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Abstract

Background: Quantitative trait loci (QTL) detection on a huge amount of phenotypes, like eQTL detection on
transcriptomic data, can be dramatically impaired by the statistical properties of interval mapping methods. One of
these major outcomes is the high number of QTL detected at marker locations. The present study aims at
identifying and specifying the sources of this bias, in particular in the case of analysis of data issued from outbred
populations. Analytical developments were carried out in a backcross situation in order to specify the bias and to
propose an algorithm to control it. The outbred population context was studied through simulated data sets in a
wide range of situations.
The likelihood ratio test was firstly analyzed under the “one QTL” hypothesis in a backcross population. Designs of sib
families were then simulated and analyzed using the QTL Map software. On the basis of the theoretical results in
backcross, parameters such as the population size, the density of the genetic map, the QTL effect and the true location
of the QTL, were taken into account under the “no QTL” and the “one QTL” hypotheses. A combination of two non
parametric tests - the Kolmogorov-Smirnov test and the Mann-Whitney-Wilcoxon test - was used in order to identify
the parameters that affected the bias and to specify how much they influenced the estimation of QTL location.

Results: A theoretical expression of the bias of the estimated QTL location was obtained for a backcross type
population. We demonstrated a common source of bias under the “no QTL” and the “one QTL” hypotheses and
qualified the possible influence of several parameters. Simulation studies confirmed that the bias exists in outbred
populations under both the hypotheses of “no QTL” and “one QTL” on a linkage group. The QTL location was
systematically closer to marker locations than expected, particularly in the case of low QTL effect, small population size
or low density of markers, i.e. designs with low power. Practical recommendations for experimental designs for QTL
detection in outbred populations are given on the basis of this bias quantification. Furthermore, an original algorithm is
proposed to adjust the location of a QTL, obtained with interval mapping, which co located with a marker.

Conclusions: Therefore, one should be attentive when one QTL is mapped at the location of one marker,
especially under low power conditions.
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Background
For the last decade, several studies have shown that a
large proportion of QTL are mapped at the markers
locations whenever linkage analysis is applied. As to
what regards dataset analyses, this bias first raised
doubts in Spelman et al. [1], who observed a large

proportion of significant test statistics at marker location
when looking for QTL in five milk production traits.
Walling et al. [2] have described the influence of mar-
kers in constructing the confidence intervals of QTL
location and questioned whether QTL location was
biased towards the location of markers instead of its
true position. By applying the regression coefficients on
the markers as suggested by Whittaker et al. [3], Wall-
ing et al. [4] calculated the proportion of putative QTL
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located at marker positions in a backcross population.
They have reported a systematic bias for the estimated
QTL position under the null hypothesis of the test, i.e.
the hypothesis of no QTL on the linkage group. More-
over, results from linear regression methods for QTL
detection have been reported to behave the same way
the results from maximum likelihood methods in inter-
val mapping approaches do [5]. The simulation studies
by Walling et al. [4] have confirmed that these two
approaches have similar biases on the estimated QTL
position in a backcross population.
These previous works have shown that a bias on the

QTL location occurs when genetic linkage analysis for
QTL mapping is used in a backcross population. How-
ever, little research has been devoted to establishing
which parameters give rise to that bias. What is more, no
study has investigated how it affects linkage analysis
applied to outbred populations. In order to address these
shortcomings, the present study aims at identifying the
sources of that bias, in particular regarding the analysis
of data issued from outbred populations.
This question is of critical importance in expression

quantitative trait loci (eQTL) mapping. Indeed, a main
objective is often to search for eQTL which co localize
with QTL which influences agronomical performances.
The accuracy of the eQTL locations is thus a fundamen-
tal element for experimental design optimization, espe-
cially since experimental designs for gene expression
analyses are generally of moderate size due to the cost of
phenotyping. The pioneer work of eQTL detection can
be traced back to the emergence of the concept of geneti-
cal genomics [6]. During the past decade, QTL mapping
was widely applied to the detection of eQTL, for example
in yeast [7], mice [8], human [9,10], maize [11] and pig
[12]. Generally, mapping procedures were used to map
eQTL considering each transcript expression level as one
quantitative trait in a trait by trait analysis.
Recently, we have carried out linkage analyses by inter-

val mapping on high throughput transcriptomic data
from several familial QTL detection designs, in pig [13],
in poultry [14] and in trout [15]. Because of the high
dimensionality of the phenotypes, these eQTL analyses

have highlighted to the bias of interval mapping estima-
tion of the QTL location. We observed that the number
of eQTL detected at marker locations was consistently
higher than between marker locations: for instance, with
the analysis of 6 665 gene expressions in a population of
325 pigs, we found 756 eQTL on the chromosome 18
distributed as shown in Figure 1. It appeared that the
eQTL were significantly more often mapped on marker
locations rather than between marker locations.
Hence, in order to qualify this possible bias on the esti-

mated QTL location in outbred populations and to spe-
cify which parameters influence it, this paper presents a
study of the QTL location accuracy. Firstly, in order to
make things more concrete, we explored the empirical
distribution of the LRT along the linkage group under
the null hypothesis of “no QTL” on a real dataset. Sec-
ondly, analytical developments were carried out so as to
identify the parameters which influence the QTL location
accuracy. Since they are impossible to realize for outbred
populations, because of the test statistic complexity, a
more simple case of a backcross type population, i.e. a
backcross between inbred lines, was considered at that
stage. Thirdly, designs of outbred sib families were simu-
lated and analyzed in order to characterize the bias varia-
bility under the null and the alternative (“one QTL
segregating on the linkage group”) hypotheses. Such
parameters as population size and marker density under
the null hypothesis, as well as QTL effect and simulated
QTL location under the alternative hypothesis were
taken into account. Finally, an approach as to how to
adjust the QTL location estimation, for a QTL located at
the position of one marker, was suggested.

