
RESEARCH ARTICLE Open Access

Molecular diversity, population structure, and
linkage disequilibrium in a worldwide collection
of tobacco (Nicotiana tabacum L.) germplasm
Agostino Fricano1,3, Nicolas Bakaher2, Marcello Del Corvo1, Pietro Piffanelli1, Paolo Donini2, Alessandra Stella1,
Nikolai V Ivanov2* and Carlo Pozzi2,4

Abstract

Background: The goals of our study were to assess the phylogeny and the population structure of tobacco
accessions representing a wide range of genetic diversity; identify a subset of accessions as a core collection
capturing most of the existing genetic diversity; and estimate, in the tobacco core collection, the extent of linkage
disequilibrium (LD) in seven genomic regions using simple sequence repeat (SSR) markers. To this end, a collection
of accessions were genotyped with SSR markers. Molecular diversity was evaluated and LD was analyzed across
seven regions of the genome.

Results: A genotyping database for 312 tobacco accessions was profiled with 49 SSR markers. Principal Coordinate
Analysis (PCoA) and Bayesian cluster analysis revealed structuring of the tobacco population with regard to
commercial classes and six main clades were identified, which correspond to “Oriental”, Flue-Cured”, “Burley”,
“Dark”, “Primitive”, and “Other” classes. Pairwise kinship was calculated between accessions, and an overall low level
of co-ancestry was observed. A set of 89 genotypes was identified that captured the whole genetic diversity
detected at the 49 loci. LD was evaluated on these genotypes, using 422 SSR markers mapping on seven linkage
groups. LD was estimated as squared correlation of allele frequencies (r2). The pattern of intrachromosomal LD
revealed that in tobacco LD extended up to distances as great as 75 cM with r2 > 0.05 or up to 1 cM with r2 > 0.2.
The pattern of LD was clearly dependent on the population structure.

Conclusions: A global population of tobacco is highly structured. Clustering highlights the accessions with the
same market class. LD in tobacco extends up to 75 cM and is strongly dependent on the population structure.

Background
Nicotiana tabacum is a non-obligatory, selfing amphidi-
ploid species derived from a hybridization event between
Nicotiana sylvestris and Nicotiana tomentosiformis (sum-
marized in [1]). As with other crops, breeding history
and yield management have contributed to its genetic
erosion [2].
Most of the existing variability is maintained at the

ex-situ U.S. Nicotiana Germplasm Collection [3],
which contains around 1,900 accessions of N. tabacum,
including 656 cultivars and 1,244 tobacco introduc-
tions (TIs). The TIs probably capture most of the

genetic variability that existed before modern agricul-
tural intensification [2]. Before modern breeding [4],
main tobacco classes were distinguished, based on
method of curing and biochemical characteristics, into
Flue-cured, Burley, Oriental, Cigar, Dark (air/fire
cured), and Primitive. Burley tobaccos are believed to
derive from a mutation identified in 1864 in a strain of
Maryland tobacco, and Flue-cured are closely related
to Dark fire-cured tobaccos [2].
To capture most of the genetic diversity with the least

number of genotypes, subgroups out of larger popula-
tions of unrelated lines (core collections) are conveni-
ently set up. Core collections have been assembled
based on several algorithms [5-8] in several crops,
including durum and bread wheats [5,6], barley [7],
potato [8], maize [9], peanut [10], and rice [11]. The
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usage of molecular markers as descriptors of population
structure provides the most reliable criteria when
assembling core collections [12].
Linkage disequilibrium (LD) is defined as the non-ran-

dom association of alleles at two or more loci. In culti-
vated plants, its extent is influenced by mating system,
mutation rate, genetic drift, selection, recombination
rate, gene conversion, and population size and structure
[13]. Recently, LD has been used in association mapping
[14] and to locate quantitative trait loci (QTLs) or
major genes, based on the co-segregation of specific
marker alleles and traits [15]. LD mapping has the
potential to outperform traditional mapping because in
a random-mating population over several generations,
only close linkage between markers and traits remains,
thus facilitating fine mapping. High-density genome fin-
gerprinting could unveil long- and short-range LD. In
the first case, in species with large genomes, a lower
number of molecular markers can be tested [16],
although this will result in a lower mapping resolution.
Conversely, short-range LD enables the fine mapping of
causal polymorphisms, if large panels of markers are
available [17].
Data on the existence and extension of LD in different

plant species are not exhaustive and point to a diversi-
fied picture, with decays of 1-2 kb in maize, up to 50
cM in Arabidopsis, and more than 50 cM in barley cul-
tivars [18] although lower extent of LD have been
reported in this species in collections of wild barley [19].
Most of the studies have been carried out in Arabidopsis
and maize (summarized in [20] and [21], respectively),
but data are available also for rice [18], aspen [22],
loblolly pine [23], barley [24], wheat [25], grape [26],
sugar beet [27], and soybean [28]. For the Solanaceae
family, studies have been conducted in tomato [29] and
potato [30].
The development of simple sequence repeat (SSR)

markers has improved the characterization and use of
genetic variation in N. tabacum [31]. SSRs have been
adopted to evaluate genetic diversity in a tobacco collec-
tion by Moon et al. [3] and to study, in a collection of
“Flue-cured” tobaccos, the changes in genetic diversity
occurring over the last 70 years [32]. These studies
prove the feasibility of using molecular markers to
reconstruct the population structure in tobacco and
represent the conceptual starting point for our study.
The aims of this study were to:

1) Assess the phylogeny and the population structure
of 312 tobacco accessions representing a wide range
of genetic diversity
2) Identify a subset of accessions as a core collection
capturing most of the existing genetic diversity

3) Estimate, in the tobacco core collection, the
extent of LD in seven genomic regions using SSR
markers.

