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Abstract

Background: The frogs of the Tribe Cophomantini present, in general, 2n = 24 karyotype, but data on Aplastodiscus
showed variation in diploid number from 2n= 24 to 2n = 18. Five species were karyotyped, one of them for the first
time, using conventional and molecular cytogenetic techniques, with the aim to perform a comprehensive
comparative analysis towards the understanding of chromosome evolution in light of the phylogeny.

Results: Aplastodiscus perviridis showed 2n = 24, A. arildae and A. eugenioi, 2n = 22, A. callipygius, 2n = 20, and A.
leucopygius, 2n = 18. In the metaphase I cells of two species only bivalents occurred, whereas in A. arildae, A.
callipygius, and A. leucopygius one tetravalent was also observed besides the bivalents. BrdU incorporation produced
replication bands especially in the largest chromosomes, and a relatively good banding correspondence was
noticed among some of them. Silver impregnation and FISH with an rDNA probe identified a single NOR pair: the
11 in A. perviridis and A. arildae; the 6 in A. eugenioi; and the 9 in A. callipygius and A. leucopygius. C-banding
showed a predominantly centromeric distribution of the heterochromatin, and in one of the species distinct
molecular composition was revealed by CMA3. The telomeric probe hybridised all chromosome ends and
additionally disclosed the presence of telomere-like sequences in centromeric regions of three species.

Conclusions: Based on the hypothesis of 2n = 24 ancestral karyotype for Aplastodiscus, and considering the
karyotype differences and similarities, two evolutionary pathways through fusion events were suggested. One of
them corresponded to the reduction of 2n = 24 to 22, and the other, the reduction of 2n = 24 to 20, and
subsequently to 18. Regarding the NOR, two conditions were recognised: plesiomorphy, represented by the
homeologous small-sized NOR-bearing pairs, and derivation, represented by the NOR in a medium-sized pair. In
spite of the apparent uniformity of C-banding patterns, heterogeneity in the molecular composition of some
repetitive regions was revealed by CMA3 staining and by interstitial telomeric labelling. The meiotic tetravalent
might be due to minute reciprocal translocations or to non-chiasmatic ectopic pairing between terminal repetitive
sequences. The comparative cytogenetic analysis allowed to outline the chromosome evolution and contributed to
enlighten the relationships within the genus Aplastodiscus.
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Background
The original description of Aplastodiscus Lutz, 1950, in
the family Hylidae, was based on the species A. perviri-
dis. However, many questions regarding the taxonomy of
this genus remained, because the traits used for its char-
acterisation were shared with representatives of the
genus Hyla [1]. This fact led to the assignment of the
name Hyla perviridis [2], and this species was included
in the H. albomarginata group, along with H. albomar-
ginata, H. albosignata, and H. albofrenata, due to,
among other characters, the green colour typical of the
species [3].
Based on morphological and bioacoustics data, as well

as breeding behaviour of Hyla cochranae and H. perviri-
dis [1], the genus Aplastodiscus was re-characterised, but
the authors emphasised that further taxonomic studies
were still necessary. Later, based on reproductive mode,
it was suggested that the Hyla albosignata and H. albo-
frenata species complexes should be included in the
genus Aplastodiscus [4]. Subsequently, comprehensive
reviews of the taxonomy and phylogeny of the family
Hylidae were performed [5,6], confirming the previous
suggestion [4]. The 15 known species of Aplastodiscus
are currently distributed into three groups: the A. albo-
frenatus group (A. albofrenatus, A. arildae, A. ehrhardti,
A. eugenioi, A. weygoldti, and A. musicus), the A. albo-
signatus group (A. albosignatus, A. callipygius, A. cavi-
cola, A. flumineus, A. ibirapitanga, A. leucopygius, and
A. sibilatus), and the A. perviridis group (A. cochranae
and A. perviridis) [7].
About half of the known species of Aplastodiscus have

been karyotyped and the former analysis, based only on
standard staining, showed 2n = 24 and 2n = 22 in A.
albofrenatus, and 2n = 20 and 2n = 18 in A. albosignatus,
collected in distinct Brazilian localities [8]. The author
admitted that the different karyotypes might correspond,
in fact, to distinct species.
Recently, four species of Aplastodiscus with 2n = 22,

i.e., A. albofrenatus, A. arildae, A. ehrhardti, and A. euge-
nioi were karyotyped and some species-specific chromo-
some markers were found [9]. Analysing specimens of A.
Table 1 Species, number of individuals, sex, voucher number

