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Abstract

Background: Gene-environment interactions play an important role in the etiological pathway of complex diseases.
An appropriate statistical method for handling a wide variety of complex situations involving interactions between
variables is still lacking, especially when continuous variables are involved. The aim of this paper is to explore the
ability of neural networks to model different structures of gene-environment interactions. A simulation study is set up
to compare neural networks with standard logistic regression models. Eight different structures of gene-environment
interactions are investigated. These structures are characterized by penetrance functions that are based on sigmoid
functions or on combinations of linear and non-linear effects of a continuous environmental factor and a genetic
factor with main effect or with a masking effect only.

Results: In our simulation study, neural networks are more successful in modeling gene-environment interactions
than logistic regression models. This outperfomance is especially pronounced when modeling sigmoid penetrance
functions, when distinguishing between linear and nonlinear components, and when modeling masking effects of
the genetic factor.

Conclusion: Our study shows that neural networks are a promising approach for analyzing gene-environment
interactions. Especially, if no prior knowledge of the correct nature of the relationship between co-variables and
response variable is present, neural networks provide a valuable alternative to regression methods that are limited to
the analysis of linearly separable data.

Keywords: Gene-environment interaction, Multilayer perceptron, MLP, Neural network, Pattern recognition,
Simulation study

Background
The etiological pathway of any complex disease can be
described as an interplay of genetic and non-genetic
underlying causes (e.g. [1-3]). Usually, regression based
methods are applied in the study of complex diseases
(e.g. [4-8]). However, regression methods do not neces-
sarily capture the complexity of the interplay of genetic
and non-genetic factors. In particular, regression models
require pre-processing of data to reflect any non-linear
relationship. First, continuous variables have to be either
categorized or transformed according to their assumed
form of relationship to the response. Second, interaction
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terms have to be explicitly included into the regression
models to test for any statistical interaction. Third, if
no prior knowledge of the functional form of the dose-
response-relationship is present, a variety of regression
models has to be explored. With increasing number of
variables, finding the best model through trial-and-error
is no longer feasible due to the large number of possible
models.
For modeling complex relationships, especially with

little prior knowledge of the exact nature of these rela-
tionships, a more flexible statistical tool should be used.
One promising alternative is the use of artificial neural
networks. Here, variables do not have to be transformed
a priori and interactions are modeled implicitly, that is,
they do not have to be a priori formulated in the model
[9]. We successfully applied neural networks for modeling
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different two-locus disease models, i.e. different types of
gene-gene interactions as e.g. epistatic models [10].
Since studies using neural networks for modeling con-

tinuous co-variables have previously shown promising
results (see e.g. [11-13]), the aim of this paper is to inves-
tigate the usability of neural networks for modeling com-
plex diseases that are determined by a gene-environment
interaction with a continuously measured environmental
factor. Based on simulated data in a case-control design,
we analyze the general modeling ability of neural net-
works for different structures of gene-environment inter-
actions. Theoretic risk models are defined representing
different types of two-way interactions of one genetic and
one environmental factor (e.g. [14]). The predicted risk
is compared to the theoretic risk to assess the model-
ing ability. Additionally, neural networks are trained to a
real data set to investigate the practicability of neural net-
works in a real life situation. All results are compared to
those obtained by logistic regression models as reference
method. Advantages and disadvantages of using a neural
network approach are discussed.

Methods
Simulation study
Case-control data sets are generated using a two step
design. First, underlying populations are simulated with a
controlled prevalence of 10% and an overall sample size
of five million observations. These populations carry the
information of two marginally independent and randomly
drawn factors – one biallelic locus and one continuous
environmental factor – and a case-control status. The
minor allele frequency is 30% to ensure sufficient cell
frequencies in the final case-control data sets and it is
assumed that the Hardy-Weinberg equilibrium holds. The
environmental factor follows a continuous uniform distri-
bution on the interval [0, 100]. Depending on the genotype
G and the environmental factor U, the case-control sta-
tus is allocated through eight given theoretic risk models
as introduced in the next subsection. Considering each
theoretic risk model in a high and a low risk scenario,
this results in sixteen underlying populations. As the sec-
ond step, 100 case-control data sets are randomly drawn
from all underlying populations for each analysis. Thus,
for each analysis, mean values over 100 data sets are con-
sidered in sixteen situations. Three different sample sizes
of 2,000 subjects (1,000 cases + 1,000 controls), 1,000 sub-
jects (500 cases + 500 controls), and 400 subjects (200
cases + 200 controls) are used.
Artificial neural networks and logistic regression