Results and discussion
Clustering of tobacco accessions based on SSR markers
largely reflects their typological classification
A set of 312 pure lines derived from worldwide acces-
sions of N. tabacum (Table 1) was investigated to detect
the allelic variants at 49 SSR loci (Table 2). This panel
of SSRs was selected based on technical reliability,
uniqueness, and even distribution in the tobacco gen-
ome, as described in two papers by Bindler et al.
[31,33], and was used to infer phylogeny and genetic
diversity in the set of accessions, eventually leading to
the assembly of a core collection.
The total number of alleles amplified at the 49 SSR

loci was 335, with an average call rate of 99%. The high
level of polymorphism revealed for the 49 SSR sup-
ported their usefulness for applications in diversity
analysis.
The mean number of alleles detected for each locus

was 6.84 (s.d. = 2.57), ranging from 13 alleles for marker
PT61336 to three alleles for PT54203 and PT52002
(Table 2). This value is about half that recorded in pre-
vious studies [3,32]. The difference may be due to the
choice of the marker loci as well as to the set of acces-
sions analyzed. All tobacco accessions were genotyped
as homozygous at the 49 SSR loci (Ho = 0 at all loci,
Table 2), with a gene diversity (He) per locus spanning
from 0.013 to 0.841 (average 0.59), a value lower than
those reported in similar investigations carried out on
TI accessions of tobacco [3]. The relatively low levels of
Hd revealed by molecular markers in tobacco [34] can
be due to relatively recent evolutionary and breeding
bottlenecks, through which only a small proportion of
the variability of the gene pools of the progenitor spe-
cies was funneled through [2]. The polymorphic index
contents (PIC) was > 0.4 at almost all loci, with
PT53216 and PT54203 having the highest and lowest
values, respectively (Table 2).

Tobacco structured populations
Clustering of the 312 genotypes (Figure 1) revealed the
relationships among accessions were distributed over six
main clades. Accessions of “Oriental” clustered mainly
in two different clades encompassing 88 accessions
(green clades in Figure 1). Only 14 of the accessions
were members of the heterogeneous group of tobacco
accessions defined as “Other”, whereas another 10 were
classified as different tobacco types. “Flue-Cured” lines
clustered mainly in one clade (yellow clade in Figure 1),
although this also contained two, seven, four, and eight
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genotypes classified as “Oriental”, “Dark”, “Primitive”,
and “Other”, respectively. Excluding six genotypes
assigned to different clades, “Burley” accessions clus-
tered in one clade (light-blue clade in Figure 1), which
also contained nine members of the “Other” tobacco
type and six lines classified as “Primitive”, “Dark”,
“Oriental”, and “Flue-cured”. Non-group associated gen-
otypes ("Other” in Table 1) clustered in two different
clades (violet clades in Figure 1), one of which also
included lines containing a large sub-set of the “Primi-
tive” accessions (blue clade in Figure 1).
Different tobacco types originated as the early

growers saved seeds for subsequent planting, before
the initiation of science-based breeding [3]. Tobacco
growers selected plants for cultivation in different
environments, for their agronomic performance using
different agronomic practices, for the smoking charac-
teristics of the leaf, and for adapting the leaf type to
different leaf curing methods (i.e., the way the leaf is
dried in a controlled way). The tobacco accessions we
investigated clustered, based on molecular markers,
according to their type, thus supporting the effective-
ness of the breeding programs which have restricted
the original breeding pool when selecting specifically
for each market destination. The results are in agree-
ment with previous data [31] supporting the correla-
tion between type classifications and genetic distances
[35]. The accessions that were found “contaminating”
the homogeneity of groups (for example, “Cigar” vari-
eties interspersed among “Oriental” varieties, in Figure
2), may be the result of misclassifications, as reported
for the TI accessions [36]. In addition, inaccurate sam-
pling procedures carried out during tobacco cultiva-
tion, or errors during varietal reproduction and
conservation, can be the origin of the observed hetero-
geneity of major phylogenetic clades.
The distinct and homogeneous clustering of “Oriental”

and “Flue-cured” tobaccos, the most outstanding
tobacco types, is most likely due to the ~400 years of
divergent selection in Europe/Middle East for the
“Oriental” types [37], and to the adoption of a stringent
conservative breeding strategy for “Flue-cured” tobaccos
[38]. In “Flue-cured” tobaccos, genetic variability
decreased significantly with the adoption of an
“advanced cycle pedigree breeding”, i.e., the exclusive
usage of elite materials to produce breeding crosses

