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Abstract

Background: Although many experiments have measurements on multiple traits, most studies performed the
analysis of mapping of quantitative trait loci (QTL) for each trait separately using single trait analysis. Single trait
analysis does not take advantage of possible genetic and environmental correlations between traits. In this paper, we
propose a novel statistical method for multiple trait multiple interval mapping (MTMIM) of QTL for inbred line crosses.
We also develop a novel score-based method for estimating genome-wide significance level of putative QTL effects
suitable for the MTMIM model. The MTMIM method is implemented in the freely available and widely used Windows
QTL Cartographer software.

Results: Throughout the paper, we provide compelling empirical evidences that: (1) the score-based threshold
maintains proper type I error rate and tends to keep false discovery rate within an acceptable level; (2) the MTMIM
method can deliver better parameter estimates and power than single trait multiple interval mapping method; (3) an
analysis of Drosophila dataset illustrates how the MTMIM method can better extract information from datasets with
measurements in multiple traits.

Conclusions: The MTMIM method represents a convenient statistical framework to test hypotheses of pleiotropic
QTL versus closely linked nonpleiotropic QTL, QTL by environment interaction, and to estimate the total genotypic
variance-covariance matrix between traits and to decompose it in terms of QTL-specific variance-covariance matrices,
therefore, providing more details on the genetic architecture of complex traits.

Keywords: Genetic architecture, Genotypic variance-covariance, Pleiotropy, Power, QTL by environment interaction,
Score statistics, Statistical genetics

Background
Many traits that are important to agriculture, human
health and evolutionary biology are quantitative in nature,
influenced by multiple genes. Efficient and robust iden-
tification and mapping onto genomic positions of those
genes is a very important goal in quantitative genetics.
The availability of genome-wide molecular markers pro-
vides the means for us to locate and map those quantita-
tive trait loci (QTL) in a systematic way. Since the publi-
cation of interval mapping method for QTL genome-wide
scan [1], many statistical methods have been proposed
and developed to map multiple QTL with or without epis-
tasis in single trait in a variety of populations [2], e.g.
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composite interval mapping (CIM) [3,4], least squares
[5,6], multiple interval mapping (MIM) [7], and Bayesian
interval mapping [8,9].
Although single trait QTL mapping methods have been

applied in many studies to estimate the genetic basis
and architecture of complex traits, these methods did
not utilize the information of genetic and environmental
correlations between traits, and are not ideal for data anal-
ysis. Multiple trait analysis however can take these into
account and also can formally test a number of hypothe-
ses concerning the nature of genetic correlations, such
as pleiotropy vs. close linkage and genotype by environ-
ment interaction [10]. Moreover, multiple trait analysis
can allow the estimation of genetic variance-covariance
matrix between traits and its decomposition in terms of
individual QTL ([11,12] pages 109-110).
Multiple trait CIM [10], least squares [13] and Bayesian

[14,15] methods have been available for multiple trait
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QTL analysis. However, these methods have not been tar-
geted to multiple QTL for multiple traits, i.e. the whole
QTL that contribute to the genetic variances and covari-
ances. Also these methods lack appropriate criteria for
assessing genome-wide significance level of QTL effects.
The multiple trait CIM method uses a genome-wide
threshold based on either asymptotic approximation of
the log-likelihood ratio test (LRT) or permutation [16].
Nevertheless, when applied to multiple QTL models, the
permutation test has some limitations in testing some tar-
geted hypotheses. In this study, we have invested efforts
in developing: (1) a statistical method for multiple trait
multiple interval mapping (MTMIM) of QTL from inbred
line crosses, and (2) a score-based threshold for assessing
significance level of QTL that is suitable for MTMIM.
In what follows, we motivate MTMIM modeling from

a practical point of view, describe the MTMIM statisti-
cal model, build the likelihood function, derive parameter
estimators, extend the score-based threshold method [17]
to the MTMIM model, propose a forward selection strat-
egy to build an MTMIM model using the score-based
threshold as a criterion to assess the significance level of
QTL effects, and propose amodel optimization procedure
to fine tune a fitted MTMIM model. We then frame the
hypothesis testing of pleiotropic versus closely linked non-
pleiotropic QTL, and QTL by environment interaction via
the MTMIM model. Next, we implement the MTMIM
model and score-based threshold method and evaluate
them with several simulated datasets. More specifically,
we evaluate type I error, model fitting, and the efficiency of
the test of pleiotropic versus closely linked nonpleiotropic
QTL delivered by the MTMIM model. Lastly, we demon-
strate the usefulness of the MTMIM model by analyzing
data from an experiment with fruit flies Drosophila and
draw our final considerations.
We organize this paper in a manner such that a reader

less interested in the mathematical aspect of the model-
ing could skip the analytical derivations while being able
to understand the main points regarding multiple trait
multiple interval mapping of QTL.