Species Number Sex Vouc

Aplastodiscus perviridis 4 males 2239

Aplastodiscus arildae 1 male 2238

4 males 2858

Aplastodiscus eugenioi 2 male, female 2237

Aplastodiscus callipygius 7 males 7514

Aplastodiscus leucopygius 3 males 2238

1 female 2238

6 males 2858

CFBH: Célio Fernando Baptista Haddad Collection, UNESP, Rio Claro, SP, Brazil.
perviridis and A. cochranae with 2n=24, A. albosignatus
with 2n=20, and A. leucopygius with 2n=18, the same
authors suggested that the karyotype differentiation of
these species might have resulted from a reduction in the
number of the small-sized chromosomes [10]. These data
confirmed the karyotype variability in Aplastodiscus, an
unusual finding in anurans, which are characterized, in
general, by conserved chromosome constitution [11,12].
In the present paper, a comprehensive comparative

analysis was carried out for the first time based on five
species of Aplastodiscus with distinct diploid numbers,
one of them (A. callipygius) never karyotyped before. Be-
sides Ag-NOR impregnation, C-banding, and FISH with
probes of rDNA and of telomeric repeats, which had
been previously used for some species [9,10], the chro-
mosomes of our sampled species were also analysed with
fluorochrome staining and replication-banding after
BrdU incorporation. The aim was to search for add-
itional markers, towards a better understanding of
chromosome evolution in light of the phylogeny [5,6],
contributing to make clear the relationships within the
genus Aplastodiscus.

Methods
Analysed species
Cytogenetic analyses were performed on 28 individuals
representing five species of Aplastodiscus (Table 1), col-
lected in the states of São Paulo (SP) and Minas Gerais
(MG). The animals were identified and deposited in the
amphibian collection Célio Fernando Baptista Haddad
(CFBH) housed in the Department of Zoology, UNESP,
Rio Claro, SP, Brazil.

Chromosome preparation and cytogenetic technique
Direct cytological preparations were obtained from bone
marrow, liver, and testes [13] and from intestinal epithe-
lium [14]. In vivo treatment with 5-bromodeoxiuridine
(BrdU) was carried out for some specimens [15]. The
slides were standard stained with Giemsa, and submitted
to Ag-NOR technique [16], C-banding [17], fluorochrome
staining with AT-specific DAPI and GC-specific CMA3
, and collecting localities in Brazil

her number (CFBH) Collecting localities

4, 22395, 22401, 22402 Camanducaia, MG

7 Serra do Japí, Jundiaí, SP

2, 30409, 30410, 30411 Mogi das Cruzes, SP

3, A505 Ubatuba, SP

, 7515, 7516, 22396, 22397, 22403, 22404 Camanducaia, MG

9, A732, A733 Serra do Japí, Jundiaí, SP

8

3, 28584, 30412, 30413, 30414, 30415 Mogi das Cruzes, SP
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[18], and replication band differentiation using Fluoro-
chrome Plus Giemsa (FPG) or Acridine Orange [19,20].
The ribosomal probe HM123 [21] was hybridised using
the fluorescence in situ hybridisation (FISH) technique
[22] and a telomeric probe, following the manufacturer's
manual (Dako Cytomation Denmark A/S Kit). The bi-
armed chromosomes were classified as metacentric, sub-
metacentric, or subtelocentric by visual inspection, follow-
ing the nomenclature of Green and Sessions [23,24].