Results
The LRT distribution along the linkage group under the
null hypothesis
By using the real pedigree and genotypes structure from
an experimental design in pig, 2 000 simulations of phe-
notypes under the null hypothesis of “no QTL on the
linkage group” were performed. The distribution of the
estimated QTL location, i.e. the location of the maxi-
mum LRT, was obtained (Figure 2) on the chromosome

Figure 1 eQTL mapping in pigs: example of distribution of the eQTL locations (chromosome 18). 756 eQTL were mapped on the
chromosome 18 which have 5 microsatellite markers located at 0 M, 0.08 M, 0.39 M, 0.54 M and 0.83 M, respectively (black points on the X axis).
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SSC1 which carried 16 microsatellite markers (black
points in the X axis). It clearly shows that a large pro-
portion of QTL was found at a marker location. The
histograms in Figure 3 show the empirical distributions
of the 2000 LRT at some locations on the chromosome,
both markers and non-markers. The LRT at each

location followed a x2 distribution, with degrees of free-
dom ranging from 4.05 to 4.55, according to a Kolmo-
gorov-Smirnov (KS) test at a = 0.01. This was
generalized to all tested positions on the linkage group
in Figure 4, where the distributions of the LRT charac-
terized by the number of degrees of freedom under the

Figure 2 QTL mapping in pigs: empirical distribution of the estimated QTL location under H0 (chromosome 1). Results are based on
2000 simulations in a population of 4 sires and 325 offspring. There are 16 markers on the chromosome 1 (black points in the X axis).

Figure 3 QTL mapping in pigs: empirical distribution of the LRT at various locations. Results are based on 2000 simulations in a
population of 4 sires and 325 offspring. The line represents the density obtained with a Kernel method, the dotted line represents the density of
a c2 with 4 d.f.
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null hypothesis at markers was not very different from
the distributions obtained for positions between
markers.
It should be noted (Figure 2) that the proportion of

QTL locations estimated at the two extreme marker posi-
tions of the linkage group was higher than for the other
markers under the “no QTL” hypothesis. The asymptotic
distribution of the LRT process at marker positions is
known to be the square of an Ornstein-Uhlenbeck (OU)
process as pointed out by Lander and Botstein [16] and
proved by Cierco [17]. As indicated in Rabier et al. [18],
when test statistics are performed only on markers, the
OU process follows an autoregressive process of order 1.
After 1 million of simulations for this process, we found
that the probability for the maximum of the OU process
to be on the bounds is higher than within the interval
(Figure 5). This property of the OU process was consis-
tent with the fact that we observed a large proportion of
QTL localised at the extreme marker positions in com-
parison with the other markers.

The QTL location bias expression in a backcross population
In order to investigate the bias on the QTL location under
the hypothesis of “one QTL”, we considered a linkage
group limited to an interval [0,T] between two markers

M1 (alleles M1 and m1) at 0 and M2 (alleles M2 and m2) at
T flanking a QTL (alleles Q and q) in a backcross popula-
tion obtained from the cross M1M1QQM2M2 ×
M1m1QqM2m2.
Let yk be the phenotypic value for the individual k =

1,...,n. Assuming a QTL located at the location t0 , the
genetic model for yk is:

yk = μ +
a
2
gk(t0) + ek, (1)

where μ denotes the overall mean, a denotes the QTL
allelic substitution effect, gk(t0) is the genotypic value of
k at the QTL position, which takes 1 or -1 value
depending on the QTL allele, Q or q respectively,
received by k from its heterozygous parent and ek is a
random normal variable with mean 0 and variance s2.
In order to simplify calculations, we set μ = 0 and s2 =
1 and used a linearized likelihood function instead of a
mixture of two normal distributions (e.g. [19]). In this
case, the interval mapping method is the same as the
regression method for QTL detection, and the model (1)
is modified as follows:

yk =
a
2
xk(t0) + ek, (2)

Figure 5 Empirical distribution of the maximum of the Ornstein-Uhlenbeck process. Results are based on 1 million of simulations.

Figure 4 QTL mapping in pigs: empirical degrees of freedom of the c2 distribution. M indicates the locations of the markers.
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where xk(t0) = E[gk(t0)|M
k] and Mk denotes the geno-

type of the individual k at markers M1 and M2. Let θt-t’
be the recombination rate in the distance |t - t’|, then
for all k (see Appendix I):

xk(t) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − θt − θT−t)/(1 − θT) if Mk = M1M1M2M2

(θT−t − θt)/θT if Mk = M1M1M2m2

(θt + θT−t − 1)/(1 − θT) if Mk = M1m1M2m2

(θT−t − θt)/θT if Mk = M1m1M2M2

and the LRT at the position t is calculated as

LRT(t) =
[
∑

yk xk(t)]
2

∑
x2k (t)

. (3)

Note that given a position t, {xk(t)}k = 1, ... , n is a
sequence of i.i.d. random variables with the same
expected value 0 and the same variance (see Appendix
III), noted Var(x(t)). Hence, if we replace yk by the
model (2) in equation (3), then the LRT(t) consists of
three terms as (see Appendix II):

LRT(t) = f (t) + ε1(t) + ε2(t),

where f (t) = 1
4a

2[
∑

xk(t0)xk(t)]2/
∑

x2k (t) is a func-

tion of variable t, the noise ε1(t) is the LRT at t under
the no QTL hypothesis and the noise ε2(t) follows
approximately a normal distribution with mean 0 and

variance na2Var(x(t))ρ2
tt0 . Note that:

arg max
t∈[0,T]

LRT(t) = arg max
t∈[0,T]

1
n
LRT(t),

i.e. the bias on LRT(t) behaves similarly to the bias on
LRT(t)/n. So this property allows to analyze the source
of the bias in LRT(t)/n instead of LRT(t). Using the law
of large numbers, we have this following decomposition
of LRT (t)/n:

1
n
LRT(t) ≈ 1

4
a2Var(x(t0))ρ2

tt0 +
1
n

ε1(t) +
1
n

ε2(t), (4)

It can be seen from formula (4) that the first term
reaches its maximum at t0 since ρtt0 → 1 when t® t0.
As seen in the previous section, the second term, which
is proportional to the LRT at t under the “no QTL”
hypothesis, reaches its maximum at the position of mar-
kers more often than at the positions between markers.
As a result, the estimated QTL location will be biased
towards the position of markers. However, when n or a2

increase, or when T decreases, or when t0 approaches
one marker location (see Appendix III), the deviation
between the two first terms in formula (4) increases and
the influence of the second term is reduced. Therefore,
in our simple backcross population model, under the

hypothesis of one QTL, when the population size, mar-
ker density, QTL effect increase or when the true QTL
location approaches the position of a marker, the bias of
the estimated QTL location is expected to be reduced.