Table 1 Geographical origin of the accessions considered

Origin Country Number of
accessions

Africa Unspecified 1

Ethiopia 1

Malawi 4

South Africa 2

Zimbabwe 4

America South America Unspecified 5

Argentina 6

Brazil 6

Peru 1

Central America &
Caribbean

Colombia 8

Costa Rica 7

Cuba 4

Dom. Rep. 2

Ecuador 2

El Salvador 2

Honduras 2

Mexico 14

Venezuela 10

North America Canada 1

U.S.A. 69

Eurasia Europe

Bulgary 3

England 1

France 1

Germany 8

Greece 9

Holland 1

Hungary 1

Poland 3

Spain 2

Switzerland 2

Ex-Yugoslavia 5

India 2

Russia 1

Middle East Iran 2

Syria 1

Turkey 15

Far East China 1

Japan 3

Taiwan 1

Southeast Asia Ceylon 1

Indonesia 1

Korea
(Peninsula)

1

New Guinea 1

Table 1 Geographical origin of the accessions considered
(Continued)

Philippines 2

Unknown 93

Total 312
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[32]. Also “Burley” genotypes clustered together,
although less homogenously than the previous two
groups, as described also in [39], possibly because their
selection has been traditionally performed on a wider
geographic scale. Two phylogenetic clades were hetero-
geneous, containing most of the “Primitive” accessions,
and the majority of “Cigar”, “South American”, and
“Indonesian” tobaccos. This may represent the most
ancient gene pool, making it particularly interesting for
future breeding and mapping programs. According to
the phylogeny, the “Primitive” genotypes should be
genetically strongly related to “Cigar” tobaccos.
Principal coordinate analysis (PCoA) was carried out

on the same SSR data set (Figure 2). The first principal
component explained 40% of the genetic variance, and
71% was explained by the first three principal compo-
nents, indicating that despite the high number of alleles
detected at some SSR loci (Table 2), the collection was
characterized by a narrow genetic basis. PCoA clustering
indicated that molecular associations mainly reflected
the physio-morphological characteristics associated with
the tobacco types and their agronomic and commercial
uses (Figure 2). A further Bayesian cluster analysis [40]
identified the most probable number of K subpopula-
tions present in the whole panel. The analysis of poster-
ior probabilities supported the conclusion that four
subpopulations had the highest likelihood (Figure 3). In
the collection, a small number of genotypes were mole-
cularly not aligned with their assignment to a tobacco
type. Namely, while most of the “Burley”, “Oriental”,
“Flue-cured”, and “Cigar” genotypes clustered molecu-
larly in four distinct subpopulations (yellow, violet, red,
and green bars, respectively in Figure 3), “Primitive” and
“Dark” genotypes were characterized by a more hetero-
geneous genome constitution. The close link between
“Dark” and “Flue-cured” [2] was evidenced by the num-
ber of common alleles (red bars, Figure 3).
The levels of admixture (i.e., interbreeding between

individuals of previously isolated populations) estimated
by STRUCTURE appeared low in all lines considered,

Table 2 Genetic diversity in 312 tobacco accessions
analyzed at 49 SSR loci distributed on seven linkage
groups

SSR name Naa Nrb PIC valuec He
d

PT50069 6 0.341493 0.362

PT60824 10 2 0.563837 0.629

PT61056 11 0.69481 0.729

PT54015 4 1 0.349554 0.425

PT51151 5 0.487583 0.570

PT61373 6 0.580958 0.623

PT52002 3 0.529461 0.602

PT50529 5 2 0.34733 0.398

PT50539 11 1 0.795385 0.819

PT51123 10 5 0.617252 0.660

PT54346 3 0.38183 0.500

PT51148 6 1 0.456057 0.504

PT52718 7 1 0.719666 0.760

PT51491 7 0.524293 0.577

PT53444 8 2 0.384821 0.408

PT54231 5 1 0.49717 0.535

PT61434 5 0.35199 0.374

PT50943 7 1 0.653921 0.692

PT51191 4 0.657827 0.710

PT51199 4 0.605402 0.671

PT53802 5 0.466876 0.561

PT55402 5 1 0.562008 0.634

PT1118n 8 3 0.607261 0.668

PT20275 9 1 0.567486 0.627

PT61336 13 0.588434 0.628

PT20388n 5 0.597306 0.664

PT1245 8 1 0.738271 0.774

PT51063 4 0.389199 0.435

PT51644 5 2 0.219817 0.236

PT52780 10 2 0.735723 0.761

PT53216 11 0.848799 0.863

PT55333 8 2 0.740353 0.776

PT61044 9 0.822021 0.841

PT53269 4 0.661365 0.712

PT53801 5 0.431335 0.533

PT54203 3 2 0.013311 0.013

PT606483 5 0.458545 0.552

PT50936 6 0.673446 0.724

PT51214 5 2 0.419422 0.517

PT51878 8 3 0.679454 0.725

PT50182 9 1 0.734941 0.769

PT51050 7 3 0.407602 0.516

PT54871 8 2 0.57878 0.606

PT52378 5 0.400721 0.466

PT52641 4 0.554108 0.621

Table 2 Genetic diversity in 312 tobacco accessions ana-
lyzed at 49 SSR loci distributed on seven linkage groups
(Continued)

PT1069n 11 2 0.709769 0.732

PT20224n 10 4 0.55947 0.628

PT50647 8 0.341428 0.356

PT53303 10 0.75943 0.788

Total 335
6.8 (avg.)