Results
Karyotype constitution and meiosis
The specimens of A. perviridis showed 2n = 24, FN= 48
(Figure 1A), and a karyotype formed by five large pairs
with slight variation in size from pairs 2 to 5, one
medium pair 6, and six small pairs 7 to 12, with subtle
variation in size. Pair 1 was metacentric, pairs 2, 3, 4,
and 5 were submetacentric, pair 6 was subtelocentric,
and the remaining pairs were classified as metacentric or
submetacentric. Aplastodiscus arildae and A. eugenioi,
with 2n = 22, FN= 44 (Figure 1B, 1C), had very similar
karyotype constitution compared with A. perviridis, ex-
cept that the small-sized group included five pairs 7 to
11 and that pair 2 was clearly metacentric. Aplastodiscus
callipygius and A. leucopygius, with 2n = 20, FN= 40, and
2n = 18, FN= 36, respectively (Figure 1D, 1E), exhibited
large-sized pairs 1 to 7, with slight variation from 2 to 7,
one medium pair 8, and two small-sized pairs 9 and 10
in A. callipygius, and only one small-sized pair 9 in A.
leucopygius. Pair 1 was metacentric, pairs 2 to 7 were
submetacentric, pair 8 was subtelocentric, and the
remaining pairs were metacentric or submetacentric in
both species.
Figure 1 Giemsa-stained karyotypes of Aplastodiscus. A. A. perviridis, m
A. callipygius, male, 2n = 20. E. A. leucopygius, male, 2n = 18. Insets show ma
Bar = 10 μm.
Secondary constriction was noticed in one or both
homologues of chromosome pair 11 in A. perviridis and A.
arildae, as well as in one or both homologues of chromo-
some pair 9 in A. callipygius and A. leucopygius. No sex-
related chromosome heteromorphism was observed in
male (XY) or female (ZW) of A. eugenioi and A. leucopy-
gius; neither in males (XY) of the remaining species.
In metaphase I cells of A. perviridis (Figure 2A) and A.

eugenioi, 12 and 11 bivalents, respectively, were observed,
while during metaphase II, 12 chromosomes were observed
in the former species; for A. eugenioi this meiotic stage was
not available. In A. arildae and A. callipygius, diplotene and
metaphase I cells invariably showed one tetravalent, plus 9
and 8 bivalents, respectively (Figure 2B, 2C). Aplastodiscus
callipygius exhibited 10 chromosomes in metaphase II cells,
but this meiotic stage was not available for A. arildae. In
metaphase I cells of A. leucopygius two of the nine bivalents
appeared to be connected (Figure 2D), and during the
metaphase II, 9 chromosomes were observed.

Differential staining and FISH
The technique of nucleolar organiser region by silver
impregnation was performed in almost all individuals of
the sampled species, excepting in two individuals of A.
callipygius, showing a single pair of Ag-NOR: at the ter-
minal region of the long arms of chromosome 11 in A.
perviridis and A. arildae, at the terminal region of the
long arms of chromosome 6 and 9 in A. eugenoi and A.
callipygius, respectively, and at the terminal region of
the short arms of chromosome 9 in A. leucopygius
(Figure 1). One single Ag-NOR, as shown in Figure 1C
for A. eugenioi, was observed eventually in metaphases
of some of the individuals in all analysed species. The
ale, 2n = 24; B. A. arildae, male, 2n = 22; C. A. eugenioi, male, 2n = 22; D.
rker pairs, visualised by Ag-NOR and FISH with the rDNA probe.



