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Abstract

Background: Structured association mapping is proving to be a powerful strategy to find genetic polymorphisms
associated with disease. However, these algorithms are often distributed as command line implementations that
require expertise and effort to customize and put into practice. Because of the difficulty required to use these
cutting-edge techniques, geneticists often revert to simpler, less powerful methods.

Results: To make structured association mapping more accessible to geneticists, we have developed an automatic
processing system called Auto-SAM. Auto-SAM enables geneticists to run structured association mapping
algorithms automatically, using parallelization. Auto-SAM includes algorithms to discover gene-networks and find
population structure. Auto-SAM can also run popular association mapping algorithms, in addition to five structured
association mapping algorithms.

Conclusions: Auto-SAM is available through GenAMap, a front-end desktop visualization tool. GenAMap and Auto-
SAM are implemented in JAVA; binaries for GenAMap can be downloaded from http://sailing.cs.cmu.edu/genamap.

Background
High-throughput technology has resulted in an explosion
of biological data including gene expression and SNP data
for a growing number of organisms. In order to under-
stand the biological/medical implications and mechanistic
insights behind such ever-growing amounts of data, biolo-
gists have relied on advances in statistical learning and
inference technology to give them the tools they need to
elucidate relationships between genes, genomic mutations,
and phenotypic traits. The need for powerful analytic tools
is especially pertinent in genetic association mapping. In a
genetic association mapping study, millions of genomic
markers, usually single-nucleotide polymorphisms (SNPs),
are collected for a cohort of patients. In addition to the
vast amount of genomic data, gene expression data for
thousands of genes and trait measurement data for hun-
dreds of clinical traits are also collected. The genetics

analyst must explore this vast amount of complex, struc-
tured data to find SNPs that are associated with genes or
traits of interest. Many successful association studies have
been performed and provided insight into a variety of
human diseases [1-4].
Despite the success of association mapping in uncover-

ing SNPs associated with disease, traditional genome
wide association studies (GWAS) that look for associa-
tions between the genome and phenotypic traits are lim-
ited in their ability to identify and explain causal SNPs
[1]. For example, the results of many GWAS point to
SNPs that account for only a small fraction of the disease
heritability [5], or point to SNPs that do not affect pro-
tein sequence, suggesting involvement in some unknown
regulatory pathway [6]. Steps to incorporate other data,
such as genome-wide expression data, into association
analysis have shown some promise [7]; however,
researchers often rely on simple, single-SNP to single-
trait association tests to find pairwise SNP-gene associa-
tions, even in studies with large sets of correlated genes
or traits [8]. Thus, despite the incorporation of additional
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data, association mapping studies are still hampered by
the use of methods that ignore structures (and thus infor-
mation) inherent in the data.
Recent advancements in machine learning have led to a

new generation of GWA technologies, termed structured
association mapping algorithms, which can leverage inher-
ent structure present in the genome and phenome when
performing association mapping analysis. For example,
GFlasso [9] and TreeLasso [10] algorithms both consider
the presence of complex correlation structures among
individual traits that constitute the so-called intermediate
phenotypes (measurements of dependent clinical traits that
describe a symptom, or genes that constitute a functional
module) in the discovery of associated SNPs. Other algo-
rithms, such as MPGL [11] or AMTL [12], leverage geno-
mic structure, such as population structure and known
genomic features, to identify associations. Indeed, struc-
tured association mapping is proving to be a powerful sta-
tistical tool with the potential to enhance the discovery of
weaker signals while eliminating false positives [9].
While the promise of structured association mapping

has been shown through technical papers and in mathe-
matical conferences, its application to genetics study has
been significantly slower. The traditional presentation and
deployment of methodological advances in machine learn-
ing and statistics fields hinders their acceptance and use
by biologists. For example, structured association mapping
algorithms are generally made available as crude, com-
mand-line implementations (if they are made available at
all). Thus, in order for a geneticist to use a structured
association mapping algorithm in a GWAS analysis, they
must download a rough MATLAB implementation of the
algorithm and customize the code to fit their study.
Furthermore, many of these algorithms have been scaled
and tested only on small, simulated datasets, and while
they can be potentially extended to larger datasets, the
way to do so is not obvious to those not specialized in
machine learning or familiar with the mathematical
details. Due to the amount of specialization required to
run the algorithms, the algorithms stay on the shelf,
despite their potential to aid in genetics analysis.
In this paper, we propose a new strategy and a user-

