genotypic frequency i under the hypothesis HG

0 . Under
HG
0 , QG has asymptotic distribution χ2

2 (chi-square dis-
tribution with 2 degrees of freedom). Using this fact, it is
possible to calculate an asymptotic p-value. If one prefers
exact tests, Monte Carlo methods can also be used. To
sum up, in order to test the first hypothesis, one usu-
ally performs a traditional chi-square test of homogeneity
to Table 3.

Table 3 Population genotypic frequencies

Group AA AB BB Total

Case xAA (γAA) xAB (γAB) xBB (γBB) n

Control yAA (πAA) yAB (πAB) yBB (πBB) m

Genotypic frequencies (probabilities).

The second hypothesis states that there is no dif-
ference in allelic frequencies between the groups. This
hypothesis - which will be made formal in the next
section - is usually tested by considering the allelic fre-
quencies in both samples, XA = 2XAA + XAB and YA =
2YAA + YAB, as in Table 4 and applying the chi-square
test of homogeneity to that table, which has twice as many
observations as Table 4.
More formally, the statistic considered is

QA =
∑

i∈{A,B}

{
(Xi − X̂A

i )2

X̂A
i

+ (Yi − Ŷ A
i )2

Ŷ A
i

}
,

X̂A
i = 2nλ̂Ai , Ŷ A

i = 2mλ̂Ai ,

where λ̂Ai is the maximum likelihood estimator for the
allelic frequency i under the hypothesis that allelic fre-
quencies are the same in both groups. This statistic is
then compared to a χ2

1 distribution, or sampled using a
Monte Carlo method to calculate the p-value. However,
in this scenario, the distribution of the test statistic under
the null hypothesis is not chi-square unless alleles are sta-
tistically independent. In other words, the distribution is
chi-square only if a product multinomial model can be
applied to Table 4. Essentially, this independence corre-
sponds to the HWE. In fact, [9] formally proves that this
is a valid test if, and only if, both groups, case and control,
are under HWE. Otherwise, this test is biased: nominal
level of significance is different from the real one [17]. [17]
also shows how deviations from HWE alter type-I error
rates, a point that will also be illustrated in Section Results
and Discussion. Therefore, this test should not be used.
It is important to note that despite being wrong, it is still
widely used in genetic literature nowadays (see e.g. [18],
that also discusses some aspects of the lack of robust-
ness of this test). This leads to a larger number of false
conclusions than the nominal errors of the procedures.
Applying the traditional tests to data from Table 1, one

gets a p-value of 0.152 for genotypic association and of
0.049 for allelic association. This means that the evidence
we have that the two groups are in genotypic homogene-
ity is larger than the evidence we have that they are in
allelic homogeneity. However, if genotypic proportions are
the same, allelic proportions must also be the same. This
implication will be made formal in Section Results and
Discussion. In practice, the first p-value being larger than
the second implies that one can accept the hypothesis of

Table 4 Population allelic frequencies

Group A B Total

Case xA = 2xAA + xAB xB = 2xBB + xAB 2n

Control yA = 2yAA + yAB yB = 2yBB + yAB 2m

Allelic frequencies from Table 3.
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genotypic homogeneity while rejecting allelic homogene-
ity, which is a contradiction. For instance, this is the case
when the level of significance is 10%, as 0.152 > 0.1 but
0.049 < 0.1. To summarize: we are testing two nested
hypotheses, that is, the nature of the problem is such that
the first hypothesis implies the second. However, even
though we reject the second, we do not reject the first.
Does the contradiction happen because the allelic test is
wrong? Next Section answers this by presenting an exact
test for allelic homogeneity that is valid even if HWE does
not hold.