Simulations under H0
According to the preceding results, the estimated QTL
location cannot be expected to be uniformly distributed
on the chromosome under the null hypothesis of no
QTL. Familial designs were simulated to test the influ-
ence of the population size and the marker density on
this bias in outbred populations.
Impact of the population size
Six different population sizes, from 60 to 800 progeny,
were simulated with three markers located at 0 M, 0.2
M and 0.4 M on a 0.4 M linkage group. The empirical
distributions of the estimated QTL location, obtained
from 5 000 simulations for each population size, showed
that the probability of mapping a QTL at a marker loca-
tion was always higher than that of mapping it between
markers (Figure 6). As shown in Table 1, the proportion
of QTL which co-localized with the markers looked
independent from the population size. When comparing
the estimated QTL location distributions, which were
obtained with the different population sizes, using the
Kolmogorov-Smirnov test, large p-values were obtained
(> 0.97). This indicates that the population size did not
influence the distribution of the estimated QTL location
in a significative way under the null hypothesis.
Impact of the marker density
The empirical distributions of estimated QTL locations
were compared for five marker, with 2, 3, 5, 7 and 11
markers equally distributed on a 0.6 M linkage group
(Figure 7). The bias towards the marker positions was
systematic whichever the marker density. Except for 11
markers, the number of markers had little influence on
the proportion of QTL located at a marker position
(Table 2), i.e. the bias seemed to divide up between
markers. However, this criteria was difficult to interpret
because the number of markers was different in each of
the cases studied. Moreover, in all cases, the two
extreme markers concentrated more false locations than
intermediate markers did. Since the number of markers
was different, the distributions based on the marker
density were expected to be different as well. The KS
test was thus not suitable to test the influence of the
marker density.

Simulations under H1
According to the analytical results obtained in a back-
cross type population, the population size and the mar-
ker density, as well as the QTL effect and location, were
parameters which were very likely to influence the bias

Wang et al. BMC Genetics 2012, 13:29
http://www.biomedcentral.com/1471-2156/13/29

Page 5 of 16



on the estimated QTL location under the alternative
hypothesis.
Impact of the population size
Three sizes of population were simulated: 100, 300 or
800 progeny. The empirical distributions of the esti-
mated QTL location are given in Figure 8. One QTL
was simulated at the 0.1 M location (Δ on the X axis)
on a 0.4 M linkage group with three markers located at
0 M, 0.2 M and 0.4 M. The Figure 8 clearly shows a
variability of the bias of the QTL location depending on
the population size. It can be seen from Table 3 that the
proportion of putative QTL that co-localized with a
marker and the root mean square error (RMSE) of the

QTL location became smaller when the population size
increased. Table 3 also shows that the bias was corre-
lated to the power of the analysis. However, considering
only very significant LRT (a = 0.01), significant (a =
0.05) or all LRT (a = -), led to very similar values of
RMSE or of proportion of QTL mapped on a marker
location. The KS test indicated that the distributions of
the estimated QTL position were significantly different
depending on the size of the population studied (p -
values = 0). Moreover, the Mann-Whitney-Wilcoxon
(MWW) test showed that, when the population size
increased, the median of the error of the estimated QTL
position significantly decreased (p - values < 2.2e - 16).

Figure 6 Empirical distribution of the estimated QTL location according to the population size under H0. Num. Offsp. indicates the
number of offspring in the outbred population. Results are based on 5000 simulations per case. There were three markers at 0 M, 0.2 M and 0.4
M. The line represents the density obtained with a Kernel method.

Table 1 Proportion of estimated QTL locations at marker locations according to the population size under H0

Number of individuals (s × d × p)1

60 (3 × 1 × 20) 100 (5 × 1 × 20) 300 (5 × 2 × 30) 400 (5 × 2 × 40) 800 (5 × 4 × 40)

Proportion2 (%) 64.2 63.8 65.3 67.1 66.0
1The population structure was a mixture of full and half sib families for given numbers of sires (s), dams per sire (d), and progeny per dam (p).
2Proportion of QTL located at a marker position (3 markers at 0 M, 0.2 M and 0.4 M).
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Impact of the marker density
Figure 9 reports the QTL location distribution for a
marker density from 2 to 11 markers equally distributed
on a 0.6 M interval. One QTL was simulated at 0.25 M.
It shows the advantage of using a high marker density
in the QTL detection: when the marker spacing was
minimal (i.e. 6 cM), the location of the QTL was very
accurate. Table 4 shows that, when the density
increased, the RMSE of the estimated QTL location
decreased. So the QTL location was more accurately
estimated. The dependency between the power of the
analysis and the bias extent was confirmed. On the con-
trary, there were low variations of RMSE or proportion
of QTL mapped at marker location according to a.
Finally, as under H0, these tendencies were confirmed
for the proportion of QTL located at a marker location,
except for 11 markers.
Impact of the QTL effect
The empirical distributions of the estimated QTL loca-
tion when the QTL effect increased from 0.5 phenotypic
standard deviation (s) to 4s is shown in Figure 10. One
QTL was simulated at 0.1 M on a 0.4 M linkage group
with three markers equally spaced. The power of the
QTL detection, the RMSE of the estimated QTL loca-
tion and the proportion of estimated QTL locations at a
marker are given in Table 5. Results indicated that,
whenever the QTL effect increased, the bias decreased.