models are fitted to the data, i.e. separately to all 100
case-control data sets for each situation. A multilayer per-
ceptron (MLP, see e.g. [15]) is chosen as neural network. It
is briefly described in the Appendix. For neural networks,
the genotype information is coded co-dominant, i.e. the

genotype takes possible values 0, 1, and 2 representing
the number of mutated alleles. The environmental fac-
tor is included in the analyses as continuous variable. For
all data sets, six different network topologies, from zero
up to five hidden neurons, are trained to avoid an over-
fitting of the data. For training purposes, the data set is
always used as a whole. Each training process is replicated
five times each with randomly initialized starting weights
drawn from a standard normal distribution to enhance
the chance that the training process stops within a global
instead of a local minimum. The best trained neural net-
work for each data set, i.e. the best network topology and
the best repetition, is selected based on the Bayesian Infor-
mation Criterion (BIC, [16]), which takes the number of
parameters into account and penalizes additional param-
eters. Thus in each situation, 100 best neural networks
predict the underlying riskmodel and themean prediction
can be used to evaluate the model fit (see below).
For comparison purposes, logistic regression models

are fitted to the same data sets. The genotype is coded
co-dominant counting the number of risk alleles and
using two dichotomous design variables, one representing
the heterozygous and one representing the homozygous
mutated genotype. Five different models are used: the null
model, three main effect models – containing only one or
both main effects – and the full model – containing both
main effects and one or two interaction terms depending
on the genotype coding. For both coding approaches, the
best model is selected based on BIC.
To assess the model fit of neural networks and logis-

tic regression models, the mean prediction over the
100 data set is compared to the theoretic risk model
of a case-control data set. This theoretic risk model
stands for a perfectly drawn case-control data set since
it reflects the probabilities of the given population and
takes into account the changing prevalence in a bal-
anced case-control data set. Mean absolute differences
between the theoretic risk model and its predictions
are calculated element-wise for an equidistant vector
(u′ = 0, 0.1, 0.2, . . . , 100) used as an environmental factor
which yields the matrix E defined as:

E = (Egu′)g,u′ =
(

1
100

100∑
k=1

∣∣∣f (g,u′) − f̂ (k)(g,u′)
∣∣∣
)
g,u′

,

(1)

where g = 0, 1, 2 denotes the genotype and f (g,u′) refers
to the theoretic risk model of the case-control data set and
f̂ (k)(g,u′) to the prediction of the kth case-control data set.
The smaller

∑
gu′ Egu′ is, the better the mean model fit of

neural networks or logistic regression models is since the
estimated risk model and the theoretic risk model coin-
cide for

∑
gu′ Egu′ = 0. To take variation into account,
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pointwise prediction intervals are calculated as empirical
95% intervals. In particular, for all u′ = 0, 0.1, 0.2, . . . , 100
and g = 0, 1, 2 a prediction interval is determined as
the interval

[
f̂ (g,u′)(3); f̂ (g,u′)(98)

]
, where f̂ (g,u′)(3) and

f̂ (g,u′)(98) denote the 3rd ordered and the 98th ordered
prediction, respectively.
Data generation and all analyses are done using R [17].

The package for training the MLP was implemented by
our group and is published on CRAN [18].

Theoretic risk models
Two different types of theoretic risk models for gene-
environment interactions are used, namely the models
introduced by Amato et al. [14] and models mainly repre-
senting a masking effect of the involved locus as defined
below. For all risk models, the kind of functional relation-
ship between the penetrance and the environmental factor
depends on the genotype information, i.e. the curve shape
is in general different depending on the three genotypes.

The relationship is defined on a population level, i.e. the
penetrance function F : {0, 1, 2} × [0, 100] → [0, 1] with
F

(
g,u

) = P
(
Y = 1 |G = g, U = u

)
, where Y ∈ {0, 1}

denotes the case-control status,G ∈ {0, 1, 2} the genotype,
and U ∈ [0, 100] the environmental factor, only holds in
the corresponding underlying population and has to be
converted to f

(
g,u

)
if a case-control data set is analyzed

[10].

Riskmodels by Amato et al.
Amato et al. [14] introduced four different risk models
for analyzing gene-environment interactions: a genetic
model, an environmental model, an additive model and an
interaction model that are characterized by the following
penetrance function

F(g,u) = 1
1 + exp{αg + βg · u} ,

g = 0, 1, 2; u ∈ [0, 100] .