A Different Frequentist Test
Some attempts to correct the above-mentioned allelic test
so that it works even when HWE assumption is not met
are considered by [8,12,17,19]. See [18] for a summary of
these. Also, see [20], that proofs that the test proposed by
[17] to correct for departures of HWE is equivalent to the
one proposed by [9], which is the Armitage’s trend test [5].
Here we show another solution that has the advantages

of being exact, unconditional, and that it can also be calcu-
lated in a computationally efficient way, even for large data
sets. Moreover, it is defined in the same parametric space
� as the genotypic test. Essentially, this test is derived by
noticing that the hypothesis that allele frequencies are the
same in both groups can be written in terms of the original
parametric space as

HA
0 : γAA + 1

2
γAB = πAA + 1

2
πAB. (2)

Note that this formulation is always true independent
of the Hardy-Weinberg equilibrium restriction and does
not involve changing neither the sample space nor the
parametric space.
The chi-square statistic may be used to test this

hypothesis:

QA∗ =
∑

i∈{AA,AB,BB}

{
(Xi − X̂A∗

i )2

X̂A∗
i

+ (Yi − Ŷ A∗
i )2

Ŷ A∗
i

}
,

X̂A∗
i = nγ̂ A∗

i , Ŷ A∗
i = mπ̂A∗

i .
Here, γ̂ A∗

i and π̂A∗
i are the maximum likelihood esti-

mators of genotypic frequencies under HA
0 . They can be

found by maximizing

L(θ ; x, y) ∝
(πAA + πAB

2
− γAB

2
)xAAγ

xAB
AB (1 − πAA − πAB

2
− γAB

2
)xBB

× π
yAA
AA π

yAB
AB (1 − πAA − πAB)yBB

(3)

and then using the relations

γ̂ A∗
A = γ̂AA + 1

2
γ̂AB; γ̂ A∗

B = γ̂BB + 1
2
γ̂AB;

π̂A∗
A = π̂AA + 1

2
π̂AB; π̂A∗

B = π̂BB + 1
2
π̂AB.

Maximization of Equation (3) can be efficiently done by
using numerical methods such as Newton’s method [21],
which are already implemented in most statistical and
mathematical softwares such as R and MATLAB. To cal-
culate p-values, the statistic QA∗ can then be compared to
a χ2

1 distribution or, if one wishes to perform an exact test
(the approach we take here), sampled using Monte Carlo
methods. That is, one can generate several values of QA∗
under the null hypothesis and compute the proportion
of these that are larger than the observed statistic on the
sample. This is the (estimate of the) exact p-value. Confi-
dence intervals can be obtained for it by using a normal
approximation to the binomial distribution. Note that the
dimension of the parametric space is 4 and under the null
hypothesis it becomes 3. Hence, the number of degrees of
freedom of the distribution of the chi-square statistic is
dim(�) − dim(HA

0 ) = 4 − 3 = 1. This is also the number
of degrees of freedom of the chi-square for the allelic test
described before.
This test is very similar to the ones recently introduced

by [7], except that the statistics used are different (Wald
statistic, score statistic and maximum profile likelihood
ratio), and results are asymptotic: chi squared approxima-
tion is used. Even though these tests are asymptotically
equivalent, in order to illustrate our points it is important
to have exact tests here.
The allelic p-value for data from Table 3 is 0.069. It is

surprising that despite the fact this test is correct, this
p-value is still smaller than 0.152 - the p-value for geno-
typic association. Hence, incoherence remains even when
correcting the traditional allelic test. We note that the p-
value found by [12] for this same data set using corrected
allelic test is 0.066, which also does not remove the con-
tradiction. Note that here we use the exact test, hence this
is not a problem of using an approximation. In the Section
Results and Discussionwe present other data sets in which
this incoherence happens, showing that this problem is
not unique to the particular data we chose to illustrate
the point. Next Section is devoted to present a framework
where this kind of contradiction does not happen.

Bayesian Solution
Bayesian methods are the alternative inductive way to
deal with such a problem. These methods are widely used
nowadays because they allow prior knowledge from the
researcher and scientific community to be incorporated
into the analysis (see [22] for applied examples of these
methods in genetics) and, contrary to usual classical pro-
cedures, they do not require large samples for the analysis
to be correct. That is, optimality of the procedure does
not rely on asymptotic considerations. Many Bayesian
methods designed to deal with precise hypotheses, i.e.,
hypotheses which have lower dimension than the para-
metric space, have been developed. Precise hypotheses
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must have a different treatment in Bayesian statistics: in
general, they have zero posterior probability, so that they
would always be rejected when using traditional methods.
One way to deal with this problem is to assign a positive
prior probability to null hypothesis [23], but this may seem
a rather ad hoc solution and may lead to some inconsis-
tencies [24]. Another approach is to use Bayes factors [25],
a point to which we will get back later in the paper (see
Section Results and Discussion).
In this paper, we choose to use the FBST (Full Bayesian