oriented fully automated software system for the deploy-
ment of new machine learning algorithms with the pur-
pose to make them accessible to geneticists. We believe
that the wide-spread acceptance of such an approach
could potentially accelerate biological discovery by facili-
tating the incorporation of cutting-edge machine learning
techniques. More specifically, we have developed a soft-
ware system, which we call Auto-SAM, which automates
the execution of five structured association mapping algo-
rithms, four association mapping algorithms, and four
structure-finding algorithms (Table 1). In contrast to the
general strategy of posting a raw implementation on the

web, we systematically develop each algorithm so it will
automatically run in a distributed parallel-computing
environment. Thus, little technical specialization is
required for a genetics analyst to run the algorithms.
We have integrated Auto-SAM with GenAMap, which

is a visualization tool for structured association mapping
[21,22]. In GenAMap, we have used cutting-edge visualiza-
tion research to design visualization schemes specific to
the problems faced in structured association mapping ana-
lysis. By integrating Auto-SAM with GenAMap, we pro-
vide an environment where genetics analysts can run
algorithms automatically and also use powerful visualiza-
tions to explore and interpret structure and association
results.
It might be argued that one common approach of

deploying new algorithms via CRAN-R libraries [23] is
similar to the strategy we propose here. (For examples see
glasso [18] or bioconductor [24]). However, our approach
differs in three significant ways: 1) by running algorithms
in parallel on a distributed system with access to a cluster-
computing system, Auto-SAM is able to handle larger
datasets than would be possible with an R library; 2)
through the use of a database, analyses are made available
to entire teams of analysts; 3) the integration of Auto-
SAM with GenAMap provides state-of-the-art visual ana-
lytic tools that enable the analyst to explore and analyze
the data and results, including links to external databases
and integration with gene-ontology resources.
We show the validity of our approach by reporting the

running times of Auto-SAM’s algorithms on two publi-
cally available association mapping datasets, noting that
the time and specialization needed to run a similar analysis
without Auto-SAM is several orders of magnitude greater.
We demonstrate the complexity of our design of how we
run each algorithm through a discussion of the GFlasso
integration with Auto-SAM. Through this discussion we
show that by using Auto-SAM, we are able to run GFlasso
on larger datasets than would be possible with only the
source code. Auto-SAM is available through GenAMap,
which can be downloaded for non-commercial use at
http://sailing.cs.cmu.edu/genamap.

Implementation
Overview of the software
We have designed and implemented a software system
(Auto-SAM) to automatically run structured association
mapping algorithms. Auto-SAM runs on a distributed
system, which communicates with a front-end GUI run
locally on the analyst’s machine (Figure 1). There are two
databases in Auto-SAM. The data database holds data:
SNP data, gene expression data, association mapping
results, etc. The jobs database stores information about
each job request from an analyst. Once an analyst has
uploaded data into the data database, he or she can
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request to run a job through the jobs database. A service
running on the distributed machine then runs the job on
a cluster, monitors its progress, and updates the jobs
database so the front-end GUI can notify the analyst of
its progress.

Data management
All data and results that are used by Auto-SAM are
stored securely in the data database. We have implemen-
ted the data database using MySQL. An analyst would
use a front-end GUI like GenAMap to upload data into
the database. Auto-SAM organizes all data by team,
where each team is made up of one or more analysts that
all have access to the same data. Analysts can only access
data from their own team. Each team’s data are organized
by project, and each project is made up of marker, trait,
structure, and association data.
Storing the data in a remote database allows for easy

data sharing between all analysts on a team, and also
provides the cluster with quick access to the data. Addi-
tionally, the storing of the data on a remote database
allows the front-end GUI to query for data by-need to

avoid the costly storing of all the data in a local
machine’s memory. Auto-SAM takes advantage of the
fact that many results (such as gene-gene networks or
SNP-gene associations) are sparse, and thus saves con-
siderable space by only storing non-zero values. Auto-
SAM is built so that it can be integrated with new, fas-
ter database technologies when the need arises.