Table 1 Used values for αg, βg (g = 0,1,2), c, and z

Risk model Risk scenario Constant values αg , βg (g = 0,1,2) Constant values c, z

Risk models by Amato
et al. [14]

Genetic model High risk α0 = 2
3 · α1, α1 = 2.5, α2 = 4

3 · α1 z = 0.886

β0 = β1 = β2 = 0

Low risk α0 = 2
3 · α1, α1 = 1.25, α2 = 4

3 · α1 z = 0.390

β0 = β1 = β2 = 0

Environmental model High risk α0 = α1 = α2 = 7.5, z = 0.200

β0 = β1 = β2 = −0.15,

Low risk α0 = α1 = α2 = 3.75, z = 0.200

β0 = β1 = β2 = −0.075,

Additive model High risk α0 = 2
3 · α1, α1 = 7.5, α2 = 4

3 · α1, z = 0.177

β0 = β1 = β2 = −0.15,

Low risk α0 = 2
3 · α1, α1 = 3.75, α2 = 4

3 · α1, z = 0.178

β0 = β1 = β2 = −0.075,

Interaction model High risk α0 = α1 = α2 = 7.5, z = 0.171

β0 = 2 · β1, β1 = −0.15, β2 = 0.5 · β1,

Low risk α0 = α1 = α2 = 3.75, z = 0.169

β0 = 2 · β1, β1 = −0.075, β2 = 0.5 · β1,

Risk model
representing a
masking effect of the
genetic factor

Model 1 High risk (r = 0.150)
c = 0.05, z = 0.254

Low risk (r = 0.075)

Model 2 High risk (r = 0.150)
c = 0.05, z = 0.286

Low risk (r = 0.075)

Model 3 High risk (r = 0.150)
c = 0.075, z = 0.631

Low risk (r = 0.075)

Model 4 High risk (r = 0.150)
c = 0.075, z = 0.964

Low risk (r = 0.075)

Constant values αg , βg (g = 0, 1, 2) c, and z used to determine the penetrance functions (minor allele frequency 30%).
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The four models are defined as follows:

• the genetic model: α1 ≤ α2 ≤ α3 and
β1 = β2 = β3 = 0,

• the environmental model: α1 = α2 = α3 and
β1 = β2 = β3 �= 0,

• the additive model: α1 ≤ α2 ≤ α3 and
β1 = β2 = β3 �= 0,

• the interaction model: α1 = α2 = α3 and
β1 ≤ β2 ≤ β3.

To be able to fix the prevalence K of disease, we intro-
duce an upper bound z that is determined such that the
prevalence is equal to K = 0.1:

F(g,u) = z
1 + exp{αg + βg · u} ,

The values of αg , βg , g = 0, 1, 2, and z used in this paper
for two risk scenarios are given in Table 1. Figure 1 shows
the theoretic risk models of a case-control data set f (g,u)

for the high risk scenario.

Figure 1 Theoretic risk models by Amato et al. [14], high risk scenario. The left part of each figure refers to the homozygous wild-type
genotype, the middle one to the heterozygous, and the right one to the homozygous mutated genotype.



Günther et al. BMC Genetics 2012, 13:37 Page 5 of 18
http://www.biomedcentral.com/1471-2156/13/37

Riskmodels representing amasking effect of the genetic
factor
In addition, we define four theoretic risk models rep-
resenting four types of gene-environment interactions
where the gene mainly has a masking effect. The kind of
functional relationship between the environmental factor
and the penetrance again depends on the genotype infor-
mation. The four theoretic risk models are described in
detail in the following:

1. The structure of the first risk model is given by the
following penetrance function
F : {0, 1, 2} × [0, 100] → [0, 1]

F(g,u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z − c
1 + exp(−r(u − 50))

+ c if g = 0

c if g = 1 .
c if g = 2

2. The second risk model is defined by

F(g,u) =

⎧⎪⎪⎨
⎪⎪⎩

z
1 + exp(−r(u − 50))

if g = 0

c if g = 1 .
2c if g = 2

3. In the third risk model, the penetrance function is
given by

F(g,u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c if g = 0
c if g = 1 .

z − c
1 + exp(−r(u − 50))

+ c if g = 2

4. For the fourth risk model, the penetrance function is
determined as follows:

F(g,u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
c if g = 0

c if g = 1 .
z − 2c

1 + exp(−r(u − 50))
+ 2c if g = 2

In each of these four models, r denotes the risk increase,
c a baseline risk, and z an upper bound for the penetrance
function. A risk increase of r = 0.150 indicates the high
risk and a risk increase of r = 0.075 the low risk scenario,
respectively. The baseline risk c and the upper bound z
are again determined such that the prevalence of disease
is equal to 10% for each situation. The values used in this
paper are given in Table 1. Figure 2 shows the theoretic
risk models of a case-control data set f (g,u) for the high
risk scenario. Note that the gene has a main effect on the
disease in risk models 2 and 4 only and that risk model 3
differs from risk model 1 only by different cell frequencies
for the three genotype classes.