0.59
(avg.)

aNumber of alleles
bNumber of rare alleles (<5%)
cPolymorphic Index Content
dGene diversity at each locus
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supporting the role of the conservative breeding to
which the species was subjected.
Our PCoA results support the conclusion that the

main tobacco types can be discriminated by molecular
fingerprinting. In this sense, genetic distance and
model-based analyses provide for the first time strong
evidence of population substructure in tobacco.

Kinship analysis reveals co-ancestry among burley
tobaccos
To test the hypothesis of co-ancestry between tobacco
accessions belonging to the same tobacco type, the pair-
wise kinship coefficients between accessions, as well as
the population mean kinship (MK) among groups of
tobacco accessions (Table 3), were calculated. The kin-
ship coefficient is the ratio of the probability that, at a
given locus, alleles of i and j individuals are identical by
descent vs. the same probability of two random indivi-
duals. In this work alleles at one SSR locus were defined

Figure 2 Scatter-plot of the first three principal coordinates of
PCoA considering data obtained from 49 SSRs. Different colors
indicate different tobacco types. Tobacco accessions of unknown
type are not plotted.

Figure 1 Unrooted phylogenetic tree of 312 tobacco accessions constructed on the basis of 49 microsatellites loci using Cavalli-
Sforza’s genetic distance and the neighbor-joining method. Clades represent accessions defined as “Burley” (light blue), “Primitive” (blue),
“Dark” (black), “Cigar” (violet), “Oriental” (green) and “Flue-Cured” (yellow). Accession of “Other” and unknown types are shown as white circles.
Clades are color coded according to the predominant tobacco type included, and when this was not possible, they are indicated with black
lines. Numbers refers to the order in the list of the 312 accessions, provided as online Additional file 1.
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identical by descent if identical by state in the capillary
electrophoresis analyses. Kinship coefficients are
expressed relative to the average of the population and
thus can assume negative values. The pairwise computa-
tions were used to calculate the MK coefficients in
accessions of the same tobacco type, and in all possible
pairwise combinations of the seven tobacco types (Table
3). The MK coefficient of the whole collection was
-0.004326 revealing a generally low level of co-ancestry.
When MK coefficient calculation was restricted to
accessions of the same tobacco type, higher values of
MK were obtained (Table 3). The highest value was
obtained for the “Oriental” subset, while the lowest was
obtained for the “Other” subset (both in bold in Table
3). The MK values calculated within types were positive,
suggesting that a certain level of co-ancestry linked the
accessions included in each tobacco type (Table 3).

A set of 89 out of 312 genotypes captures the whole
genetic diversity detected at 49 SSR loci
The first core collection of tobacco was created that
identified the minimum set of accessions capturing most
of the genetic diversity at the microsatellite loci tested
on the full set of accessions. Five different lists of acces-
sions selected using different rationales were created.
The first list identified the minimum set of accessions
capturing all 335 alleles identified in the whole panel of

tobacco, and allowed us to isolate 60 genotypes. The
other lists (60 genotypes each) were manually created
based on Bayesian clustering, PCoA scatter-plot, co-
ancestry analysis, and phylogeny. The five sets of acces-
sions were then merged and a core collection was pro-
duced (Table 4) composed of 12 “Burley” (including 1
“Maryland”), 20 “Flue-cured”, 20 “Oriental”, 14 “Cigar”,
10 “Primitive”, 8 “Dark”, and 5 “Other”. Twenty-one of
the accessions included in the core collection corre-
sponded, according to Moon et al. [3], to samples col-
lected before 1938. They still represent the best
available sampling of the genetic diversity existing before
modern breeding. Some of the genotypes (<5%) were
selected because of their potential for tobacco breeding
and not because they were identified following the pro-
tocols described.

LD decays in less than one cM along tobacco
chromosomes
A total of 422 SSRs were used to scan the tobacco core
collection at seven genomic regions located in different
chromosomes (Table 5). The regions were selected
based on marker density and their potential to harbor
genes putatively important for crop improvement. The
markers used had a density of 0.9 marker/cM, ranging
from 0.6 on LG1 to 1.1 on LG17. The mean information
index [41] varied from 1.68 for LG7 to 2.14 for LG17

Figure 3 Clustering of the 312 tobacco accessions according to a model-based Bayesian algorithm implemented in the program
STRUCTURE. Population memberships (expressed as%) for each accession are shown as estimates based on hypothetical subpopulations (see
Methods). Each bar in the graph represents a single accession and its inferred proportion of admixture. The colors represent four different
clusters corresponding to inferred unstructured subpopulations. The “Other” group includes genotypes of unknown type.