Algorithm automation and parallelization
Once the analyst has uploaded marker and trait data, he
or she can run algorithms to find structure in the data
using Auto-SAM. He can also run association mapping
algorithms, structured association mapping algorithms,
or other analysis algorithms. Most of the algorithms
available to run in Auto-SAM are shown in Table 1. All
algorithms are monitored by the Auto-SAM service,
which runs continuously on the distributed system.
The Auto-SAM service monitors and updates the jobs

database, which keeps track of each job as it goes
through a series of steps to run the algorithm. Each
available algorithm is defined in the jobs database, with
a pointer to the executables needed to run each step in

Table 1 Algorithms available to run in Auto-SAM

Algorithm Type Input Output Mouse run Time
(traits)

Mouse run time
(genes)

Yeast run
time

Automated
steps

GFlasso [13] SAM G, P, Ep G-P
association

0 05:05:50 1 16:17:45 2 06:43:56 17

MPGL [11] SAM G, P, Pop G-P
association

2 09:07:47 - 3 11:09:46 3

TreeLasso [10] SAM G, P, Ep G-P
association

0 01:12:03 0 12:53:52 0 05:08:42 15

AMTL [12] SAM G, P, Fg G-P
association

- - 1 20:35:47 8

gGFlasso [14] SAM T, Et, P, Ep, G/T
assoc

T-P association N/A 0 01:54:04 N/A 19

Wald Test [15] AM G, P G-P
association

0 00:23:29 0 09:51:23 0 00:54:04 5

Wilcoxon Sum-rank
test [8]

AM G, P G-P
association

0 00:10:21 0 01:05:51 0 00:14:32 4

Lasso [16] AM G, P G-P
association

0 00:59:21 0 08:22:42 0 04:07:53 6

association by
population [17]

AM G, P, Pop G-P
association

0 00:57:24 2 19:02:46 1 03:00:44 5

Correlation network P Ep 0 00:01:50 0 00:06:05 0 00:09:29 3

Glasso [18] network P Ep 0 00:07:31 0 01:19:37 0 01:51:24 10

Scale-free network [19] network P Ep 0 00:03:11 0 00:41:23 0 00:41:08 6

Hierarchical clustering tree P tree 0 00:43:32 0 01:27:32 0 01:05:04 3

Structure [20] population G Pop 0 13:30:32 0 13:30:32 0 00:41:54 4

Gene module
discovery [8]

Network
analysis

Ep phenotype
clusters

N/A 0 12:29:24 0 01:03:22 4

We present a list of all algorithms available to run through the Auto-SAM system and GenAMap. We group the algorithms by type: SAM (structured association
mapping), AM (association mapping), network generation, tree generation, population determination, and network analysis. The input for each algorithm can be
G (genotype), P (phenotype), T (gene expression data), Ep (edges for the phenotype), Fg (features of the genotype), Et (edges for the gene expression values),
and G/T (genome/transcriptome) associations. Times are represented as D HH:MM:SS where D day, H hour, M minute, and S second.
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the algorithm. In order to run an algorithm, the front-
end GUI requests a job of a specific type and specifies
the datasets to be used. The service will then start the
job from its first step. The service has only two func-
tions: 1) monitor and update the jobs database, and 2)
run and monitor jobs on the cluster. The Auto-SAM
service is implemented in JAVA. Auto-SAM uses a 240
node computing-cluster that is running condor to exe-
cute all steps of each algorithm [25].
Each algorithm that Auto-SAM runs has a series of

steps predefined, each with a specific executable. The
steps are completed sequentially. All algorithms have a
front-end step to download data from the database and
prepare for subsequent steps. Once all steps have finished
successfully, the back-end step inserts the results into the
database. Thus, each processing pipeline only touches the
database at the first and last steps. This allows for the
quick and easy integration of new algorithms into Auto-
SAM, without the integration of database management
into the code.
At the completion of all jobs in a step, the service

checks to make sure that there were no errors and moves
the job to the next step. If an error did occur, the job is
stopped and the analyst must choose to restart it or kill it
altogether. At any time an analyst can choose to pause or
kill a job. We have implemented a front-end control
panel in GenAMap that monitors the progress of each
job, allowing the analyst to pause, restart, and remove
jobs (Figure 2). By right-clicking on any of the labels in a
job, the analyst can select to remove or restart a job, or
to query for available error information.

The integration of an algorithm into Auto-SAM can
be done by simply adding a front and back end, or
through the complex compilation of several processing
steps. We have used both of these strategies in design-
ing and incorporating algorithms into Auto-SAM. For
example, we have automated the Wald test [15] (from
PLINK) for association between the genome and quanti-
tative traits into Auto-SAM. In this case, the front-end
step formats the data, the second step runs PLINK, and
the final backend step inserts the results into the data-
base. We used a similar strategy to incorporate Structure

Figure 1 Software design of the Auto-SAM system. Locally, through a front-end GUI, the user uploads data to the data database. The GUI
also communicates with the jobs database, submitting job requests that use the loaded data. A service running on the distributed Auto-SAM
system continuously monitors the jobs database, which spawns and monitoring jobs as they run through the condor cluster.