Real data application
To study the performance of a neural network in a real
life situation, we applied this approach to a cross-sectional
study dealing with a lifestyle induced complex disease.
This application should serve as an example for the gen-
eral practicability of our approach without describing the
study from a subject point of view. The common effect of
an SNP and a continuous environmental factor on a binary
outcome is investigated while controlling for the effect of
one binary confounder. The data set includes 138 cases
and 1599 controls. As in the simulation study, neural net-
works with up to five hidden neurons are trained each five
times with randomly initialized weights drawn from of a
standard normal distribution and the best neural network
is chosen based on BIC. The analysis is done once using
the whole data set and once stratified by the confounding
factor. For the stratified analysis, 95% bootstrap percentile
intervals are calculated using 100 bootstrap replications
[19].

Results
Risk models by Amato et al.
A graphical comparison of the general modeling ability for
neural networks and logistic regression models is shown
in Figures 3 and 4 for the large sample size and the risk
models introduced by Amato et al. [14]. In general, neural
networks have a very good model fit compared to logistic
regression models. Especially if the environmental fac-
tor has an effect (environmental model, additive model,
interaction model), neural networks much better pre-
dict the underlying relationship between the genetic and
the environmental factor with narrow prediction intervals
that always include the true theoretic risk model. On the
contrary, logistic regression models are only able to satis-
factorily predict the genetic model. The sigmoid effects in
the case that the environmental factor has an effect are not
well represented in any situation and none of the predic-
tion intervals include the theoretic risk model. This is true
for both, logistic regression models with a co-dominant
coding or for those using design variables for the genetic
factor.
These results are also reflected by the sum of the mean

absolute differences
∑

gu′ Egu′ as defined element-wise in
Equation (1) (see Table 2). Bold numbers mark the best
model fit comparing neural networks and logistic regres-
sion models. Neural networks have the best model fit
for the environmental model, the additive model, and
the interaction model in both risk scenarios and for all
sample sizes. For example for the interaction model in
the high risk scenario, the sum of the mean absolute
differences

∑
gu′ Egu′ is less than half as large for neu-

ral networks as compared to logistic regression models
(
∑

gu′ Egu′ = 119.77 for neural networks as compared to
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Figure 2 Theoretic risk models representing a masking effect of the genetic factor, high risk scenario. The left part of each figure refers to
the homozygous wild-type genotype, the middle one to the heterozygous, and the right one to the homozygous mutated genotype.

∑
gu′ Egu′ = 345.77 and

∑
gu′ Egu′ = 247.93 for logistic

regression models with a co-dominant coding and with
design variables). Additionally, they show the best model
fit for the genetic model in the low risk scenario if the
sample size is 500 + 500 or 200 + 200. Logistic regres-
sion models using a co-dominant coding show the best
model fit for the genetic model in the high risk sce-
nario and, if the sample size is 1, 000 + 1, 000, in the low
risk scenario.

If the sample size decreases, the modeling ability
becomes worse for neural networks as well as for logistic
regression models (see Table 2). However, neural net-
works still show the best model fit if the environmental
factor has an effect. The prediction intervals include the
true underlying risk model in all but two situations (inter-
action model, n = 500 + 500, low risk scenario and
interaction model, n = 200+ 200, high risk scenario, data
not shown).
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Figure 3 Graphical comparison of mean predictions. Risk models by Amato et al. [14], high risk scenario, n = 1, 000 + 1, 000. Graphical
comparison of mean predictions 1

100

∑100
k=1 f̂

(k)(g, u′) for all u′ = 0, 0.1, 0.2, . . . , 100 and g = 0, 1, 2, where the rows relate to the different theoretic
risk models. Green lines refer to the theoretic risk model, blue lines to the mean predictions, and red lines to the pointwise prediction intervals. DV =
design variables.
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Figure 4 Graphical comparison of mean predictions. Risk models by Amato et al. [14], low risk scenario, n = 1, 000 + 1, 000. Graphical
comparison of mean predictions 1