Significance Test), a procedure introduced by [26]. This
method was also used by [27]. The test is based on the e-
value statistic, a Bayesian measure of evidence designed
to evaluate sharp null hypotheses. In order to apply this
method, we begin by specifying a prior density in the com-
plete parametric space �, f (θ). We note that it is not
necessary to attribute different probability to each of the
hypothesis: it is only necessary to specify f (θ). This is not
the case for Bayes factors, where specification of different
probability distribution inside each of the hypothesis of
interest is needed. After observing data x, let f (θ |x) be the
posterior density of the parameter θ . The posterior density
is given by

f (θ |x) ∝ f (θ)L(θ ; x).

Suppose one is interested in testing the null hypoth-
esis H : θ ∈ �0. Define the Tangential Set to the null
hypothesis as

TH
x = {θ ∈ � : f (θ |x) > sup

�0
f (θ |x)}.

The measure of evidence proposed, the ite-value, is
defined by

evx(H) = 1 − P(θ ∈ TH
x |x).

In words, e-value is the posterior probability of the sub-
set of the parametric space consisting of points with lower
posterior density than the maximum achieved under H .
It is interesting to note the duality between p-values and
e-values: while the former are tails in the sample distri-
bution from the observed values under the null hypoth-
esis, the latter are tail areas in the posterior distribution
from the sharp hypothesis. E-values are easy to be cal-
culated and successful papers that use FBST procedure
in genetics include [14,28,29]. For more on e-values, the
intuition behind it, asymptotic consistency results, and
decision-theoretic considerations see [30]. High e-values
indicate high evidence in favor of the hypothesis, while
low e-values indicate that the hypothesis is false.
Implementation of the FBST procedure requires two

simple steps, which can be performed numerically:

• Optimization - Finding the supremum of the
posterior distribution under the null hypothesis,

sup�0 f (θ |x). This is usually done by using built-in
functions from statistical packages such as R.

• Integration - Integrating the posterior density over
the Tangential Set, TH

x . This step can be done by
sampling from the posterior distribution by using
methods such as MCMC. For the problem
considered here, a usual Monte Carlo method is
enough to efficiently sample from the posterior.

More details on the implementation of the FBST proce-
dure can be found in [26]. To perform the complete FBST
procedure one also needs to set a cut-off point, that is, one
must say what a “small” e-valuemeans. Several approaches
are available:

• Empirical power analysis [31]
• Reference sensitivity analysis and paraconsistent

logic [32].
• [30] relate e-values to p-values.
• Bayesian decision-theoretic approach [33], by the

specification of a loss function that gives origin to
FBST procedure.

• An asymptotically consistent threshold for a given
confidence level ([34] and [31]).

The prior distribution for γ in the routine that was
implemented and is available in the website is a Dirichlet
distribution, as well as the prior distribution for π . The
family of the Dirichlet priors is widely used in this
scenario once it is both broad enough to contemplate
a huge number of different possible prior information
and yet very easy to be dealt with both mathematically
and computationally. Here, the two priors are consid-
ered to be independent, and in the implementation we
provide online (see Conclusions) the (hyper)parameters
(aAA, aAB, aBB, bAA, bAB, bBB) are set by the user. That is,

f (θ) ∝
∏
i∈G

γ
ai−1
i

∏
i∈G

π
bi−1
i , θ ∈ �.

Note that in this case the posterior distribution is also
the product of two independent Dirichlet distributions
(once they are conjugate with the multinomial distribu-
tion). Their parameters are (xAA + aAA, xAB + aAB, xBB +
aBB) and (yAA + bAA, yAB + bAB, yBB + bBB) respectively.
Simulation of the Dirchlet distribution can be efficiently
done by sampling from Gamma distributions; see [35] for
details. Note that the case where all (hyper)parameters (ai
and bi) are equal to 1, θ is uniformly distributed a priori.
The FBST procedure can be used in general, not only for

testing allelic homogeneity. In particular, it can be used to
test Hardy-Weinberg equilibrium, as shown by [26] and
[14]. In order to illustrate the procedure, Figure 1 shows
the Hardy-Weinberg hypothesis line and the Tangential
Sets for both case and control groups from the data set
presented by [16]. Figure 2 does the same for simulated
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Figure 1 Full Bayesian Significance Test for HWE: real data. Geometric representation of the HWE hypothesis (green curve), FBST tangential set
(continuous ellipsis) and 99% credible set (dashed ellipsis): data from real samples.