Figure 2 Giemsa-stained meiotic cells of Aplastodiscus. A. metaphase I of A. perviridis, with 12 bivalents; B. metaphase I of A. arildae, with
nine bivalents and one quadrivalent (arrow); C. metaphase I of A. callipygius, with eight bivalents and one quadrivalent (arrow and inset); D.
metaphase I of A. leucopygius, with nine bivalents (arrow and inset, connected bivalents). Bar = 10 μm.
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sites of Ag-impregnation were coincident with the sec-
ondary constrictions in most cases. The FISH technique
carried out in one single individual of each species con-
firmed that ribosomal sequences were in the sites previ-
ously identified by silver impregnation, always in the two
homologues of the corresponding NOR-bearing pair
(Figure 1).
Figure 3 C-banded karyotypes of Aplastodiscus. A. A. perviridis; B. A. ari
The heterochromatin in all species had a predomin-
antly centromeric distribution, with additional labelling
at the NOR site (Figure 3), but in some metaphases this
C-band was very slight or not well visualised as in the
Figure 3C for A. eugenioi. Fluorochrome staining was
carried out in four species, with exception of A. eugenioi.
In A. perviridis, bright fluorescence was observed with
CMA3 in the NOR and in the centromere of all
ldae; C. A. eugenioi; D. A. callipygius; E. A. leucopygius. Bar = 10 μm.



Figure 4 CMA3-stained metaphases of Aplastodiscus. A. A.
perviridis; B. A. arildae. Bright CMA3 fluorescence at the NOR site
(arrow) and in A, also in the centromeric region of the
chromosomes. Bar = 10 μm.
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chromosomes, but less brilliant in the small-sized chro-
mosomes (Figure 4A). Fluorescence at the NOR site was
also observed in A. arildae (Figure 4B), A. callipygius,
and A. leucopygius (data not shown). When stained with
DAPI, no particular brilliant region was observed in the
chromosomes of any of the four species.
Telomeric probe hybridised all chromosome ends in

A. perviridis and A. callipygius (Figure 5A, 5C), whereas
in A. leucopygius additional labelling of interstitial telo-
meric sequence (ITS) was observed at the centromere
region of chromosome 3 (Figure 5D). In A. arildae
(Figure 5B) and A. eugenioi, hybridisation occurred in
the telomeres and centromeres of all chromosomes,
Figure 5 FISH using a telomeric probe in metaphases of
Aplastodiscus. A. A. perviridis; B. A. arildae; C. A. callipygius; D. A.
leucopygius. A hybridisation signal is seen in the centromeric region
of chromosome 3 of A. leucopygius and in the chromosomes of A.
arildae. Bar = 10 μm.
although the fluorescent labelling was subtle in the latter
species.
Incorporation by BrdU carried out in A. perviridis, A.

arildae, A. callipygius, and A. leucopygius produced rep-
lication bands especially in the largest chromosomes,
whereas the smallest chromosomes showed poor differ-
entiation (Figure 6). In spite of the distinct degrees of
banding differentiation, tentative inter-specific compari-
sons were performed among the large and medium-
sized chromosomes, showing relatively good banding
correspondence among some chromosomes (e.g., the 1
and the 5 of the four species, the 2 and the 3 of A. per-
viridis, A. callipygius, and A. leucopygius, the 6 of A. per-
viridis and the 8 of A. leucopygius), and roughly the
same banding feature for some others (the 4 of the four
species).
Discussion and Conclusions
The present cytogenetic analysis confirmed the variabil-
ity of 2n = 24, 2n = 22, 2n = 20, and 2n = 18 within the
genus Aplastodiscus, contrary to that is commonly
observed in the subfamily Hylinae, in general with in-
variable 2n = 24 karyotypes [25]. Distinct diploid num-
bers in Aplastodiscus were originally reported [8] and,
more recently, the sample of karyotyped species was
enlarged [9,10]. Taking into account our report on A.
callipygius, analysed here for the first time, a total of
nine representatives of the genus now have described
karyotypes: A. cochranae and A. perviridis (A. perviridis
group) with 2n = 24; A. albofrenatus, A. arildae, A. ehr-
hardti, and A. eugenioi (A. albofrenatus group) with
2n = 22; A. albosignatus and A. callipygius with 2n = 20;
and A. leucopygius with 2n = 18 (A. albosignatus group).