100

∑100
k=1 f̂

(k)(g, u′) for all u′ = 0, 0.1, 0.2, . . . , 100 and g = 0, 1, 2, where the rows relate to the different theoretic
risk models. Green lines refer to the theoretic risk model, blue lines to the mean predictions, and red lines to the pointwise prediction intervals. DV =
design variables.
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Table 2 Differences between theoretic and estimated penetrance functions (models by Amato et al. [14])

High risk scenario Low risk scenario

Neural network Logistic regression Logistic regression (DV) Neural network Logistic regression Logistic regression (DV)

n = 1000 + 1000 n = 1000 + 1000

∑
gu′ Egu′

Genetic model 40.79 31.31 48.15 48.22 40.85 83.62

Environmental model 46.14 277.11 277.11 52.45 171.61 171.36

Additive model 45.13 256.52 260.10 47.99 163.19 189.92

Interaction model 119.77 345.77 247.93 132.47 225.61 194.37

n = 500 + 500 n = 500 + 500

∑
gu′ Egu′

Genetic model 59.28 47.14 68.22 64.27 92.02 159.80

Environmental model 60.57 277.51 277.15 90.76 174.37 174.16

Additive model 56.10 268.11 297.62 80.66 190.25 242.34

Interaction model 138.91 344.50 268.75 153.56 233.16 210.98

n = 200 + 200 n = 200 + 200

∑
gu′ Egu′

Genetic model 101.95 85.67 152.25 97.23 167.48 207.66

Environmental model 96.32 278.40 278.93 163.16 177.14 175.27

Additive model 96.16 329.55 374.17 177.24 246.06 292.39

Interaction model 168.90 349.88 316.01 207.81 256.22 291.88

Sum of mean absolute differences between theoretic and estimated penetrance function for 100 case-control data sets in the low and high risk scenario for different sample sizes. Bold numbers mark the best model fit
comparing neural networks and logistic regression models. DV = design variables.
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Models representing a masking effect of the genetic factor
The general modeling ability for the risk models repre-
senting a masking effect of the genetic factor is shown
in Figures 5 and 6 for the large sample size. Neural net-
works have a very good model fit if the gene has a masking
effect only (risk model 1 and 3). If the gene has an own
main effect, the prediction is less accurate and the vari-
ance is much larger. Nevertheless, the prediction intervals
include the true theoretic risk models in all situations.
Logistic regression models with a co-dominant coding
for the genotype are not able to capture the underly-
ing structure of the gene-environment interaction. Con-
stant or non-linear effects are not detected. If design
variables are used for coding the genotype, the model
fit is much better. However, the theoretic risk model is
not included in the prediction interval in many situa-
tions. Additionally, the constant effects are only detected
by combining the single predictions with either positive
or negative slopes to an average prediction with zero
slope. This is reflected by the wider ends of the predic-
tion intervals. Moreover, the sigmoid effect is again not
well represented in many of the investigated situations.
This is especially true for the first and the second risk
model.
Comparing the sum of the mean absolute differences∑
gu′ Egu′ (see Table 3), neural networks show the best

model fit to the underlying data for the first three risk
models if the sample size is n = 1, 000 + 1, 000,
thus, representing best the gene-environment interac-
tions in these situations. For example for risk model
1 in the high risk scenario, the sum of the mean
absolute differences is

∑
gu′ Egu′ = 38.63 for neu-

ral networks as opposed to
∑

gu′ Egu′ = 211.62 and∑
gu′ Egu′ = 105.83 for logistic regression models

with a co-dominant coding and with design variables.
For risk model 4, logistic regression models using
design variables for the genotype clearly have the
best model fit (

∑
gu′ Egu′ = 85.16 for the high and∑

gu′ Egu′ = 59.74 for the low risk scenario as opposed
to

∑
gu′ Egu′ = 103.37 and

∑
gu′ Egu′ = 103.63 for neural

networks).
With decreasing sample sizes, the model fit again

becomes worse and the variance increases (data not
shown). If the sample size is 500+500 subjects, neural net-
works again have the best model fit for the first three risk
models in the high risk scenario. In the low risk scenario,
this is only true for the first and the third risk model. A
sample size of just 200+200 subjects leads to a consider-
ably worse model fit of neural networks. In this situation,
logistic regression models with design variables coding
the genotype have the best model fit for the second and
fourth risk model in both risk scenarios. Neural networks
still have the best model fit if the gene has a masking
effect only.