Figure 2 Monitoring jobs in Auto-SAM. We implemented a job-
monitoring system that regularly checks the progress of each job in
the database. Using this monitor, the analyst can follow each job’s
progress, request error information, and pause and kill jobs. This job
monitor is integrated into GenAMap.
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[20], a popular algorithm to find population structure,
into Auto-SAM.
On the other hand, we have taken advantage of the

cluster in our integration of other algorithms into GenA-
Map. For example, when running a lasso job using
glmnet [16], Auto-SAM splits the dataset up into jobs
the size of 250 traits and runs these each five times sepa-
rately (using different data splits for a defined vector of
the regularization parameter, l). Upon completion of this
step, the next step reads in the results from each of the
runs to choose the best l based on cross-5-validation
error over all traits. Similarly, when Auto-SAM calculates
a correlation network, it splits up the network into sec-
tions of 1000 traits and calculates the values for each sec-
tion in parallel, allowing the job to run much faster.
While parallelization using Auto-SAM allows analysts to
run jobs much faster than they would run otherwise, the
running time of each job is also affected by the number
of jobs in the cluster and the number of threads accessing
the database.

Visualization front end
We have integrated Auto-SAM with GenAMap, a visuali-
zation tool that we have previously presented for struc-
tured association mapping [22]. GenAMap is a desktop
visualization tool that enables genetics analysts to explore
the structure of genes and traits while considering asso-
ciations to the genome. Multiple coordinated views allow
analysts to consider structure in the SNPs and traits
simultaneously while considering the associations
between the two data types.
The current implementation of GenAMap uses Auto-

SAM to store the data it presents to analysts. GenAMap
communicates with Auto-SAM via a web interface. Gen-
AMap itself does not perform association analysis, but
rather is designed for the visualization and exploration of
association results. It is through Auto-SAM that analysts
can run algorithms to find associations and structures in
the data. However, analysts can by-pass Auto-SAM and
upload network and association results from other tools
to explore in GenAMap.
GenAMap’s visualization tools enable genetic network

exploration, population structure analysis, and the
exploration of association results. Analysts can directly
link to information in outside resources such as UniProt
[26] or dbSNP [27]. A selection of GenAMap’s visualiza-
tions is highlighted in Figure 3, including gene network
visualization, three-way association visualization, and
association by population.

Results
Auto-SAM automates five structured association algo-
rithms (GFlasso, TreeLasso, AMTL, MPGL, and gGFlasso
[14]), four structured association mapping algorithms (the

Wald test, the Wilcoxon Sum-Rank test, the lasso, and a
simple population analysis [17]), and five structure-gener-
ating algorithms (structure, correlation, hierarchical clus-
tering, scale-free network construction [19], and glasso).
As we incorporate each algorithm into Auto-SAM, we test
each step on simulated and real datasets. We compare the
results from Auto-SAM with the results from running
each software piece outside of the automated processing
system. Thus, we are confident that the results found by
Auto-SAM are the same as if the code was run outside of
the automatic processing environment.
To demonstrate Auto-SAM, we present the running

times of each algorithm on two publically available data-
sets. The first dataset that we use is a yeast expression
dataset [28] consisting of 1260 SNPs and 5637 gene
expression measurements for 114 individual yeast strains.
The second dataset is the NIH heterogenous stock
mouse dataset [29]. We use the phenotypic traits and the
gene expression measurements from the liver in our ana-
lysis of the stock mice. Thus, we have 12545 SNPs for
259 individual mice, which match up with the phenotype
trait set of 158 clinical measurements and an expression
dataset with 5965 gene expression measurements.
In Table 1, we list the running time from each algo-

rithm, averaged over three independent runs, on the
three publically available datasets. We also list the num-
ber of automated steps in Auto-SAM needed to complete
each algorithm. To generate these results, we ran each
algorithm in parallel in Auto-SAM simultaneously with
up to ten other algorithms. We monitored the cluster to
limit the amount of time when all compute nodes were
busy, and we limited the number of threads hitting the
database to eight at any one time. We believe that the
times we report are representative of what an analyst
might expect with a heavy load in Auto-SAM. We sug-
gest that these running times are orders of magnitude
faster than downloading the implementations, editing
data into the correct formats, and piecing the structure
and association algorithms together to form a processing
pipeline.
In Table 1 we list the five structured association mapping