It is important to emphasise that several individuals of
these species have been collected in more than one lo-
cality and no karyotype intraspecific variation in the
chromosome number has been found except, at the first
sight, in the sample of A. albofrenatus (2n = 24 in Flor-
esta da Tijuca, Rio de Janeiro, RJ, and 2n = 22 in Bora-
ceia, SP) and A. albosignatus (2n = 20 in Boraceia, SP,
and 2n = 18 in Teresópolis, RJ) [8], although this vari-
ation was probably consequence of misidentification,
according to the author. Later, Carvalho et al. [9,10],
based on the geographical distribution of Aplastodiscus
and on the cytogenetic data of some individuals col-
lected in the same or near the localities screened by Bo-
gart [8], concluded that the formerly karyotyped
specimens were actually misidentification, and suggested
that the animals with 2n = 22, 2n = 20, and 2n = 18 corre-
sponded to A. arildae, A. albosignatus, and A. leucopy-
gius, respectively. Additionally, considering that the
range of A. perviridis includes the state of Rio de Janeiro
[7] and that the diploid number for this species is



Figure 6 Replication-banded karyotypes of Aplastodiscus, after BrdU incorporation. A. A. perviridis; B. A. arildae; C. A. callipygius; D. A.
leucopygius. Bar = 10 μm.
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2n = 24 [10, present work], the A. albofrenatus from
Tijuca Forest, RJ [8], could be A. perviridis or some
other species of Aplastodiscus.
Observing the karyotypes analysed so far with standard

Giemsa staining, it was noticed that, although the ordering
or the nomenclature adopted for each chromosome pair
could differed among the authors, the chromosome con-
stitution was equivalent within each group of species.
Even presenting distinct diploid numbers, some shared
characteristics could be recognized: the first five chromo-
some pairs in A. perviridis, A. callipygius, and A. leucopy-
gius were equivalent in morphology and relative size;
similarity also exists for the first five pairs of A. arildae
and A. eugenioi, both exhibiting 2n= 22 karyotypes, but
their pair 2 is clearly metacentric and larger than the 2
observed in the three former species; all six species exhib-
ited a subtelocentric medium-sized marker but in distinct
positions in the karyograms, that is, in the majority of the
species the marker was the pair 6, whereas in A. callipy-
gius and A. leucopygius it corresponded to pair 8. On the
other hand, some conspicuous karyotype differences could
be pointed out: a progressive reduction in the number of
the small pairs, totalling six in A. perviridis, five in A. aril-
dae and A. eugenioi, two in A. callipygius, and one in A.
leucopygius; the presence in A. callipygius and A. leucopy-
gius of two large-sized chromosome pairs 6 and 7, not
observed in any other karyotype.
Taking into account that 2n= 24 was considered a syn-

apomorphy for Hylinae [5], most probably the ancestor of
Aplastodiscus had 24 chromosomes (Figure 7A), and the
karyotype constitution would be equivalent to that
observed in the related genera Bokermannohyla and Hyp-
siboas, as well as to that of the 2n= 24 A. cochranae and
A. perviridis. Therefore, the chromosome evolution within
the genus Aplastodiscus occurred primarily by reducing
the diploid number from an ancestor with 2n= 24 due to
chromosome fusions. However, replication banding data
obtained for the first time in species of Aplastodiscus
could not be used for identifying the probable structural
rearrangements, although correspondence of banding pat-
terns had been confirmed among some chromosomes.
Other analysis provided additional data on the karyo-

type variability within the genus Aplastodiscus. Both Ag-
impregnation and FISH with an rDNA probe confirmed
one pair of NOR-bearing chromosomes for all species.
The eventual heteromorphism of Ag-NOR, that is, pres-
ence and lack of labelling in metaphases of some of the
individuals in all analysed species, was interpreted as re-
sult rather from a differential activity than from the dele-
tion in the amount of rDNA repeats, since two FISH
signals, equivalent in size in both homologues, were
observed in all cases. So, the transcriptional activity of
rDNA might be inactivated or to be too low to be
detected by silver impregnation in some chromosomes.
In A. perviridis, A. arildae, A. callipygius, and A. leu-