data (not under Hardy-Weinberg equilibrium). They also
show the 99% HPD (Highest Posterior Density) sets. For
the sake of neutrality, the prior distribution we use is the
product of two independent Dirichlet distributions with
parameters (1, 1, 1), i.e., the uniform distribution in �.
Hence, the posterior distribution is proportional to the
likelihood function, that is,

f (θ |x, y) ∝
∏
i∈G

γ
xi
i

∏
i∈G

π
yi
i , θ ∈ �.

We see that while both groups from Figure 1 seem to
be under HWE (in this case, tangential sets have small
probabilities, and therefore e-values are large), the ones
from Figure 2 seem to be far from the equilibrium (in this
case, tangential sets have large probabilities, and therefore
e-values are small).
When testing genotypic and allelic homogeneity using

FBST and uniform priors (ai=bi = 1 for all i’s in the
Dirichlet distribution), we obtain e-values of 0.434 and
0.493 respectively. Hence, contrary to what happens to p-
values, there is more evidence in favor of the allelic homo-
geneity hypothesis than there is in favor of the genotypic

homogeneity hypothesis. Therefore the contradiction of
not rejecting the first hypothesis while rejecting the sec-
ond one cannot happen for any cutoff that is chosen. In
fact, as we will show in next Section, this is a property
of the FBST procedure: the undesirable contradiction can
never happen.

Results and Discussion
We begin this Section by summarizing the results of
the analyses for data presented in [16], which were
presented during the exposition of the concepts through-
out the paper. Results are shown in Table 5. The nota-
tion for this table is as follows: pG is the traditional
p-value for genotypic association; eG is the e-value for
genotypic association; pAU is the usual (wrong) p-value for
allelic association; pA is the p-value for allelic association
proposed in this paper; and eA is the e-value for allelic
association. This table also includes the results (both p-
values and e-values) for the test of the hypothesis of HWE
for case and control group.
Hence, it is reasonable to expect that p-values, as well

as any other measure of evidence, should be such that

Figure 2 Full Bayesian Significance Test for HWE: simulated data. Geometric representation of the HWE hypothesis (green curve), FBST
tangential set (continuous ellipsis) and 99% credible set (dashed ellipsis): data from simulated samples (case 26 from Table 6).
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Table 5 Analysis of real data

Genotypes Alleles Hardy-Weinberg

pG eG pAU pA eA pHW eHW pHW eHW

0.152 0.434 0.049 0.069 0.493 0.111 0.276 0.060 0.165

Significance indices for homogeneity for data presented in Table 2.

p(HA
0 ) ≥ p(HG

0 ). To sum up, there should be more
evidence in favor of HA

0 than in favor of HG
0 . In fact, this is

what motivates the tests proposed by [7]. More generally,
if we have two nested hypotheses, A ⊆ B ⊆ �, it would
be desirable to have p(B) ≥ p(A). That is, one should
always believe that B is at least as plausible asA. It is worth
noting that this inequality must hold if one wants to guar-
antee that for any significance level α the rejection of B
will imply the rejection of A. In other words, p(B) should
always be greater than p(A) so that one will never con-
clude that A holds but B does not, which is, as we showed,
logically impossible.
Even though this logical coherence is desirable, the anal-

ysis of data presented by [16] (Table 5) shows that this
property is not achieved neither when using the tradi-
tional p-value for allelic frequencies, nor when using the
alternative test presented here. Hence, depending on the
level of significance used (for example, 10%), one can
conclude that genotypic homogeneity holds, but allelic
homogeneity does not. This leads one to a logical contra-
diction that may be embarrassing for the researcher when
showing his results to scientific community. Some authors
(e.g. [36-39]) have already noticed that p-values cannot be
used as a measure of evidence because they do not respect
this property. Attempts to correct frequentist tests so that
they are coherent have been tried in some specific situ-
ations such as Analysis of Variance [40], but no general
procedure could be obtained.
On the other hand, e-values are monotone in the set of

all possible hypotheses. This can be seen by noting that

�0 ⊆ �′
0 ⊆ � ⇒ T�′

0
x ⊆ T�0

x ⇒ evx(�0) ≤ evx(�′
0).
(4)