As seen previously, the bias decreased when the power
increased but the RMSE or the proportion of QTL
mapped on a marker position were only slightly depen-
dent on the test level. The KS test indicated that the
distribution of the estimated QTL position was signifi-
cantly different when the QTL effect changed (p - values
< 2.2e - 16). The MWW test showed that, when the
QTL effect increased, the median of the error of the
estimated QTL position decreased (p - values < 2.2e -
16).

Impact of the true QTL location
Figure 11 shows the variation in the distribution of the
estimated QTL location when the simulated QTL posi-
tion (Δ on the X axis) moved towards the middle of two
flanking markers on a 0.4 M linkage group. Table 6
shows the power of the QTL detection, the RMSE of
the estimated QTL location and the proportion of esti-
mated QTL positions at a marker position when the
true QTL location changed from 0 M to 0.2 M. When
the true QTL location tended towards the flanking mar-
kers, the power went up and the proportion of QTL
locations at a marker location increased. On the con-
trary, the RMSE went down. The KS test confirmed the
difference between the distributions of the estimated
QTL location when the true QTL location varied (p -
values < 2.2e - 16). The MWW test, which compared
the medians of error of the estimated QTL location,
confirmed the increase in accuracy when the true QTL
location tended towards a marker location.

An algorithm to adjust the location of QTL mapped on
markers
Analytical developments in backcross type population
and simulation study in outbred type population
demonstrated that the estimated position of the QTL is

Figure 7 Empirical distribution of the estimated QTL location according to the marker density under H0. Results are based on 5000
simulations per case of in an outbred population of 300 individuals. The number of markers varied from 2 to 11 across along a linkage group of
0.6 M. The line represents the density obtained with a Kernel method.

Table 2 Proportion of estimated QTL locations at marker
locations according to the marker density under H0

Number of markers1

2 3 5 7 11

Proportion2 (%) 58.6 58.5 52.6 57.8 69.5
1The markers were evenly distributed on a linkage group of 0.6 M.
2Proportion of QTL located at a marker location for a population of 300
individuals.
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biased towards marker location under some circum-
stances. On the other hand, the decomposition of the
LRT according to the formula (4) allowed to identify a
putative cause of this bias: the residual error ε1 in the
LRT both under “no QTL” and the “one QTL” hypoth-
eses. Indeed, according to the decomposition of the LRT
in the formula (4), if the QTL is not estimated at its
true location, two residual errors may have generated
the bias: ε1 and ε2. When the estimated QTL position is
at a marker location, argmaxt ε2(t) has a uniform distri-
bution but argmaxt ε1(t) is more often estimated at a
marker location than between markers. In such a situa-
tion, ε1 is very likely to play a dominant role in the bias.
On the contrary, when the estimated QTL location is

not at a marker location, argmaxt ε1(t) and argmaxt ε2(t)
are unknown for a given argmaxt[ε1(t) + ε2(t)] error.
Under these circumstances, it is impossible to predict
the relative influence of ε1 and ε2 on the bias. On the
basis of this observation, we propose an approach to
describe the ε1(t) process and, consequently, adjust the
estimated QTL position when a QTL co localizes with
one marker, i.e. an approach to correct the “marker
effect” on the bias of the estimated QTL location.
1. Obtain the vector which contains the LRT profile

along the linkage group, calculated on the phenotypic data,
say L0. L0 is maximum at the location of the marker M.
2. Under the “no QTL” hypothesis, simulate pheno-

types and obtain LRT profiles until to have 1000 profiles

Figure 8 Empirical distribution of the estimated QTL location according to the population size under H1. Num. Offsp. indicates the
number of offspring in the outbred population. Results are based on 5000 simulations per case. There were three markers at 0 M, 0.2 M and 0.4
M. Δ indicate the true QTL location. The line represents the density obtained with a Kernel method.

Table 3 Power, RMSE of the QTL location and proportion of estimated QTL locations at marker locations according to
the population size under H1

Number of individuals (s × d × p)1

a2 100 (5 × 1 × 20) 300 (5 × 2 × 30) 800 (5 × 4 × 40)

Power3 (%) 0.05 39 93 100

0.01 15 81 100

RMSE4 (cM) - 13.9 8.7 4.2

0.05 12.2 8.4 4.2

0.01 11.4 8.0 4.2

Proportion5 (%) - 39.9 15.2 1.6

0.05 29.7 14.0 1.6

0.01 26.8 12.9 1.6
1The population structure was a mixture of full and half sib families for given numbers of sires (s), dams per sire (d), and progeny per dam (p).
2Significance level for the LRT.
3Power of the QTL detection at significance level a.
4RMSE of the estimated QTL location, the true QTL being located at 0.1 M on a 0.4 M linkage group.
5Proportion of QTL located at a marker location (3 markers at 0 M, 0.2 M and 0.4 M).
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which have their maximum at the position of the mar-
ker M, say {Li}i = 1,...,1000

3. Calculate the 1 000 vectors Vi = L0-Li,i � 1,...,1000.
4. Retain the 1000 locations where {Vi}i = 1, ..., 1000 is

maximum.
5. Obtain the adjusted position of the QTL as the

mean of these positions:

P̂ = Mean{pi | pi = argmaxVi, i = 1, . . . , 1000}.
In order to verify the validity of this proposal, simula-

tions were carried out in R for a backcross type design
of 100 progeny. There were six markers equally distribu-
ted on a 1 M linkage group. There was one QTL of 0.5s
of effect for which two true locations were envisaged:
0.1 M, i.e. between markers, and 0.2 M, i.e. on a marker.