algorithms we have integrated into Auto-SAM. Each of
these algorithms has an available implementation online,
but these implementations are not scalable to the size of
the data in our three datasets. After loading these data into
the Auto-SAM system, we were able to complete the algo-
rithmic analysis for each of the five structured association
mapping approaches in significantly less than a week’s
time. This time was all computational running time, and
thus required very little input from us. In order to perform
a similar analysis without the Auto-SAM system, we would
have had to download the online implementation, prepro-
cess our data so that it would run in a reasonable amount
of time, and then run the analysis. The details of the
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integration of each of these algorithms into Auto-SAM are
detailed online from http://sailing.cs.cmu.edu/genamap.
Here, we present one example, the integration of GFlasso
with Auto-SAM to demonstrate the complexity of the
automated analysis that we undertake to scale these algo-
rithms to larger datasets than is possible with current
structured association mapping implementations.

Implementation case study: GFlasso
Auto-SAM’s parallel processing environment can be
leveraged to increase the scalability and decrease the
running time of GWA and structured association map-
ping algorithms. To demonstrate how this can be done,
we use our integration of GFlasso into Auto-SAM as a
case study. We show how we have increased the scal-
ability of GFlasso by adding processing steps and by
using the cluster in Auto-SAM. We give an overview of
this processing pipeline in Table 2. For analysts to run
GFlasso on their data without Auto-SAM, they would
have to develop a similar process, writing their own

code for each step. This example is presented to demon-
strate the advantages of using Auto-SAM, to show how
new algorithms can be added to Auto-SAM, and to
enable developments using similar strategies in future
algorithm deployment.
GFlasso is a structured association mapping algorithm

that finds associations between the genome and corre-
lated traits by leveraging the network structure between
traits [9]. Auto-SAM uses the proximal-gradient optimi-
zation method for GFlasso [13].
The goal we had when we incorporated GFlasso into

Auto-SAM was to develop a process that would run
GFlasso for as many SNPs and as many traits as possi-
ble, while maintaining the integrity of the algorithm.
After extensive testing using our test datasets (mouse
and yeast), we found that we could run our optimization
code for GFlasso on datasets with up to 4000 SNPs and
250 without running out of memory. Auto-SAM sup-
ports loading in datasets larger than this, and so we
introduced a series of preprocessing steps to prepare for

Figure 3 An overview of GenAMap visualization tools. GenAMap is a visualization tool for association mapping. We present a sampling of
visualizations available in GenAMap: A) network analysis, B) association analysis, C) association-by-population analysis, D) three-way genome-
transcriptome-phenome analysis.
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the analysis. These preprocessing steps are performed
automatically in Auto-SAM prior to running GFlasso.
Auto-SAM’s processing pipeline for GFlasso proceeds

as follows: once the analyst starts a GFlasso job in Auto-
SAM, the data are downloaded to the cluster from the
database and preprocessing starts. The first four prepro-
cessing steps (steps 1-4 in Table 2) are run to find asso-
ciation results via the lasso. First, the lasso is run on the
data for each trait, in parallel, for a given l vector, where
l is the regularization parameter that controls the level
of sparsity. Once all lasso runs complete, the results are
combined and the l with the smallest validation error is
used to define a new vector for a fine-tuned search. The
two steps are subsequently repeated to find the lasso
results, which are used in the marker processing step
(step 5). These results from the lasso are used to select
up to 4000 SNPs to be used to run GFlasso. Because
GFlasso looks for SNPs that are associated with corre-
lated traits, we select the SNPs that are associated with
the most traits in the lasso results matrix.
The next three steps in the pipeline preprocess the

traits. Unlike the SNPs, the traits can be split up into

smaller sub-networks and run in parallel, assuming no
edges between sub-networks. We find these sub-net-
works first by finding all connected components (step 6).
For all connected components greater than 250 traits, we
run spectral clustering [30] to break the sub-network
down further (step 7). Once sub-networks have been
identified in these steps, the trait processing step (step 8)
combines the connected components into sub-networks
of 250 traits and GFlasso is then run in parallel on each
sub-network.
Three two-step processes run the GFlasso optimization.