For the problem considered here, this means that
evx(HG

0 ) ≤ evx(HA
0 ) will hold for all datasets. Hence, one

will always have at least asmuch evidence in favor ofHA
0 as

in favor of HG
0 , and therefore when performing the FBST

procedure (that is, comparing the e-values with a given
cutoff) one will never fall into the logical contradiction of
rejecting HA

0 while not rejecting HG
0 . Equation 4 proves

that the incoherence can never happen when using the
FBST. Table 5 shows that this inequality indeed holds for
the data presented. It is also interesting to note that in
the case of nested hypotheses, FBST provides an intrinsic
penalty that can be used for model selection [41].

In Table 6, one can find similar results on simulated
data. Data was simulated in three different conditions:
1 - under genotypic homogeneity (and, therefore, allelic
homogeneity), 2 - under only allelic homogeneity and
3 - under neither allelic nor genotypic homogeneity. Bold
p-values indicate situations in which there is incoherence
in the sense described here. Note that, as it was expected
due to the proof that was given, none of the samples have
incoherence when using analyses provided by e-values.
As mentioned before HG

0 implies HA
0 in the sense that

if genotypic frequencies are the same in both groups then
allelic frequencies must also be the same. In other words,
it is impossible for the allelic frequencies to be different if
the genotypic frequencies are equal. This can be formally
seen by noting that

HG
0 true ⇒ γi = πi∀i ∈ G ⇒ γAA + 1

2
γAB

= πAA + 1
2
πAB ⇒ HA

0 true.

An important question is why we use FBST method-
ology rather then standard Bayes factors, the traditional
Bayesian procedure to test sharp hypotheses [25]. The rea-
son is that, contrary to e-values, Bayes factors are also not
monotonic when dealing with sharp hypotheses as we will
show here. In order to calculate Bayes factors, one must
first assign a probability distribution for the parameters
under each of the hypothesis of interest. In the problem
we deal with, this means it is necessary to assign prob-
abilities for θ under �, HG

0 and HA
0 . The Bayes factor

for hypothesis H is then defined to be P(data|H)
P(data|�)

[38]. For
the real dataset presented in [16] (Table 1), when using
uniform probabilities for θ in �, HG

0 and HA
0 we have

a Bayes factor of 6.63 in favor of HG
0 , while of 0.28 in

favor of HA
0 , so that lack of monotonicity remains. The

main reason for this is that it is not necessarily true that
P(data|HG

0 ) ≤ P(data|HA
0 ). See [38] for a different exam-

ple where this happens. An informal explanation of the
lack of monotonicity is given by [38]: “What the Bayes
factor actually measures is the change in odds in favor
of the hypothesis when going from the prior to the pos-
terior”. Note that even though they are not monotonic,
Bayes Factors provide a great tool for model selection
[42], a point which we further discuss in the conclusions.
One may also argue about the merits of using FBST as a
genuine Bayesian procedure rather than traditional Bayes
factors.We advocate that while Bayes factors are primarily
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Table 6 Analysis of simulated data