Table 7 shows the comparison of RMSE between
“before” and “after” adjusting the estimated QTL loca-
tion when the estimated QTL position was on one of
the markers in the first place. The distributions of esti-
mated QTL location before and after the adjustment of
the estimated QTL location are presented in Figure 12.
The RMSE was always smaller after the position had
been adjusted, even when the true QTL location was in
0.2 M, i.e. on a marker location. In this example, the
proportion of false QTL locations on the markers was
effectively decreased by the proposed algorithm.

Discussion
In order to study the elements that give rise to the bias on
the estimated QTL position, we checked whether the dis-
tribution of the test statistic changed along the locations
on the linkage group. More precisely, we checked if the
significance threshold remained the same at a marker and
at a non-marker location. Under the null hypothesis of
“no QTL on the linkage group”, the asymptotic distribu-
tion of the LRT at a given point is well known and identi-
cal for all locations. It will be getting closer to the central
c2 distribution with a degree of freedom depending on the
number of parameters fixed under the null hypothesis
[20], i.e. here the number of sires or dams for which a
QTL effect was estimated. Nevertheless, the population
size is most often not large enough to make the LRT
reach its asymptotic distribution for all the locations on
the linkage group. The variability of the marker informa-
tivity along the linkage group may actually influence this
convergence to asymptotic conditions, resulting in varia-
bility of the LRT distributions depending on the tested
locations. Here, the differences between the empirical dis-
tributions of the LRT at each position along the linkage
group were explored using a real example of an outbred
type population. It appeared that the variability of

Figure 9 Empirical distribution of the estimated QTL location according to the marker density under H1. Results are based on 5000
simulations per case of an outbred population of 300 individuals. The number of markers varied from 2 to 11 along a linkage group of 0.6 M. Δ
indicates the true QTL location. The line represents the density obtained with a Kernel method.

Table 4 Power, RMSE of the QTL location and proportion
of estimated QTL locations at marker locations according
to the marker density under H1

Number of markers1

a2 2 3 5 7 11

Power3 (%) 0.05 62.2 91.6 94.4 96.5 97.5

0.01 37.2 79.0 85.2 88.9 91.8

RMSE4 (cM) - 16.6 10.5 8.8 7.4 5.7

0.05 14.9 10.1 8.4 7.2 5.6

0.01 14.1 9.7 8.0 6.9 5.2

Proportion5 (%) - 19.0 15.4 12.5 11.8 35.0

0.05 13.0 14.6 11.5 11.5 34.5

0.01 10.8 13.7 10.7 10.5 34.0
1The markers were evenly located in a linkage group of 0.6 M.
2Significance level for the LRT.
3Power of the QTL detection at significance level a in a population of 300
progeny.
4RMSE of the estimated QTL location, the true QTL being located at 0.07 M on
a 0.6 M linkage group.
5Proportion of QTL located at a marker location.
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informativity along the linkage group did not lead to a sig-
nificative variability of the empirical distributions of the
nominal test statistics. This observation is not contradic-
tive to the bias on the estimated QTL location towards the
locations of markers but it means that the bias is due to
the process which defines the sup of LRT on the linkage
group.
Some analytical results concerning the bias of the esti-

mated QTL location were obtained in a backcross type
population, i.e. a backcross between inbred lines. We
identified a common source of bias under the “no QTL”
and the “one QTL” hypotheses, and also showed the
possible influence of several parameters under “one
QTL” hypothesis, such as the population size, the mar-
ker density, the QTL effect and the true QTL location.
Using simulations, we verified the existence of a bias on

the estimation of the QTL location using the interval
mapping method, under the null and the alternative
hypotheses, when family structure are more complex
than the backcross design considered by Walling et al.
[4]. Simulations of outbred populations confirmed that
this bias is influenced by the size of the population and
the density of the genetic map, as well as by the QTL
effect under the alternative hypothesis. We also demon-
strated that the true QTL location, relatively to the
flanking markers, had a significant impact on the accu-
racy of the estimated QTL location. Moreover, we quan-
tified the bias of the estimated QTL location for various
values of these parameters and validated the results by
applying appropriate test statistics.
We showed that the population size does not affect

the estimation of the QTL location under the null
hypothesis. Under the alternative hypothesis, very simi-
lar values of RMSE or of proportion of QTL detected at
marker locations were observed whatever a. On the
other hand, a slight reduction in the bias seemed to be
obtained when applying a < 0.01. However, the choice
of a high significance level also implies a decrease of
power and the detection of only few QTL. As a conse-
quence, it cannot be considered an efficient way to cor-
rect the bias problem.
Considering these results leads to a first recommenda-

tion which would be that the number of animals and/or
markers must be adjusted to the desired test power and
location accuracy. Figure 13 summarizes the variability
of the bias in accordance with the population size and
the QTL effect. The proportion of QTL mapped at a
marker location and the RMSE of the QTL location pre-
sent the same tendencies according to the variations in
QTL effect and in population size. This confirms that
the bias on the estimated QTL location is essentially
due to the location of QTL on markers.

Figure 10 Empirical distribution of the estimated QTL location according to the QTL effect under H1. Results are based on 5000
simulations per case in an outbred population of 100 progeny. There were three markers at 0 M, 0.2 M and 0.4 M. The QTL effect varied from
0.5 s to 4s. Δ indicates the true QTL location. The line represents the density obtained with a Kernel method.