Amotivating example
We use data from a cross between fruit flies Drosophila
simulans and D. mauritiana to motivate MTMIM mod-
eling. Detailed information about the experiment can be
found in [18,19]. Briefly, males from an inbred line of D.
mauritiana (Rob A JJ) were crossed to females from an
inbred line of D. simulans (13w JJ) to produce F1 hybrids.
F1 females were then crossed to each parental species to
produce two backcross populations of males, mauritiana
backcross (BM) and simulans backcross (BS). These two
crosses were repeated onemore time to produce two inde-
pendent populations from each backcross: BS1 (sample
size n=186), BS2 (n=288), BM1 (n=192) and BM2 (n=299).

Males from BM1 and BS1 were scored at 45 marker loci
for which the two parental lines were homozygous for dif-
ferent alleles. Males from BM2 and BS2 were scored at 42
marker loci out of the same 45 marker loci that BM1 and
BS1 were scored. The phenotypic values of each subject
are: (1) average over both sides (left and right) of the first
principal component of 100 Fourier coefficients of poste-
rior lobe (PC1); (2) area of the posterior lobe (AREA); (3)
average over both sides of the first principal component
of 100 Fourier coefficients of the rescaled posterior lobe,
rescaled so that it has unit area (ADJPC1); and (4) length
of the foreleg tibia (TIBIA).While PC1 provides ameasure
of both size and shape of the posterior lobe, AREA and
ADJPC1, on the other hand, provide measures of size and
shape somewhat separately. TIBIA provides a measure of
overall body size. The genotypic and phenotypic data are
freely available at [20].
All variables related to the posterior lobe (PC1, ADJPC1

and AREA) were reported to be highly correlated between
themselves in both BM1 and BS1, correlation larger
than 0.82 [18]. Therefore, suggesting the presence of
pleiotropic and/or closely linked QTL affecting size and
shape. However, all variables related to the posterior lobe
were weakly correlated with TIBIA. Because posterior
lobe shape and size possibly share most of their devel-
opmental process components, these two traits could
be tightly related mostly due to pleiotropic effects [18].
Results of composite interval mapping analysis of AREA,
PC1, and ADJPC1 were very similar to each other, except
for the presence of a QTL affecting both AREA and PC1
but not ADJPC1 in the interval between marker loci Ddc
and eve. Therefore, this QTL affects size but not shape of
the posterior lobe [18]. In this article, we use only PC1
and ADJPC1 traits and the BM1 and BM2 samples. AREA
was not analyzed because it is highly correlated (0.99) with
PC1 [18], and TIBIA was not analyzed because accord-
ing to Liu and coauthors [18] it has small correlation with
AREA and in general TIBIA is not an important factor
governing the variability of posterior lobe shape. Besides,
on our single trait analysis no QTL was found for TIBIA.
BS1 and BS2 samples were not used for analysis because
the main goal of this article is to present a novel method
for QTL mapping, rather than to investigate details of the
inheritance of posterior lobe shape.
We carried out MIM analysis of PC1 and ADJPC1 in the

pooled samples of BM1 and BM2 (n=192+299), hearafter
referred as BM data, and we found statistical evidence for
seventeen genomic regions harboring QTL (Figure 1), of
which twelve genomic regions showed statistical evidence
of QTL affecting both traits (perhaps pleiotropic QTL),
and five regions showed statistical evidence of QTL affect-
ing either one of the traits (regions 3, 6, 9 , 12 and 15).
We want to mention that in all these five regions, expect
region 6, even for the trait for which the effect is not
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Figure 1 LRT profile of separate MIM analyses of PC1 and ADJPC1, and MTMIM analysis of PC1 and ADJPC1 (Joint) for the BM data. LRT
profile of separate MIM analyses of PC1 and ADJPC1, and MTMIM analysis of PC1 and ADJPC1 (Joint) for the BM data with 10% genome-wide
significance level. Tick marks in the horizontal axis represent positions of genetic markers on chromosomes X, 2 and 3 (from left to right). Bold
triagles bellow the horizontal axis indicate positions of mapped QTL in separate and joint analyses. Map distances are expressed in centiMorgans
according to Haldane’s mapping function.

statistically significant there is still some evidence of weak
putative QTL effect, as shown in the LRT profiles from
the MIM analysis of PC1 and ADJPC1. Region 6, which
includes marker lociDdc and eve, was previously reported
not to harbor any putative QTL with significant effect on
ADJPC1 [18]. Overall, the inferred genomic regions har-
boring putative QTL in our MIM analysis are in strong
agreement with previous inferred QTL in [18,19].
Positions of mapped QTL in regions 4, 5, 7, 10, 11, 13,

14, 16 and 17 (Figure 1) did not coincide in theMIMmod-
els of PC1 and ADJPC1. Therefore, one could hypothesize
the existence of two closely linked nonpleiotropic QTL
at each of these regions. In order to test the hypotheses
of pleiotropic versus closely linked nonpleiotropic QTL
at each one of these regions, a joint analysis of PC1 and
ADJPC1 is needed. The joint analysis also allows us to par-
tition the genotypic variance-covariance matrix between
traits PC1 andADJPC1 in terms of QTL-specific variance-
covariance matrices. Thus in this motivating example,
the main reasons to use the MTMIM model are: (1) to
test pleiotropic versus closely linked nonpleiotropic QTL,
and (2) to estimate the contribution of each QTL to the
total genotypic variance-covariance matrix between traits
PC1 and ADJPC1. A third reason for the MTMIM mod-
eling, though not applicable to this specific motivating

data, is the possibility to test the hypothesis of QTL by
environment interaction [10].