Auto-SAM spawns ten GFlasso runs for each sub-network
of traits, each with a different division of the data (step 9).
After all ten runs have finished for all sub-networks, an
error calculation step calculates the cross-10-validation
error to select the best regularization parameters (l is the
regularization parameter that affects the sparsity of the
results and g affects the fusion penalty for correlated traits)
for that step (step 10). Following a linear search pattern,
these two steps are first run for a vector of l given g (step
9 & 10), then for a vector of g given l (step 11 & 12), and
finally for l given g (step 13 and 14). Once GFlasso

Table 2 GFlasso processing pipeline

Step
No.

Description Stage No. Jobs using
yeast data

Av. Time/Job on
yeast data

Hours:min:sec

Actual time from start
to finish

Time saved via
parallelization

1 Lasso stage 1 Preprocessing
SNPs

23 00:00:25 00:02:59 00:06:36

2 Lasso validation error Preprocessing
SNPs

1 00:02:14 00:02:14 00:00:00

3 Lasso stage 2 Preprocessing
SNPs

23 00:01:16 00:03:40 00:25:34

4 Lasso validation error Preprocessing
SNPs

1 00:00:39 00:00:39 00:00:00

5 Marker Processing Preprocessing
SNPs

1 00:00:10 00:00:10 00:00:00

6 Connected component
analysis

Preprocessing
traits

1 00:00:56 00:00:56 00:00:00

7 Spectral clustering Preprocessing
traits

118 00:00:56 00:06:44 01:43:03

8 Trait Processing Preprocessing
traits

1 00:06:02 00:06:02 00:00:00

9 GFlasso stage 1 GFlasso
optimization

130 00:51:34 01:41:36 110:02:30

10 GFlasso validation error
stage 1

GFlasso
optimization

1 01:43:01 01:43:01 00:00:00

11 GFlasso stage 2 GFlasso
optimization

130 05:49:08 29:27:45 726:59:05

12 GFlasso validation error
stage 2

GFlasso
optimization

1 00:45:26 00:45:26 00:00:00

13 GFlasso stage 3 GFlasso
optimization

130 03:18:04 10:56:18 418:12:37

14 GFlasso validation error
stage 3

GFlasso
optimization

1 00:56:32 00:56:32 00:00:00
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completes, the GFlasso results are inserted into the data-
base, which can then be accessed by the analyst.
Thus, a fourteen-step process is automated in Auto-

SAM. This pipeline preprocesses the data, runs GFlasso
optimization in parallel, and finds a solution optimal
according to cross-ten validation. Whereas the available
MATLAB code can only handle datasets with 250 traits,
Auto-SAM can run datasets with up to 20,000 traits.
We follow a similar process to automate many other
structure-finding and structured association mapping
algorithms.
To provide quantitative support for the parallelization

scheme used in Auto-SAM, we analyzed the running
time for each step of the GFlasso process using the yeast
data. In Table 2, we report the overall time Auto-SAM
spent in each step, the number of parallel jobs that were
run, the average time per job, and the total savings due
to the parallelization (total compute time for all jobs
minus actual real time). We report that overall, six of the
jobs run faster with the parallelization, some up to 66
times faster.

Use case study: running an analysis on simulated data
In this section, we present a short use-case to demon-
strate how an analyst can upload data into GenAMap
and run structured association analyses. Our intention is
that interested readers can follow along with this section
to learn how the software works.
In this demonstration, we will use a small simulated

dataset. This dataset has 5000 SNPs and 1400 genes for
100 individuals and can be downloaded from the Gena-
Map downloads page http://sailing.cs.cmu.edu/genamap/
join.html. While the size of this dataset is typical to some
association mapping datasets, there are also cases where
more data is available. Auto-SAM can store datasets of
sizes up to 15,000 SNPs for 250 individuals with 20,000
genes. In cases where more SNPs are available than
Auto-SAM can handle, analysts can trim their dataset
before importing into Auto-SAM. Analysts could select
SNPs based on SNP-tagging; alternatively, analysts could
select SNPs in known genomic regions of interest or
import the top SNPs associated with certain traits using a
pairwise association test. On a related note, Auto-SAM
has limited support for missing values. Thus, analysts
should generally impute missing values before importing
data into Auto-SAM.
When the analyst fires up GenAMap for the first time,

he/she is presented with three panels - the data panel,
algorithm control center, and visualization screen. The
analyst interacts with the data panel to create a project
and import data. There are three tabs in the data panel
representing genetic markers, phenotypes, and associa-
tions. The first thing that the analyst needs to do is to
right click on the “Projects” label in the data panel and

create a new project. Once the analyst has created a new
project, marker and trait data can be added to the
project.
The example dataset contains four files. example_gen.