Table 3 Population mean kinship coefficients (MK) calculated within and between groups of accessions from different
tobacco types (in bold, the highest and lowest values; see text)

BURLEY CIGAR DARK FLUE CURED ORIENTAL PRIMITIVE OTHER

BURLEY 0.05901750 -0.00520813 -0.00153207 -0.00805086 -0.03299411 -0.00642158 -0.01104828

CIGAR 0.01353207 -0.00020439 -0.01653192 -0.01012077 0.00785769 0.00308158

DARK 0.04352909 0.01887781 -0.03837019 -0.00021201 -0.01353367

FLUE CURED 0.05168934 -0.05120176 -0.02006903 -0.01492823

ORIENTAL 0.07539302 -0.01244403 0.00278055

PRIMITIVE 0.07323105 0.03543639

OTHER 0.01063263
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Table 4 Tobacco accessions selected for the core
collection

Name Type Origin

American Burley 1 BURLEY US

Adiyaman ORIENTAL Turkey

Ambalema CIGAR Venezuela

Aparecido PRIMITIVE Venezuela

Bafra ORIENTAL Turkey

Banket A1 BURLEY Zimbabwe

Barbasco CIGAR Ecuador

Basma Xanthi BX2A ORIENTAL Unknown origin

BB16A BURLEY France

BHAVYA FLUE CURED India

Big Cuba(i)n CIGAR Cuba

Basma 1 ORIENTAL Unknown origin

Basma 2 ORIENTAL Greece ?

Bonanza PRIMITIVE Mexico

BS 92 BURLEY China

BU 21 BURLEY USA

Cash CIGAR Mexico

Harmanlisjska Basma ORIENTAL Bulgaria

Chiricano OTHER Costa Rica

Chocoa CIGAR Colombia

COKER 347 FLUE CURED USA

COKER 371 Gold FLUE CURED USA

Coltabaco 1A DARK Colombia

Cordoba FLUE CURED Mexico

Criollo DARK Costa Rica

Criollo Colorado DARK Argentina

Criollo especial DARK Cuba

Delcrest FLUE CURED Unknown origin

Deli (Sumatra) PRIMITIVE Honduras

BLACK MAMMOTH DARK Unknown origin

Dixie Bright 27 FLUE CURED USA

Djebel 81 C ORIENTAL Unknown origin

Dreta BURLEY Germany

Dubek Nr 7 ORIENTAL Poland

Dungowan ORIENTAL Unknown origin

Dynes FLUE CURED Australia

Florida 301 CIGAR USA

Florida Sumatra CIGAR USA

South American Dark 1 CIGAR South America

Gober Peloes CIGAR Brazil

Havana 322 CIGAR USA

Hevesi 17 FLUE CURED Hungary

Hicks Broadleaf FLUE CURED USA

Ilopango PRIMITIVE El Salvador

Itztepeque PRIMITIVE Costa Rica

K326 FLUE CURED USA

Table 4 Tobacco accessions selected for the core collec-
tion (Continued)

K399 FLUE CURED USA

Kabakulak Zagliveri ORIENTAL Unknown origin

Karabaglar ORIENTAL Turkey

Indonesian 1 OTHER Indonesia

Indonesian 2 OTHER Indonesia

Indonesian 3 OTHER Indonesia

KDH-960 (TC 466) DARK USA

Komotini ORIENTAL Greece?

LITTLE CRITTENDEN DARK USA

LN German CIGAR Germany

Lonibow FLUE CURED Taiwan/Canada

MARYLAND 402 BURLEY USA

McNair 135 FLUE CURED USA

Mpeskq ORIENTAL Ex-Yugoslavia

NC 2326 (TC 365) FLUE CURED USA

Nevrokop 261 ORIENTAL Mexico

Okinawa PRIMITIVE Japan

Orinoco PRIMITIVE Mexico ?

Oxford 207 FLUE CURED USA

Payta BURLEY Unknown origin

PERIQUE (TC 556) OTHER Costa Rica?

TI 675 PRIMITIVE Honduras ?

TI 1031 CIGAR Venezuela?

Piyanguy Minas FLUE CURED Brazil

Saade 6 ORIENTAL Unknown origin

Samsum Maden ORIENTAL Turkey

Saturn 280 BURLEY Unknown origin

Sevilla 6 BURLEY Spain

SIMMABA DARK Philippines

Speight 168 FLUE CURED USA

TI 102 (Tobaco Negro) CIGAR Venezuela

TI 1271 ORIENTAL Ethiopia

TI 1406 BURLEY Germany

TI 592 PRIMITIVE Mexico

TI 698 (Copan) PRIMITIVE Costa Rica

TI 981 Samsun ORIENTAL Brazil

TN 90 BURLEY USA

Tomback ORIENTAL Unknown origin

Turkish Samsun ORIENTAL USA?

VA 355 FLUE CURED USA

Wislika FLUE CURED Poland

YUN 85 FLUE CURED Unknown origin

Zapatoca CIGAR? Colombia?

TI: tobacco introduction as numbered in the USA Nicotiana Germplasm
collection.