Real data application
The results for the real data application are shown in
Figure 7 (whole data set) and Figure 8 (stratified analysis).
A neural network without any hidden neuron is chosen
as best neural network. It shows that the environmental
factor in general has a decreasing effect on the disease
risk and that the number of mutated alleles defines the
slope of this risk decrease. If one or two mutated alle-
les are present, the risk is lower and the risk decrease is
weaker as for the homozygous wildtype genotype.We also
see a strong influence of the included binary confounding
factor.

Discussion
In this paper, we studied the ability of neural networks
and logistic regression models to capture different types
of gene-environment interactions. Neural networks were
able to predict the theoretic risk models in all sixteen
investigated situations such that the prediction intervals
contained the true underlying risk models in most situa-
tions and were thus superior to logistic regression models.
Logistic regression models without design variables com-
pletely failed to model the constant effects. Employing
design variables led to a considerably better model fit only
when average values over the 100 data sets were con-
sidered. Single predictions for one data set often had a
misleading form and did not distinguish between linear
and non-linear components especially for the first two risk
models. Nevertheless for risk model 4, logistic regression
models using design variables provided the best model
fit compared with neural networks as could be seen by
the mean absolute differences although the prediction
interval did not include the whole true risk model. How-
ever, the reasoning behind this fact is still unknown. The
real data set application showed the general usability of
neural networks in real life situations. Neural networks
discovered different risk slopes for each genotype, which
also became obvious from the corresponding bootstrap
confidence intervals.
Neural networks do not use interaction terms. In our

application, they mainly needed one or two hidden neu-
rons if the environmental factor had an effect (risk models
by [14]) and they needed one hidden neuron if the locus
only had a masking effect and two hidden neurons if the
locus had an own main effect (risk models representing a
masking effect of the genetic factor). For logistic regres-
sion, the correct main effect models were mainly selected
for the genetic and the environmental model as best mod-
els based on BIC and full models were selected for the
additive and interaction model. Thus, the latter two risk
models cannot be distinguished from each other based
on the co-variables included. Logistic regression models
mainly needed an interaction term to model the under-
lying risk models representing a masking effect of the
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Figure 5 Graphical comparison of mean predictions. Risk models representing a masking effect of the genetic factor, high risk scenario,
n = 1, 000 + 1, 000. Graphical comparison of mean predictions 1

100

∑100
k=1 f̂

(k)(g, u′) for all u′ = 0, 0.1, 0.2, . . . , 100 and g = 0, 1, 2, where the rows
relate to the different theoretic risk models. Green lines refer to the theoretic risk model, blue lines to the mean predictions, and red lines to the
pointwise prediction intervals. DV = design variables.
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Figure 6 Graphical comparison of mean predictions. Risk models representing a masking effect of the genetic factor, low risk scenario,
n = 1, 000 + 1, 000 Graphical comparison of mean predictions 1

100

∑100
k=1 f̂

(k)(g, u′) for all u′ = 0, 0.1, 0.2, . . . , 100 and g = 0, 1, 2, where the rows
relate to the different theoretic risk models. Green lines refer to the theoretic risk model, blue lines to the mean predictions, and red lines to the
pointwise prediction intervals. DV = design variables.
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Table 3 Differences between theoretic and estimated penetrance functions (models representing amasking effect of the genetic factor)

High risk scenario Low risk scenario

Neural network Logistic regression Logistic regression (DV) Neural network Logistic regression Logistic regression (DV)