Genotypes Alleles Hardy-Weinberg

Case Control

pG eG pAU pA eA pHW eHW pHW eHW

Genotypic Homogeneity

1 0.408 0.773 0.197 0.189 0.786 0.540 0.832 0.819 0.971

2 0.588 0.897 0.648 0.684 0.997 0.030 0.090 0.001 0.002

3 0.478 0.826 0.483 0.510 0.980 0.496 0.793 0.035 0.119

4 0.912 0.996 0.709 0.689 0.997 0.172 0.377 0.122 0.287

5 0.836 0.985 0.578 0.554 0.985 0.224 0.464 0.170 0.378

6 0.989 1.000 0.926 0.903 1.000 0.000 0.000 0.000 0.000

7 0.187 0.494 0.100 0.068 0.498 0.027 0.081 0.044 0.124

8 0.652 0.929 0.444 0.416 0.953 0.338 0.626 0.104 0.257

9 0.620 0.916 0.510 0.494 0.976 0.192 0.422 0.761 0.955

10 0.565 0.888 0.923 0.912 1.000 0.001 0.003 0.057 0.153

Allelic Homogeneity

11 0.008 0.034 0.325 0.291 0.893 0.494 0.790 0.001 0.003

12 0.000 0.000 0.067 0.057 0.442 0.068 0.190 0.000 0.000

13 0.002 0.013 0.151 0.114 0.629 0.989 1.000 0.000 0.000

14 0.001 0.003 0.923 0.918 1.000 0.174 0.400 0.000 0.000

15 0.113 0.342 0.844 0.833 1.000 0.989 1.000 0.006 0.014

16 0.020 0.086 0.559 0.547 0.985 0.174 0.395 0.015 0.040

17 0.001 0.006 0.147 0.129 0.683 0.129 0.319 0.002 0.005

18 0.040 0.149 0.501 0.462 0.970 0.871 0.986 0.001 0.002

19 0.026 0.106 1.000 1.000 1.000 0.760 0.955 0.000 0.000

20 0.001 0.002 0.446 0.379 0.939 0.733 0.938 0.000 0.000

No Homogeneity

21 0.000 0.000 0.925 0.928 1.000 0.000 0.000 0.015 0.045

22 0.843 0.987 0.646 0.618 0.993 0.055 0.153 0.141 0.333

23 0.062 0.219 0.104 0.124 0.661 0.989 1.000 0.007 0.028

24 0.669 0.939 0.403 0.408 0.955 0.994 1.000 0.621 0.882

25 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.771 0.958

26 0.105 0.331 0.017 0.047 0.403 0.001 0.001 0.001 0.001

27 0.000 0.000 0.000 0.000 0.012 0.072 0.197 0.010 0.033

28 0.180 0.485 0.230 0.233 0.835 0.310 0.598 0.324 0.602

29 0.134 0.387 0.068 0.045 0.389 0.045 0.128 0.063 0.170

30 0.807 0.980 0.522 0.517 0.980 0.806 0.971 0.713 0.933

Results of the simulations under three different scenarios: genotypic homogeneity, allelic (but not genotypic) homogeneity and no homogeneity at all. Bold p values
indicate incoherence.

motivated by the epistemological framework of Decision
Theory and p-values are supported by Popperian falsifica-
tionism, e-values and FBST are supported by the frame-
work of Cognitive Constructivism. The reader is referred
to [43-45] for more epistemological considerations and
comparisons of these methods. It is also interesting that

FBST can also be justified as a minimization procedure of
a loss function, as shown by [33]. This makes e-value also
compatible with standard Decision Theory and therefore
traditional Bayesian statistics. We emphasize that when-
ever hypotheses are not sharp, posterior probabilities are
usually more adequate.
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We end up this Section by answering the question
of whether FBST procedure has good power properties.
Even though this is not of primary interested in this
work and is not a relevant question for most orthodox
Bayesians, we indicate that this Bayesian procedure has
good frequency properties. In order to do this, we fix dif-
ferent values for γAA, γAB and πAA. We then set πAB to
be 2 (γAA + 1/2γAB − πAA − ε) for different values of ε. ε
quantifies how far from allelic homogeneity the popula-
tion is. The particular case ε = 0 corresponds to allelic
homogeneity, that is, to a true hypothesis. For each value
of ε, we simulate 100 data sets with 100 samples of cases
and 100 samples of controls group. We then calculate the
proportion of samples in which allelic homogeneity was
rejected according to each criteria. We use levels of signif-
icance of 5% and 10%. The relationship provided by [30]
is used to determine the cutoffs for e-values that make
FBST have the desired level of significance. Results are
shown in Figure 3. These graphs indicate that the usual
test for allelic homogeneity has a larger power than the
others. This conclusion is misleading, once the size of the
test is not the nominal one, as we discuss in SectionUsual
Procedures. This can be seen by looking at the curve at

ε = 0 and noting that the power (which for ε = 0 is
the size of the test) is larger than 5% and 10% respec-
tively. For more simulations regarding this test power, the
reader is referred to [17]. This figure also shows that the
power of the frequentist allelic test proposed here and the
FBST test are virtually the same: even though FBST struc-
ture guarantees coherence in the results and frequentist
tests do not have the property, their power are very close
to each other. Hence, the FBST procedure also has good
frequency properties.