TC: tobacco cultivars; included in this group is every cultivar, germplasm line,
or genetic stock that has been registered with the Crop Science Society of
America.
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(Table 5). Only 6.45%, 1.92%, and 6.06% of SSR markers,
on LG1, LG7, and LG22, respectively, were found to be
monomorphic. The lowest average number of alleles per
locus was on LG7 (4.57 alleles per SSR), and the highest
was on LG22 (7.8 per SSR; Table 5).
The square root-transformed distribution of pairwise

r2 values of SSR loci mapping on different chromosomes
(unlinked r2 values) allowed us to set an appropriate
threshold at a value of 0.23 beyond which LD values
were considered significant. The value of 0.23 calculated
for this LD threshold excluded most of the r2 values of
SSRs mapping to the same chromosomal region (linked
r2 values). Most of the marker pairs showing r2 values
above the threshold (on average 0.25% of the total pair-
wise values) were from loci mapping within a few cM
(Figure 4), although outliers were also observed (Figure
5). On LG1, the pattern of LD rapidly decayed within
less than 1 cM, although a total of 15 pairwise r2 values
of SSR loci mapping within 15 cM showed significant
LD values (Figure 5). This block of significant LD
encompasses 15 SSRs (PT20234n, PT50467, PT50754,
PT50862, PT51015, PT51174, PT51438, PT51479,
PT51966, PT54092, PT54727, PT54759, PT54767,

PT54916 and PT61209) [33], 4 of which (PT51438,
PT51479, PT51966 and PT54916) have an expected het-
erozygosity close to zero, while the remaining 11
showed an expected heterozygosity significantly lower
than the mean expected heterozygosity of the SSRs of
LG1 (data not shown). Taken together these data could
point out that the 15 cM LD block revealed on LG1 was
generated owing to a loss of allele diversity occurred in
SSRs of this interval map. As expected, the trend was
that LD decreased with genetic distance. On LG2, three
pairs of markers had r2 values exceeding 0.36. Along the
same LG, a second region of r2 values close to the
threshold was observed in comparisons involving mar-
kers at a distance around 20 cM. On LG7, pairs of loci
with significant LD were observed within 15 cM
between markers, and close to the threshold at 25 cM.
On both LG12 and LG17, only one pair of SSR loci had
significant r2 values. On LG12, the two loci were within
5 cM, while on LG17, the distance was around 12 cM.
On LG22, eight pairwise r2 values were above the
threshold, two of which mapped within 35 cM. On
LG23, five pairwise r2 values were found between loci
mapping within 5 cM.
The seven regions where the extent of LD was investi-

gated encompass a significant sample of the total
tobacco genome (12%; Gregor Bindler, personal commu-
nication). The extent (inter-marker distance in cM) of
LD turned out to be limited to one cM or less, which is
a very limited value, especially considering that in highly
structured collections LD is expected to be overesti-
mated [42]. Similar results were obtained for the sub-
populations of tobacco based on tobacco type and iden-
tified with the clustering analysis, although, owing to the
low number of genotypes, the significance of P values
decreased with the exception of the “Flue-cured” sub-
population (data not shown).
In tomato, the extent of LD was comparable to that of

tobacco, but its magnitude was much higher [29]. In
wheat, LD has a behavior similar to that of tobacco [43],
with a low magnitude of LD detected over long seg-
ments of chromosomes. In a report concerning a

Table 5 Markers distribution and statistics concerning the selected genomic regions (standard errors in brackets)

Linkage Group No. of SSRs Interval spanned (cM) Mean Information index Mean Number. of alleles % Polymorphic loci

1 62 40 1.70 (0.11) 6.1 (0.57) 93.55

2 38 40 2.00 (0.08) 5.7 (0.48) 100.00

7 50 52 1.68 (0.10) 4.57 (0.38) 98.00

12 71 65 1.99 (0.07) 6.28 (0,41) 100.00

17 55 57 2.14 (0.09) 7.6 (0.63) 100.00

22 66 74 1.98 (0.06) 7.8 (0.56) 98.00

23 80 70 1.74 (0.80) 5.24 (0.42) 100.00

Total 422 398 Avg. 6.18

Figure 4 Average long-range LD between SSR loci. Pair-wise
markers have been classified based on independently intermarker
genetic distance. LD analysis was performed for each LG. For each
class, the average r2 value is reported.
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different wheat collection, a genome-wide LD extending
up to 10 cM with mean r2 = 0.18 and much higher
intrachromosomal r2 values has been reported [25].
Similar levels of long-range LD extending over several
cM have been found in self-pollinating species such as
Arabidopsis [44] and barley [24]. The study of LD in
maize carried out with inbred lines indicates its rapid
decay within 1 cM up to values of r2 <0.05, when
assessed with intragenic SNPs, although much higher
genome-wide LD levels were assessed using SSRs [45].
In general, long and local ranges of LD exhibited in a

collection of crop genotypes depend on many factors,
including the mating system as well as the evolutionary
forces to which this crop was subjected. The global
reduction of allelic diversity at whole genome loci gener-
ated by genetic bottlenecks tends to increase both long
and local ranges LD [19,24]. On the contrary, selection
fix one or few alternative alleles present in a population,
causing a loss of allelic diversity only at the key loci
under selection and at linked loci, a phenomenon
known as genetic hitchhiking [21]. Consequently, selec-
tion can increases only the local range of LD at the tar-
get loci in which it acted [46]. The tobacco data

discussed in this paper pointed out a 15 cM LD block
in LG1 that could be a signature of selection as it is
associated with a significant reduction of allelic diversity
of SSRs (data not shown).
In turn, the usual division of the germplasm into alter-

native breeding groups facilitates the maintenance of
alternative haplotypes in different gene pools, thus sup-
porting high levels of LD between gene pools. The pat-
tern of LD observed in tobacco is compatible with a
structured population, i.e., strong bottlenecks occurred,
particularly during breeding within the germplasm pool
of a specific tobacco type, and our samples can be con-
sidered as derived from different populations. Thus, the
observed LD has high values when considering inter-
groups comparisons, but it is likely that the LD observed
is in fact due to the structure of the collection analyzed.
In several instances, very distant pairs of markers with

significant LD levels were observed, a finding which may
be due to the low number of alleles at specific loci with
minor alleles present at a very low frequency. We also
observed “islands” of LD at a few positions along LGs.
This could be a consequence of the lack of admixture
between lines belonging to different types [34].