Table 5 Power, RMSE of the QTL location and proportion
of estimated QTL locations at marker locations according
to the QTL effect under H1

QTL effect

a1 0.5 s 1 s 1.5 s 2 s 4 s

Power2 (%) 0.05 10.5 41.8 81.0 97.4 100

0.01 2.9 19.5 58.1 89.8 100

RMSE3 (cM) - 17.0 13.6 10.3 8.0 4.4

0.05 15.6 11.9 9.8 7.8 4.4

0.01 15.4 10.9 9.1 7.6 4.4

Proportion4 (%) - 56.6 37.9 24.6 13.6 2.4

0.05 37.1 28.8 22.2 13.2 2.4

0.01 31.0 24.6 20.3 12.9 2.4
1Significance level for the LRT.
2Power of the QTL detection for significance level a.
3RMSE of the estimated QTL location in a population of 100 progeny with a
true QTL located at 0.1 M.
4Proportion of QTL located at a marker location (3 markers at 0 M, 0.2 M and
0.4 M).
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Secondly, concerning the particular case of eQTL
detection, when the marker information is relatively
sparse, for example when microsatellite markers are
used for genotyping, it is necessary to measure several
hundred of animals for transcriptomic data to obtain an
accurate eQTL location. Finally, a population size of 300
progeny seems to be a good compromise in the detec-
tion of eQTL, even if only those which have relatively
large effects will be detected.
Thirdly, it is clear that significant QTL detection

located at a marker position should be considered with
caution, especially when the population size, the marker
density or the QTL effect are low. Hence, the approach
proposed above is efficient to remedy the bias on the
estimated QTL location in such situation.

Conclusions
When we apply the interval mapping method on an
outbred design to map QTL, the QTL is often incorrectly
mapped at the position of a marker. In this work, this bias
was studied by using analytical developments in backcross
type population and simulated data in outbred popula-
tions. In the absence of QTL, adjusting the thresholds at
the location of markers cannot reduce the bias, and the
population size does not affect the bias. Under the hypoth-
esis of having one QTL, the impact of some parameters on
the bias was confirmed: when the population size and/or
the QTL effect and/or the marker density are large
enough, the bias is reduced. Moreover, the closer the QTL
is to a marker location, the more accurate the estimation
is. Therefore, caution should be taken when the QTL is
mapped at a position of a marker, in particular for low
power designs. In such cases, a method is proposed to cor-
rect the bias on the estimated QTL location. Simulations
carried out in a backcross type population demonstrated
that this method is valid to limit the bias.

Methods
Analyses on a real data set in pig
A real data set was used to illustrate some aspects of the
present work. It is a porcine outbred population of 325
progeny issued from 4 sires. One example of eQTL ana-
lysis using the QTLMap software [21], i.e. the analysis of
the chromosome SSC18 for 6 665 gene expression traits,
was given. The linkage analysis method was applied
according to Le Roy et al. [22] with a gene by gene proce-
dure. For each gene, when the LRT was significant at the
5%0 level at the chromosome level, the estimated eQTL
location was the location where the LRT was maximum
on the linkage group.
The same familial structure was used to study the

empirical distribution of the LRT along the linkage

Figure 11 Empirical distribution of the estimated QTL location according to the true QTL location under H1. Results are based on 5000
simulations per case of an outbred population of 300 progeny. There were two flanking markers at 0 M and 0.4 M. The true QTL location varied
from 0 M to 0.2 M. Δ indicates the true QTL location. The line represents the density obtained with a Kernel method.

Table 6 Power, RMSE of the QTL location and proportion
of estimated QTL locations at marker locations according
to the true QTL location under H1

QTL location (M)

a1 0 0.05 0.1 0.15 0.2

Power2 (%) 0.05 96.1 92.3 87.2 82.0 81.2

0.01 87.4 80.1 69.7 61.9 60.2

RMSE3 (cM) - 7.5 7.6 9.5 10.7 11.2

0.05 7.2 7.2 9.0 10.1 10.7

0.01 7.0 7.0 8.6 9.7 10.3

Proportion4 (%) - 51.5 38.6 26.6 19.0 16.2

0.05 51.3 37.8 24.8 15.8 13.6

0.01 50.9 37.2 24.3 13.8 11.2
1Significance level for the LRT.
2Power of the QTL detection for significance level a.
3RMSE of the estimated QTL location in a population of 300 progeny with a
true QTL located at 0.1 M on a 0.4 M linkage group.
4Proportion of QTL located at a marker location (2 markers located at 0 M and
0.4 M).
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group. Two thousand simulations were performed under
the null hypothesis of “no QTL” on the chromosome
SSC1 which carried 16 microsatellite markers. A poly-
genic heritability coefficient of 0.5 was assumed for the
trait (see http://www.inra.fr/qtlmap).

Simulations of an Ornstein-Uhlenbeck process
The asymptotic distribution of the LRT process at mar-
ker positions was shown as being the square of an OU
process [16]. Let’s Xt denote the value of this OU pro-
cess at the t location. Xt could be described as:

dXt = 2Xtdt + 2dWt

where Wt denotes the Brownien movement.
In a backcross type population, the mean of this pro-

cess is 0 and the autocovariance is: cov(Xt, Xt’) = e-2|t-t’|

with t and t’ in the Haldane distance unit [16].
To simulate this process, we considered a linkage

group with mk markers. We generated mk independent

random numbers z0, z1, ..., zmk from a normal distribu-
tion with mean 0 and variance 1 with the function rnor-
min R. We defined X0 = z0. Then, a discrete analog of
the OU process [23] was given by:

Xs = e−2τXs−1 +
√
1 − e−4τ zs

with s = 1, ..., mk, where τ denotes the spacing of two
adjacent markers in Morgan. This sequence is a first-
order autoregressive sequence.

Simulations of outbred type population
The QTLMap software [21] was used to simulate and
analyse the data sets. QTLMap allowed the simulation
of complete experimental designs with pedigree, genetic
map, genotypes and phenotypes http://www.inra.fr/
qtlmap. The population structure was a mixture of full
and half sib families for given numbers of sires (s), of
dams per sire (d) and of progeny per dam (p). Most
often, 3 markers were equally distributed on a 0.4 M
linkage group. Each marker had 6 alleles with equal fre-
quencies in the parental population. The QTL was
simulated at 0.1 M and all sires and dams were hetero-
zygous for the QTL. The phenotypes of the progeny
were simulated as follows:

yijk = ui + uij + a gijk(t0) + eijk (5)

yijk is the phenotype of the progeny ijk of the sire i
and of the dam ij. ui and uijk denote the polygenic
effects, of the sire i and of the dam ij respectively, which
follow a normal distribution with mean 0 and variance

Table 7 RMSE of the QTL location before or after
adjustment

True QTL location (M)

0.1 0.2

Before1 28.6 23.6

After2 26.6 21.3

Results based on 5000 simulations per case in a backcross population of 100
progeny. There were 6 markers equally distributed on 1 M.
1RMSE for the estimated QTL location.
2RMSE for the estimated QTL location after adjusting the estimated QTL
location by the proposed algorithm.