copygius, the NOR was located in a homeologous small-
sized chromosome, although corresponding to the 11 in
the two former species and to 9 in the two latter, due to
the reduction in the diploid number. This condition of
NOR in one of the smallest chromosome pairs was also
observed in other species of Aplastodiscus [9,10], as well
as in the hylids of genera Bokermannohyla, Hyla, Hypsi-
boas, and those belonging to Scinax of rubber clade
[25–32], and this can be considered a plesiomorphy for
the family. These marker chromosome pairs are most
probably homeologous, although with non-coincident
position in the case of the karyograms of species with
the same chromosome number.
In A. eugenioi of the present sample and from the lit-

erature [9], the NOR had a derived location, in a
medium-pair 6, or pair 7 in the case of A. ehrhardti and
A. albofrenatus, but the latter species had an additional



Figure 7 Adapted phylogenies. A. phylogenetic tree of Tribe Cophomantini (Hylinae, Hylidae) based on Faivovich et al. [5], showing the
position of Aplastodiscus and related genera Hypsiboas and Bokermannohyla; B. phylogenetic tree of genus Aplastodiscus based on Wiens et al. [6],
with indication of the known diploid number of each karyotyped species [9, 10, present work].
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NOR site in chromosome 1 [9]. In the three species the
medium-sized pairs bearing NOR, referred by us as the
6, were probably the same, and this condition may con-
stitute a synapomorphy. Gross structural rearrangement
seemed not to be the mechanism underlying the change
of NOR from a small-sized to a medium-sized chromo-
some, because the chromosome 6 was always recognized
as a subtelocentric marker in all species, independently
if bearing or not NOR. Minute structural rearrange-
ments, transposition by means of mobile elements or
other mechanisms were not discarded, but they were not
demonstrated through the used banding techniques.
These mechanisms would also explain the change of
NOR from the long to the short arms of chromosome 9
in A. leucopygius.
All the sampled species of Aplastodiscus had similar

heterochromatin distribution, with C-bands in the cen-
tromeres and at the NOR sites. Our data on A. perviri-
dis, A. arildae, and A. eugenioi differed from the C-
banding pattern of the corresponding species previously
analysed [9,10], that demonstrated additional secondary
C-positive regions in some chromosome pairs. This
might be indicative of population difference or even be
result of technical procedures. In spite of the apparent
uniformity in the C-banding, an unequivocal molecular
heterogeneity of the heterochromatin was revealed by
CMA3 staining and FISH with a telomeric probe. In fact,
the centromeric heterochromatin of the chromosomes
of A. perviridis was GC-rich repetitive region, as shown
by its bright fluorescence after CMA3 staining. On the
other hand, the hybridisation of the telomeric probe out-
side of the ends of all chromosomes in A. arildae and A.
eugenioi, and chromosome 3 in A. leucopygius, indicated
the presence of repeats similar to (TTAGGG)n in the
centromeric region. Another possible type of centromere
repetitive region corresponded to that of the chromo-
somes of A. callipygius and A. leucopygius, since neither
the base-specific fluorochromes nor the telomeric probe
yielded a fluorescent labelling.
Occasionally, interstitial hybridisation of the telomeric

probe may represent true vestiges of telomeres,
corroborating structural rearrangements occurred dur-
ing chromosome evolution, as described in rodents
[33,34]. Nevertheless, this possibility was excluded in the
Aplastodiscus species [9, present work], and in other
frogs presenting ITS [35,36]. Regardless, the presence of
repetitive DNA bearing telomere-like sequences outside
the telomeres might represent an additional cytological
marker for species or even species groups.
The meiotic analysis in A. arildae, A. callipygius, and