Figure 5 Decay of LD (r2) as a function of genetic distance (cM). The r2 = 0.23 threshold line is indicated.
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Alternatively, it could be the result of the presence of
chromosomal translocations and/or inversions [47], or
of the presence in the germplasm of genotypes with
regions hosting hemizygous DNA stretches opposed to
pairing and recombination [48].
In summary, the values of LD reported here have a

similar pattern for all chromosomal regions tested, with
few exceptions. These could be due to inaccuracies in
the genetic distances reported in the linkage map, to
misplacement of genetic marker loci, or to the low fre-
quencies of specific alleles. The extent of LD measured
in this work indicated that tobacco is not amenable to
genome-wide association studies. Although it is true
that a few marker pairs showed LD exceeding the
threshold, the number of pairs was very low and did not
exceed the number of false positive results expected for
the significance testing procedure applied. Therefore, we
concluded that the LD observed in the panel of tobacco
accessions analyzed was insufficient to support the
undertaking of subsequent long range association ana-
lyses, although the r2 value detected are encouraging to
carry association mapping when more molecular mar-
kers will become available.
A higher density of markers would probably make it

possible to use LD to perform candidate-gene-based stu-
dies. We cannot exclude the possibility that by re-evalu-
ating the LD using a higher density of markers and
concentrating on shorter regions, we would observe a
different situation, as LD has been shown to be popula-
tion and locus specific [42].

Conclusions
Our study demonstrated a low level of genetic diversity
and a fast decay of LD in the seven regions that have
been analyzed in the tobacco genome. Relatively recent
evolutionary and breeding bottlenecks could account for
the low levels of Hd revealed by molecular markers.
Tobacco accessions were shown to cluster according to
their market type, which, combined with a low level of
admixture, is a further proof of the effectiveness of the
conservative breeding programs. In our study, we have
provided evidence of population substructure in tobacco
and proposed, for the first time, a core collection. The
level of LD observed was influenced by the structure of
the population and by the recombinational history of
the population, and it decayed in within very short
intervals (less than 1 cM).

Methods
Plant material
A total of 312 tobacco accessions (Additional file 1)
maintained at the Philip Morris International collection,
Neuchatel (CH), were investigated in this study. Acces-
sions were classified as described in Chaplin et al. [36]:

“Burley” & “Maryland": 45 entries; “Flue-cured": 70;
“Orientals": 77; “Cigar tobaccos” (filler, wrapper, binder):
36; “Primitives": 23; “Dark tobacco” & “Fire-cured": 22;
“Other": 18 ("Perique”, 1; “South American”, 4; “Semi-
oriental” 1; “Indonesian” and “other”, 12). Twenty-one
accessions were of unknown type.
The majority of accessions were originally obtained

from the U.S. Nicotiana Germplasm collection in
Oxford, NC (USA); the accessions used represent
tobacco collected from or cultivated in 45 different
countries. Seeds were germinated and grown under
greenhouse conditions until plants reached a height of
approximately 20 cm before DNA extraction.

DNA extraction and genotyping
Leaves from 5 plants were pooled and genomic DNA
was isolated from 6 mg of lyophilized material in 96-
well microtube plates using Macherey Nagel® NucleoS-
pin Plant II kit and following manufacturer’s instruc-
tions. The quality and the concentration of the genomic
DNA were assessed using electrophoretic analysis and
Picogreen® technology (Invitrogen, San Diego, CA),
respectively. Genomic DNA was normalized at 20 ng/μL
before genotyping.
All SSR loci considered in this study were amplified

using a three-primer system for indirect labelling PCR
fragments [49]. The amplification of SSR loci was car-
ried out in 384-well plates (Applied Biosystems, Foster
City, USA) in Eppendorf Mastercycler EPgradient ther-
malcyclers (Eppendorf, Hamburg, Germany). Each reac-
tion was performed in 10 μl with the following mixture
composition: 20 ng of DNA, 1.5 mM of MgCl2, 0.4 μM
of the first primer, 0.2 μM of the second primer with
M13 complementary tail, 0.2 μM of M13 fluorescent
labelled primer, and 0.25 U of Taq HotStart DNA poly-
merase QIAGEN (Valencia, USA). The reactions were
subjected to the following thermal protocol: after an
initial denaturation step at 95 C for 15 min, amplifica-
tion reactions were subjected to 11 cycles at 95 C for 30
s, 58 C for 45 s and 72 C for 90 s, decreasing annealing
temperature by 0.7 C in each cycle. The reactions were
further subjected to 29 cycles of 95 C for 30 s, 50 C for
45 s, and 72 C for 90 s. A final elongation step of 10
min was applied. 0.25 μL of amplification products, each
of which was labeled with the four ABI dyes, was mixed
with 10 μL of formamide, loaded in a ABI3730 DNA
analyzer (Applied Biosystems), and analyzed through
capillary electrophoresis.
Fragment analysis was carried out with GeneMapper®