n = 1000 + 1000 n = 1000 + 1000

∑
gu′ Egu′

Model 1 38.63 211.62 105.83 41.07 195.15 87.57

Model 2 117.94 359.10 155.40 101.92 323.89 114.71

Model 3 40.67 253.01 85.51 43.15 258.19 65.87

Model 4 103.37 228.10 85.16 103.63 227.50 59.74

n = 500 + 500 n = 500 + 500

∑
gu′ Egu′

Model 1 54.58 219.39 136.26 70.40 207.97 140.74

Model 2 144.35 363.36 176.74 183.28 327.58 143.06

Model 3 60.98 261.86 110.93 66.25 278.61 114.68

Model 4 143.62 235.44 102.13 115.59 237.14 81.13

n = 200 + 200 n = 200 + 200

∑
gu′ Egu′

Model 1 126.56 252.88 251.70 192.47 244.17 225.63

Model 2 262.92 371.69 230.25 297.68 348.46 215.70

Model 3 139.27 324.55 215.12 141.28 328.64 191.61

Model 4 189.69 287.39 169.86 164.13 280.21 149.95

Sum of mean absolute differences between theoretic and estimated penetrance function for 100 case-control data sets in the low and high risk scenario for different sample sizes. Bold numbers mark the best model fit
comparing neural networks and logistic regression models. DV = design variables.
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Figure 7 Real data set application. Prediction of the neural network using the whole data set. Two lines per genotype result from the inclusion of
a binary confounding factor in the analysis. 138 cases and 1599 controls.

Figure 8 Real data set application, stratified analysis.Mean predictions of the neural network over 100 bootstrap replications (blue lines) and
95% bootstrap confidence intervals (red lines). n = 112 + 916 (cases+controls) for value 1 of the confounding factor and n = 26 + 683
(cases+controls) for value 2 of the confounding factor.
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genetic factor regardless of whether the genotype was
coded co-dominant or using design variables (data not
shown).
Logistic regression models belong to the class of gen-

eralized linear models and as such are limited in their
modeling capacity to linearly separable data. On the
contrary, neural networks can adapt to any piecewise
continuous function. Since linear and non-linear rela-
tionships can be modeled simultaneously, neural net-
works are a promising tool if little is known about the
exact relationship between co-variables and a response
variable or especially, if a non-linear relationship is
assumed.
In addition, we showed for simulated data assuming nei-

ther an association of the genetic nor an association of
the environmental factor that neural networks also have
a good model fit in this situation (see Figure 9 for sam-
ple size n = 1, 000+ 1, 000). Neural networks without any
hidden layer were selected for all but two data sets, thus,
being equivalent to logistic regression models including

both main effects. For only two data sets with sample size
n = 200 + 200, a neural network with one hidden neuron
was selected.
Thus, our results suggest that neural networks can be

a valuable approach already in the situation of 500 cases
and 500 controls. However, there are two main drawbacks
of neural networks. First, the computing time needed to
train them is very high. In our application, the analyses
for one situation (100 replications, six network topologies
each) sometimes took more than 30 hours. Second, neu-
ral networks are still considered as black-box approach
since both network topology and trained weights have no
direct interpretation. Thus, there is no established way
for model selection and parameter testing. One possibil-
ity to estimate the effect of a co-variable is provided by
the concept of generalized weights [20]. The aim of this
paper was to investigate the general modeling ability of
neural networks as a first step. Further research should
to be devoted to the missing interpretability of trained
neural networks.

Figure 9Mean prediction of the neural network. Risk model assumes no association. Mean prediction of the neural network 1
100

∑100
k=1 f̂

(k)(g, u′)
for all u′ = 0, 0.1, 0.2, . . . , 100 and g = 0, 1, 2. Green lines refer to the theoretic risk model, blue lines to the mean predictions, and red lines to the
pointwise prediction intervals. n = 1, 000 + 1, 000.
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Table 4 Differences between theoretic and estimated penetrance functions (sensitivity analysis: lowminor allele frequency)

High risk scenario Low risk scenario

Neural network Logistic regression Logistic regression (DV) Neural network Logistic regression Logistic regression (DV)