A. leucopygius confirmed the occurrence of multivalent
chromosome pairing, as described in A. albofrenatus and
A. arildae [9]. While in our sample of A. arildae and
A. callipygius a clear tetravalent pairing was seen, in A. leu-
copygius the tetravalent figure was not characteristic, be-
cause the involved chromosomes formed two recognizable
bivalents. In all these three species, the chromosomes of
the largest pair were involved in the tetravalent.
In vertebrates, including frogs [37–40], rings or chains

of meiotic multivalents have been reported. The most il-
lustrative case among animals was described in
Ornithorhynchus anatinus [41], in which the multivalent
formation was attributed to sequential reciprocal trans-
locations. The same occurred in one specimen of the
frogs Haddadus binotatus [39] and Leptodactylus penta-
dactylus [40], which presented meiotic chain and several
odd heteromorphic chromosomes in their karyotypes.
In our study there was no evidence of reciprocal trans-

location to explain the tetravalent formation, unless it
involved minute segments, not detected by the used
banding techniques. Another explanation would be the
non-chiasmatic ectopic pairing between terminal repeti-
tive sequences of non-homologous chromosomes, pro-
posed by Schmid et al. [12] as a reasonable alternative
for similar cases described in the literature [9,37,38].
Our data gave no support to any of these hypothesis.
Our cytogenetic analysis on Aplastodiscus and the

comprehensive comparative analysis allowed us to con-
sider the following possible homeologies: chromosomes
1, 4, and 5 of A. perviridis, A. arildae, A. callipygius, and
A. leucopygius; the chromosome 2 of A. perviridis, A.
callipygius, and A. leucopygius with the chromosome 3
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of A. arildae and A. eugenioi; the chromosomes 3 of A.
perviridis, A. callipygius, and A. leucopygius; the chro-
mosomes 6 and 11 of A. perviridis, A. arildae, and A.
eugenioi with the chromosomes 8 and 9, respectively, of
A. callipygius and A. leucopygius; the chromosomes 7, 8,
9, and 10 of A. perviridis, A. arildae, and A. eugenioi;
and the chromosome 12 of A. perviridis with the
chromosome 10 of A. callipygius. The corresponding
chromosome 2 of A. arildae and A. eugenioi, and the
chromosomes 6 and 7 of A. callipygius and A. leucopy-
gius were interpreted as resulted of rearrangement.
Based on these presumed data, the chromosome evolu-
tion in the genus Aplastodiscus from an ancestor with
2n = 24 was outlined. Nevertheless, two evolutionary
pathways were proposed: one involving two fusions
events, in which participate the small elements 7, 8, 9,
and 10, giving rise to two new large-sized pairs 6 and 7,
as in the karyotype with 2n = 20 of A. callipygius and
with 2n = 18 of A. leucopygius; and the other, fusion in-
volving the small chromosome 12 and the large chromo-
some 3, giving rise to the metacentric pair 2, as in the
karyotypes with 2n = 22 of A. arildae and A. eugenioi.
This hypothesis is supported by our present cytogenetic
data, but undoubtedly, other resolute approaches (e.g.,
chromosome painting, gene linkage, among others) are
still necessary in order to confirm the chromosome evo-
lution within the genus Aplastodiscus.
Another achievement of the present study was the

confirmation, by means of chromosome analysis, of the
relationships among species or species groups of Aplas-
todiscus, as shown in the adapted phylogenetic tree
based in Wiens et al. [6], and shown in Figure 7B. In-
cluding the known diploid numbers of all karyotyped
species, the two pathways in the chromosome evolution
were well visualised, and the cytogenetic data gave sup-
port to the molecular phylogeny and distribution of the
species in the known groupings. Certainly, further spe-
cies sampling, especially of those that have never been
karyotyped, will be of great interest to confirm or not
the relationships within the genus Aplastodiscus.
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