txt is the genotype file, and example_chrkey.txt is the key
file that describes the location of the SNPs across the
genome. The analyst needs both of these files to create a
new markerset in a project. To do this, the analyst right
clicks on the project that he/she wants to add the data to
and selects to Add Marker Data. A popup window opens
for the analyst to browse to the marker file, which in this
case is example_gen.txt. The marker file format is strict,
with the number of rows representing the number of
samples and the number of columns representing the
number of SNPs. SNPs can be encoded with any numeric
value, although we recommend a 0/1/2 encoding based
on the number of minor alleles for the individual at the
locus. Before the data can be imported, the analyst must
also browse to the SNP key: example_chrkey.txt. The
sample label file is optional. If it is not used, the samples
must be in the same order in the genotype and pheno-
type files, as is the case in this dataset. The delimiter is
set to “w,” meaning all white space characters. The ana-
lyst can look at other example files formatting by clicking
on any of the buttons labeled with a “?” in the import dia-
log. The analyst must also choose a descriptive name
without special characters to describe the markerset.
Once the form has been filled out, the analyst selects to
import the markers. The markers are imported on a
separate thread.
While the markers are loading, the analyst can import

the gene values. These values are stored in example_phen.
txt and example_phen_key.txt. The import process for the
traits is similar to the marker import process; however, the
analyst has a few more options as far as file format goes.
To import this dataset, the analyst needs to set the trait
file to example_phen.txt and the trait label file to exam-
ple_phen_key.txt. The sample label file is not used. The
analyst selects Saccharomyces cerevisiae as the species and
changes the format to no row or columns headers. The
data can then be imported as before.
The user can use GenAMap to validate the import of

the markers and the traits. SNPs can be viewed from the
Marker tab using GenAMap’s genome browser. To view
the traits, the analyst must create a network. This is done
by right-clicking on the traitset in the Traits tab. An algo-
rithm dialog box is presented. The analyst selects the type
of network to create, and starts the algorithm. A new job
is created in Auto-SAM, and a tracking code is displayed
in the algorithm control center. The analyst can right click
on the label of the job to stop its execution, find out error
information, or restart a job in error. Once the network
has been created, the analyst can zoom in and view the
genes as described in the GenAMap online tutorials.
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The analyst can also add an association set to the project
once traits and markers have been added. To do so, the
analyst right clicks on the project and selects to add an
association. A dialog appears and the analyst can select a
traitset. Once a traitset has been selected, all markersets
with the same number of samples as the selected traitset
are then available for the analyst to choose from. The ana-
lyst can then start and monitor association algorithms in
the same manner as the network algorithms.
In this use case, we have shown how analysts can

import data and run algorithms in the Auto-SAM sys-
tem. Once the results have completed, they can down-
load the results as text files, or use GenAMap to further
explore and analyze the results.

Discussion and Conclusions
If current trends continue, the amount of data available to
biologists will continue to grow at an increasing rate. Bio-
logical studies will need to rely on advances in large scale
statistical and machine learning more and more as the
complexity and amount of data explodes. However, the
integration of machine learning advances could become a
bottleneck to discovery if the distribution and acceptance
of state-of-the-art methods is not improved. In this paper,
we have proposed a new deployment strategy that makes
the latest machine learning technology in genetics associa-
tion mapping available to genetics analysts. We have cre-
ated an automatic processing system called Auto-SAM,
which automates four state-of-the-art structured associa-
tion mapping algorithms. Additionally, we have integrated
Auto-SAM into a powerful visualization software system
called GenAMap. We have demonstrated that Auto-SAM
enables genetics analysts to run a variety of structure and
association mapping algorithms without the effort to for-
mat the data and customize the implementations. We
anticipate that Auto-SAM will enable genetics analysts to
incorporate structured association mapping algorithms in
their GWAS analysis pipelines, potentially enabling discov-
ery and leading to new genetics insight.

Availability and requirements
• Project Name: GenAMap
• Project Home Page: http://sailing.cs.cmu.edu/

genamap
• Operating systems: Windows, Mac
• Programming language: Java
• Other requirements: Java 1.6 or higher
• License: Non-commercial research use
• Any restrictions to use by non-academics: License

needed
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