n = 1000 + 1000 n = 1000 + 1000

∑
gu′ Egu′

Genetic model 80.29 80.39 303.07∗ 87.65 209.74 249.96

Environmental model 79.60 278.32 277.18 78.18 170.94 170.94

Additive model 74.67 369.57 443.10 92.18 303.98 348.50

Interaction model 180.02 415.60 541.02∗ 191.77 327.44 481.62∗

∑
gu′ Egu′

Model 1 113.62 244.87 375.43∗ 179.23 226.03 355.59∗

Model 2 232.75 389.70 472.47∗ 318.57 346.57 460.08∗

Model 3 253.00 230.12 232.20 256.38 253.67 254.80

Model 4 133.91 126.27 97.92 138.28 132.11 93.04

Sum of mean absolute differences between theoretic and estimated penetrance function for 100 case-control data sets in the low and high risk scenario for different sample sizes. Bold numbers mark the best model fit
comparing neural networks and logistic regression models. DV = design variables. ∗Predictions were calculated for all models that do not have unspecified parameters due to empty cells.
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We assumed the environmental factor to be uniformly
distributed over the interval [0, 100]. In practice, bell-
shaped distributions for environmental factors might be
also of interest. Here, it can be expected that a higher sam-
ple size is necessary to enable the statistical method to
detect the true shape of the underlying risk function also
at the margins. Additionally, we assumed the minor allele
frequency to be 30%. In a sensitivity analysis, we repeated
the simulation study with a minor allele frequency of 5%
(see Table 4). Neural networks again outperformed logis-
tic regressionmodels using the riskmodels by Amato et al.
[14]. Using the risk models representing a masking effect
of the genetic factor, both, logistic regression models as
well as neural networks had problems to fit the data. Due
to very small cell frequencies or even empty cells, this
was especially true for risk models 3 and 4 where the
non-mutated allele masks the effect of the environmental
factor. Here, the prediction intervals of neural networks
did not even include the true risk model in any situa-
tion. Null models and main effect models only including
the genetic factor were often used for logistic regression
models neglecting the effect of the environmental factor.
For neural networks, topologies without hidden neuron
were mainly selected.

Conclusions
To the best of our knowledge, neural networks have not
been used for modeling gene-environment interactions
so far. In other contexts, MLPs were clearly superior to
logistic regression models [21,22]. Previously, we have
successfully employed neural networks for the analy-
sis of gene-gene interactions in simulation studies [10].
This paper shows that the advantages of neural net-
works are even more pronounced when modeling gene-
environment interactions with continuous environmental
factors.
In practice, neural networks can be applied in case-

control studies to investigate the common effect of two
genetic factors or one genetic and one environmen-
tal factor. Since the functional form of the model has
not to be specified in neural networks, it has neither
to be known whether the two involved factors indeed
have an effect on the disease nor whether an inter-
action between both factors is present. The prediction
of a neural network generates insight in the kind of
relationship between co-variables and disease, for exam-
ple, whether the underlying relationship is non-linear or
whether there are different relationships per genotype.
Thus, although there is still need for further research
regarding the interpretability of neural networks, neu-
ral networks are already a valuable statistical tool espe-
cially for exploratory analyses and/or when little is known
about the functional relationship of risk factors and
investigated disease.

Appendix
Artificial neural networks
The general idea of a multilayer perceptron (MLP)
is to approximate functional relationships between co-
variables and response variable(s). It consists of neurons
and synapses that are organized as a weighted directed
graph. The neurons are arranged in layers and subse-
quent layers are usually fully connected by synapses. Each
synapse is attached by a weight indicating the effect of this
synapse. A positive weight indicates an amplifying, a nega-
tive weight a repressing effect. Neural networks have to be
trained using a learning algorithm to adjust the synaptic
weights according to given data. The learning algorithm
minimizes the deviation of predicted output and given
response variable measured by an error function.
Data passes the MLP as signals. This process starts at

the input layer consisting of all co-variables and a con-
stant neuron and it stops at the output layer consisting of
the response variable(s). Hidden neurons can be included
between the input and output layer in several layers to
increase the modeling flexibility. These hidden layers are
not directly observable and cannot be controlled by data.
See Figure 10 for an MLP with one hidden layer consist-
ing of three hidden neurons that models the functional
relationship between the locus G and the environmental
factor U as co-variables and the case-control status Y as
response variable.
An MLP with one hidden layer is able to fit any piece-

wise continuous function [23]. Thus, we consider MLPs
with at most one hidden layer in this paper. An MLP con-
sisting of n+1 input neurons,m hidden neurons, and one
output neuron computes the following predicted output

μ(x) = σ

⎛
⎝w0 +

m∑
j=1

wj · σ

( n∑
i=0

wijxi

)⎞
⎠ ,

where w0, wj, and wij, i = 0, . . . , n, j = 1, . . . ,m, denote
the weights including intercepts, x= (x0, x1, . . . , xn)T the
vector of all co-variables including a constant neuron x0
and σ the activation function that maps the output of

Figure 10 Amultilayer perceptron. An MLP with one hidden layer
consisting of three hidden neurons.
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each neuron to a given range. MLPs are a direct exten-
sion of generalized linear models (GLM, [24]) and anMLP
without hidden layer is algebraically equivalent to a gener-
alized linear model with σ as inverse link function. In this
case, trained weights and estimated regression coefficients
coincide.
To train neural networks according to the case-control

data sets, resilient backpropagation [25] as learning algo-
rithm with cross entropy as error function and logistic
function as activation function is used.
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