Figure 12 Empirical distribution of the estimated QTL locations before and after adjustment. Results are based on 5000 simulations per
case in a backcross population of 100 progeny. There were six markers equally distributed on a linkage group of 1 M. The true QTL location
indicated as Δ was set at 0.1 M or 0.2 M.
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. a denotes the QTL allelic substitution effect and gijk
(t0) is the genotypic value of ijk at the QTL location t0.
gijk takes value 1, 0 or -1 depending onthe QTL geno-
type, QQ, Qq or qq, respectively. eijk is a random normal
variable with mean 0 and variance σ 2

e . The variance

within QTL genotype is σ 2 = 2σ 2
u + σ 2

e and a is
expressed in s unit. The heritability coefficient, equal to
4σ 2

u /σ
2 , was fixed at 0.25.

For each of the cases studied, the results were based
on 5 000 simulations, either under the null hypothesis
(H0: there is no QTL segregating on the linkage group,
i.e. a = 0) or under the alternative hypothesis (H0: there
is one QTL segregating on the linkage group, i.e. most
often a = 1s). For each simulated dataset, the estimated
QTL position was the location of the linkage group
where the LRT was maximum.
Under the null hypothesis, simulations were carried

out so as to compare the influence of the population
size with 6 levels: 60 (3s,1d,20p), 80 (4s,1d,20p), 100
(5s,1d,20p), 300 (5s,2d,30p), 400 (5s,2d,40p), 800
(5s,4d,40p) progeny. Under the H1 hypothesis, only 3 of
these population sizes were considered: 100, 300 and
800 progeny.
To understand how the QTL effect affects the estima-

tion of the QTL location, a population of 100 progeny was
simulated with a QTL effect ranging from 0.5 s to 4 s.
Other simulations were performed in a population of

300 progeny. Firstly, to check the bias extent depending
on the marker density, samples with 2, 3, 5, 7 or 11
markers equidistant in a linkage group of 0.6 M were
simulated, under the null and under the alternative
hypotheses. Under H1, one QTL was simulated at 0.25
M (a = 1s). Secondly, to test how the true QTL location
may affect the bias, we performed simulations under H1

with a QTL (a = 1s) lying at 0 M, 0.05 M, 0.10 M, 0.15

M, 0.2 M on a linkage group of 0.4 M with two flanking
markers at 0 M and 0.4 M.

Criteria
In each of the cases studied, the empirical distribution
of the estimated QTL location was obtained from the
5000 locations of maximum of LRT of the simulations.
The proportion of simulations for which the QTL loca-
tion was estimated at one marker position was retained
to quantify the variability of the bias depending on the
parameters. Under the alternative hypothesis, beside the
proportion of the QTL which co-localized with a mar-
ker, the root mean squared error (RMSE) of the QTL
location was chosen to describe the bias variability
which depends on the parameters. What is more, the
power of the QTL detection was calculated for a first
type error a = 0.01 and 0.05. For all simulations and for
simulations with a significant QTL at the level a = 0.01
or 0.05, the proportion of QTL that were estimated at a
marker location and the RMSE of the estimated QTL
location were computed. The RMSE computation was
given by the following formula

RMSE =

√√√√1
L

L∑
l=1

(t̂l −t0)
2
,

where L is the number of simulations (all, significant
at the level 0.05 or at the level 0.01), t̂l is the lth esti-
mated QTL position and t0 is the true QTL position.

Hypothesis test
Appropriate statistical tests are needed to evaluate
which parameters affect the bias of the estimated QTL
position. ANOVA was not adequate to test the equality
of the average QTL position in two different conditions

Figure 13 Distribution of the bias depending on the population size and the QTL effect. a. Proportion of estimated QTL locations on
marker positions. b. RMSE of QTL location. Results are based on 5000 simulations per case. There were three markers at 0 M, 0.2 M and 0.4 M.
The true QTL location was set at 0.1 M. 5*1*20 indicates that there were 5 sires, 1 dam per sire and 20 progeny per dam in the design.
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(e.g. 2 population sizes) because of the non normality of
the QTL position estimator. Therefore, two nonpara-
metric tests were combined in order to test which para-
meters affect the bias, and how they influence the
variation of the QTL location estimation. This was per-
formed in two steps: (1) the parameters which influence
the accuracy of the estimated QTL location were identi-
fied. This step was carried out with a Kolmogorov-Smir-
nov test; (2) for the parameters identified in the first
step, a description of their effect on the accuracy of the
estimated QTL position was made. This step was per-
formed with a Mann-Whitney-Wilcoxon test [24].
1. Kolmogorov-Smirnov test (KS): this test was applied

in order to check whether a parameter affected the esti-
mation of the QTL position. For each value of the para-
meter, an empirical distribution of the estimated QTL
location was obtained using 5 000 simulations. The two
hypotheses compared by the KS test were:

H0 : Fa = Fb H1 : Fa �= Fb,

where Fa, Fb denote the distribution of the estimated
QTL position under the conditions a and b, respectively.
For a given parameter, all the distributions were com-
pared by pairs with the function ks.test in R. If all pair
comparisons concluded to accept the null hypothesis, it
means that the value of this parameter did not influence
the estimation of the QTL position.
Mann-Whitney-Wilcoxon test (MWW): when the null

hypothesis in the first step was rejected, the MWW test
was used to understand how the parameter affected the
estimation with the function wilcox.test in R. The
hypotheses compared were:

H0 : Da = Db H1 : Da ≤ Db,

where Da, Db denote the absolute values of the devia-
tions between the estimated QTL position and the
assumed, i.e. the true position, under the condition a
and b, respectively. A smaller median D corresponds to
a more accurate position estimation.