4.0 software (Applied Biosystems, Foster City, USA)
using stutter peaks of known sizes as internal controls.
Automatic allele calls were subsequently assessed
reviewing all electropherograms. Fragments of lengths
not comparable to the control or with fluorescent
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intensities lower than 75 percent of the peak assumed as
true allele were considered artefacts. Genotyping tables
were exported as tab-delimited files and formatted in
Microsoft Excel (Redmond, USA) to conduct phyloge-
netic and statistical analysis.

Data analysis
Basic statistics (number of alleles detected at each locus,
allelic and genotypic frequencies, call rate, heterozygos-
ity, and PIC) were calculated using the R [50] and Gen-
AlEx packages [51].
PHYLIP package gendist software [52] was used to

calculate pairwise Cavalli-Sforza’s genetic distances
among the 312 tobacco accessions. Triangle matrix of
pairwise genetic distances was subsequently formatted
in NEXUS file to cluster the tobacco accessions with
Neighbor-Joining using the SplitsTree4 software [53].
To better plot the resulting large clustering of tobacco
accessions, a circular cladogram was generated with
Dendroscope software [54].
To assess the population structure of the tobacco-

sample accessions, a multivariate analysis and a heuristic
method based on Bayesian clustering algorithms were
utilized. Principal coordinate analysis (PCoA) was initi-
ally performed on the SSR data using the “ape” package
in the R software. The clustering method based on the
Bayesian-model implemented in the software program
STRUCTURE [40] was used on the same data set to
better detect population substructures. This clustering
method is based on an algorithm that assigns genotypes
to homogeneous groups in such a way that departure
from neutral equilibrium is minimized among genotypes
within each group, but it is absent among groups. The
number of potential subpopulations varied from 2 to 10,
and their contribution to the genotypes of the acces-
sions was calculated based on 5x105 iteration burn-ins
and 5x105 iteration sampling periods. Eventually, the
most probable number (K) of subpopulations was identi-
fied following Evanno et al. [55].
Pairwise coefficients of kinship (Fij), a measure of

relatedness between individuals i and j based on mole-
cular markers, were calculated using SPAGeDi software
[56]). Mean kinship (mk) coefficients were obtained
averaging the pairwise kinship coefficients of each single
accession with all other accessions of the whole collec-
tion [40]. In addition, the computation of mean kinship
coefficients was restricted to pairwise kinship coeffi-
cients of accessions of the same tobacco type (mki), as
well as for all possible pairs of accessions of different
tobacco types (mkp). In order to assess the higher level
of relatedness of tobacco accessions of the same type,
population kinship coefficients (MK) were calculated
arithmetically averaging the mki coefficients of tobacco

accessions sharing the same tobacco type. Similarly, the
level of relatedness of accessions of two different
tobacco types was assessed averaging mkp coefficients
calculated for all possible pairs.

Core collection sampling
An algorithm was developed and implemented that
allowed us to identify the least number of accessions cap-
turing all of the alleles that were unique in the set of
tobacco accessions. A first screening with one SSR marker
was performed on a random sub-set of the accessions, fol-
lowed by a pairwise comparison with the remaining acces-
sions. Only accessions showing at least one unique allele
were used in the following iterative analysis, leading to a
list of accessions that represented all of the alleles. Because
the group and the number of accessions in the final list
can change, depending on the original order of the list, the
accessions were randomly re-ordered and this process was
repeated 2 x105 times. This method allowed for the selec-
tion of 60 genotypes. Additional methods were used to
create three more lists of accessions, each with 60 geno-
types showing the most extreme values of PCA, mk coeffi-
cients, and pairwise genetic distance. A fifth list of 60
genotypes was created by picking individuals with the
highest values in the Q matrix of the STRUCTURE analy-
sis. The five lists of genotypes were then merged and a
consensus list of 89 genotypes was compiled.

Analysis of linkage disequilibrium (LD)
The squared allele-frequency correlation r2, was calcu-
lated for all possible combinations of alleles to estimate
the extent of LD in the core collection of tobacco acces-
sions, using the software package TASSEL 2.01 [57].
The weighted average of r2 values was obtained by
further weighting for the corresponding allele frequen-
cies. The significance of pairwise LD (p-value) among all
possible pairs was also evaluated by TASSEL with the
rapid permutation test.
To avoid the bias imposed by the usage of the

squared-allele-frequency correlation r2 in the presence
of rare alleles, only alleles having a frequency larger
than 0.1 were considered.
The square root of each pairwise r² among allelic var-

iants of physically unlinked SSR loci was calculated. The
95th percentile of this approximate normal distribution
was assumed as the threshold of the r² value to declare
the presence of LD among molecular markers [58].
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