Conclusions
Although the traditional approach of doubling the sam-
ple size to test allelic homogeneity hypothesis was already
shown to be incorrect when Hardy-Weinberg equilib-
rium is not met, many recent articles in biology still use
it. As Figure 3 illustrates by using power analysis func-
tions, the nominal level of significance for the allelic usual
test is not attained: at zero in the x-axis, the power is
larger than 5%, contrary to the alternative ones. We have
shown in this paper that a logical inconsistency that hap-
pens when using such procedure remains even when
using adjusted frequentist tests. The main point of this

Figure 3 Power analysis of Full Bayesian Significance Test. Comparison of power of different tests for allelic homogeneity. Horizontal lines show
level of significance. Topleft: γAA = 1/5, γAB = 2/5, πAA = 1/4, α = 5%, topright: γAA = 1/5, γAB = 2/5, πAA = 1/4, α = 10%, bottomleft:
γAA = 1/3, γAB = 1/5, πAA = 1/3, α = 5% bottomright: [γAA = 1/3, γAB = 1/5, πAA = 1/3, α = 10%.
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inconsistency is the fact that if two vectors are equal
any function of them must maintain the equality. The
fact that even when using an exact approach incoherence
remains hints that the problem is the change of dimension
when going for global homogeneity to partial homogene-
ity: genotypic homogeneity is in dimension 2 (two degrees
of freedom) and allelic homogeneity is in dimension 1
(one degree of freedom). As Wald Tests, Likelihood Ratio
Tests, and Chi-Square tests are asymptotically equivalent,
it is also expected that contradictions may happen to all
of them.
Similar incoherences of p-values in other situations

have already been reported in the literature. As a sim-
ple ANOVA-like example, suppose we wish to compare
the means of independent random variables from 3 differ-
ent groups, μ1,μ2 and μ3. If we assume their distribution
is normal with variance 1 and the sample means in each
group (sufficient statistics) are −0.192, 0.015 and 0.017,
the likelihood ratio p-value for the hypothesis μ1 = μ2 is
0.037. On the other hand, when testing μ1 = μ2 = μ3
we get a p-value of 0.054. Hence, at the level of 5%, the
first hypothesis is rejected, but the second one is not.
This makes it debatable whether it reasonable to use them
as measures of evidence [37]. On the other hand, if we
use the improper prior f (μ1,μ2,μ3) ∝ 1, the e-values
are 0.232 and 0.121, respectively. Hence the contradiction
cannot happen for any cutoff.
As probabilities are monotonic, traditional Bayesian

tests based on posterior probability calculations do enjoy
monotonicity property, however using them here may be
problematic because the hypotheses of interest are sharp.
Mixed continuous-discrete distributions are needed in
this case. Bayes Factors, on the other hand, were shown to
be not monotonic. This does not invalidate its use: in fact,
as pointed out by [38] and [42], Bayes Factors provide a
great tool for model selection. One of the reasons for this
is that parsimonious models can have better predictive
power than complex models [46].
The FBST computation always is performed in the full

space that has dimension 4. Hence subhypotheses should
coherently follow the orientation of the main hypothesis.
Moreover, there is no need of specifying special priors for
each of the null hypotheses, only for the whole parametric
space �. It can also be easily implemented. The problem
with the FBST is that the values of the significance index,
“e”, are related to the dimension and increase as the dimen-
sion increases. However, in [47] it is shown how “e” relates
with “p”. This allows one to look for the corresponding e-
value for 5% of significance for instance. Another point
in favor of the FBST is that its power is almost the same
as the best frequentist test. Moreover, it is correct even
when HWE does not hold. It is important to remember
that e-values are probabilities of subsets of the parameter
spaces although p-values are probabilities of sets (tails) of

the sample spaces. On the other hand one must under-
stand that hypotheses are statements about points of the
parameter space and not of the sample space: May this
explain the reason why the e-values, contrary to p-values,
are coherent in all situations?
Using the R Software, a routine that performs all the

tests considered in this paper can be downloaded on www.
ime.usp.br/∼cpereira/programs/nested.r
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