Appendix
Appendix I
Let us denote Mk the genotype of the markers at 0 and
T for individual k and pkt = ℙ (gk(t) = 1|Mk). Then using
a linearized likelihood function instead of the mixture of
two normal distributions, the LRT can be written as:

LRT(t) = −2 ln
L(y1, . . . , yn)

maxaL(y1, . . . , yn; a)
≈ −2 ln

∏
φ(yk; 0, 1)

maxa
∏

φ(yk + a
2(1 − 2pkt); 0, 1)

=

[∑
yk(1 − 2pkt)

]2
∑

(1 − 2pkt)
2 ,

where φ(x;μ, σ ) = 1√
2πσ

e−
(x−μ)2

2σ 2 and the distribution

of pkt is given as:
Note that xk(t) = E(gk(t)|M

k) = 2pkt - 1, so the LRT at
each position t can be described as

LRT(t) =
[
∑

yk xk(t)]
2

∑
x2k (t)

, and the distribution of xk (t) for

each individual k is

Appendix II

Replacing yk = a
2xk(t0) + εk in LRT (3), we have

LRT(t) =
[
∑

( a2xk(t0) + εk)xk(t)]
2

∑
x2k (t)

=
1
4
a2

[
∑

xk(t0)xk(t)]
2

∑
x2k (t)

+
[
∑

εkxk(t)]
2

∑
x2k (t)

+ a

∑
xk(t0)xk(t)∑

x2k(t)

∑
εkxk(t)

= f (t) + ε1(t) + ε2(t),

where in the case of large sample, we have

• f (t) = 1
4a

2 [
∑

xk(t0)xk(t)]
2

∑
x2k (t)

and

f (t)/n → 1
4a

2Var(x(t0))ρ2
tt0 when n ® ∞ according to

the law of large numbers.

• ε1(t) =
[
∑

εkxk(t)]
2

∑
x2k (t)

is the LRT under the no QTL

hypothesis.
•

ε2(t) = a
∑

xk(t0)xk(t)∑
x2k (t)

∑
εkxk(t) ∼ aCov(x(t),x(t0))

Var(x(t))

∑
εkxk(t)

is a residual error, linear combination of gaussian ran-
dom variables. Its distribution is approximated as
N(0, na2Var(x(t))ρ2

tt0).

Appendix III
Considering the two first terms in the expression of
1
nLRT(t) (4), when n tends to infinity, 1

nε1(t) will con-

verge to 0 at each position t. So the amplitude of the

curve representing the term 1
nε1(t) , with respect to that

pkt Probability Mk

(1-θt)(1-θT-t)/(1-θT) (1-θT)/2 M1M1M2M2

(1-θt)θT-t/θT θT/2 M1M1M2m2

θT-tθt/θT (1-θT)/2 M1m1M2m2

θt(1-θT-t)/θT θT/2 M1m1M2M2

xk (t) Probability Mk

(1-θt-θT-t)/(1-θT) (1-θT)/2 M1M1M2M2

(θT-t-θt)/θT θT/2 M1M1M2m2

(θt+θT-t-1)/(1-θT) (1-θT)/2 M1m1M2m2

(θt-θT-t)/θT θT/2 M1m1M2M2
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of the first term, is reduced. In the same way, as a2

increases, the amplitude of the first term becomes larger
with respect to that of the second term.
The proof of the influence of t0 and T will use the

results in this following lemma:
Lemma 1. Given two markers at the location 0 and T in

a linkage group of length T and assuming a QTL located
at t0, from the distribution of Var(x(t)) and applying the
Taylor series expansion in case of small T, we have:

1. Var(x(t0)) =
(1−θt0−θT−t0 )

2

1−θT
+ (θt0−θT−t0 )

2

θT
≈ 4

T t
2
0 − 4t0 + 1.

2. Cov(x(t), x(t0)) =
(1−θt−θT−t)(1−θt0−θT−t0 )

1−θT
+

(θt−θT−t)(θt0−θT−t0 )
θT

≈ 4
T tt0 − 2(t + t0) + 1.

Now let us assume T < 1 and consider the peak-to-

peak amplitude of the first term of 1
nLRT(t) ,

g(t) = 1
4a

2Var(x(t0))ρ2
tt0 , i.e., the deviation between

highest amplitude value and lowest amplitude value:

δ = max
t∈[0,T]

g(t) − min
t∈[0,T]

g(t).

If t0 ∈ [T2 ,T] , then the maxtÎ[0, T]g(t) is reached at t =

t0 and the mintÎ[0, T]g(t) is reached at 0. Hence, we have:

δ =
a2

4

[
Var(x(t0)) − Cov2(x(0), x(t0))

]

≈ a2(
1
T

− 1)t20.

It can be seen that when t0 ® T from T
2 and/or when

T decreases, δ will become larger.

If t0 ∈ [0, T2 ] , then the maxtÎ[0, T]g(t) is reached at t =

t0 and the mintÎ[0, T]g(t) is reached at T. Hence, we have:

δ =
a2

4

[
Var(x(t0)) − Cov2(x(T), x(t0))

]

≈ a2(
1
T

− 1)(t0 − T)2.

It can be seen that when t0 ® 0 from T
2 , δ will

become larger. Likewise, we set a constant c for the dis-
tance between the argmaxtÎ[0, T]g(t) and argmintÎ[0, T]g
(t). Then, when T changes, the position of QTL is t0 =
T -c and

δ ≈ a2(
1
T

− 1)c2.

Therefore, when T becomes larger, δ decreases.
In conclusion, the amplitude of g(t) will be greater as

the QTL position tends to one marker and/or the dis-
tance between the markers decreases.
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