Results and discussion
Type I error
The results show clearly an excellent agreement between
estimated type I error and nominal level in the range of 1
to 15% (Figure 2).

Model size (results not shown)
The number of QTL in the MTMIM model of scenario SI
was much closer to the simulated parameter (five QTL)
when compared to scenario SII, for any genome-wide sig-
nificance level. While a QTL in both scenarios has to
exceed very similar thresholds to be declared significant
in the forward selection, the number of traits affected by
a QTL is rather different between the two scenarios. In
scenario SI all QTL have effect on all traits, while in sce-
nario SII a QTL may have effect either on one, two or
three traits. Therefore, model overparametrization makes
the detection of QTL with effects on one and two traits
in scenario SII more difficult. Lastly, our results show
that in general the number of mapped QTL is closer to
the simulated (five QTL) in the MTMIM than in the
MIM model.
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Figure 2 Estimated and expected genome-wide type I error.
Estimated and expected type I error, in percentage, of LRT when
using the genome-wide score-based threshold to assess significance
level of putative QTL in genome-wide scan of 1000 replicates.

FDR
FDR is a very import measure of quality control in statis-
tical analysis [21]. However, FDR is not feasibly estimated
in analysis of data from traditional QTL experiments,
due to the low discovery rate of putative QTL in such
experiments. Nevertheless, in simulation experiments we
are able to estimate FDR because we can replicate the

experiment many times. We estimate FDR (Table 1) when
varying the genome-wide significance levels (1, 5, and
10%) and LOD-d support interval levels (d=1, 1.5 and
2). While FDR is expected to increase with increments
in genome-wide significance level, our results show that
for a fixed LOD-d level FDR changed little with incre-
ments in genome-wide significance levels, in both MIM
and MTMIM models. Regarding changes in LOD-d level,
our results show that FDR and LOD-d are negatively cor-
related, as expected. Higher levels of LOD-d ultimately
translate into wider LOD-d support intervals, therefore,
increasing chances of capturing the true position of QTL.
FDR in the MIM and MTMIM models were very simi-
lar, except in the MIM model of trait T3 of scenario SII,
which was simulated with only one QTL of small effect
(heritability of 5%).

Power
Results of power for the MIM and MTMIM models of
all three scenarios clearly show a remarkable increment
in power as genome-wide significance levels grow less
stringent, for any LOD-d level (Table 2 - results shown
for LOD-1.5 level only). Based on these results as well
as on those that showed almost constance of FDR across
genome-wide significance levels, we, hereafter, show and
discuss results of 10% genome-wide significance level
only.
Results of power (10% genome-wide significance level

and LOD-1.5) to identify QTL in the MTMIM model
show that QTL affecting more traits have higher chances
of being identified in the forward selection. In scenario
SI, which is the most favorable among all three scenarios,
all QTL have effects on all traits. Therefore, all QTL were

Table 1 Estimates of false discovery rate

Analysis SI SII SIII

(trait) LOD-d 1% 5% 10% 1% 5% 10% 1% 5% 10%

MIM 1.0 9.1 9.1 9.9 8.9 9.2 10.0 7.2 7.9 8.7

(T1) 1.5 3.9 4.4 5.3 3.7 4.3 5.3 2.8 3.5 4.1

2.0 2.0 2.7 3.6 1.8 2.2 3.0 1.4 1.9 2.3

MIM 1.0 8.0 8.7 8.9 7.9 8.6 9.6 6.2 7.0 7.8

(T2) 1.5 3.9 4.2 4.7 3.2 4.1 5.4 3.1 3.7 4.5

2.0 2.0 2.3 3.0 1.2 2.2 3.6 1.2 2.1 2.8

MIM 1.0 10.7 9.6 9.9 12.4 13.8 18.0 – – –

(T3) 1.5 3.8 4.2 4.9 7.5 9.0 11.4 – – –

2.0 1.8 2.3 3.1 4.8 6.5 8.5 – – –

MTMIM 1.0 4.6 5.4 6.9 8.5 9.2 10.0 5.6 7.8 8.4

1.5 1.9 2.7 4.0 3.3 4.1 4.9 2.9 5.2 5.7

2.0 1.1 1.9 3.3 1.4 2.4 3.2 2.2 4.1 4.5

Estimates of FDR (%) in the MIM and MTMIMmodels as observed in scenarios SI, SII and SIII across genome-wide significance levels (1, 5 and 10%) and LOD-d
support intervals.
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Table 2 Power of QTL identification

Analysis SI SII SIII

(trait) QTL 1% 5% 10% 1% 5% 10% 1% 5% 10%

Q1 66.8 82.0 86.6 65.8 80.2 84.2 67.6 77.2 79.6

MIM Q2 63.6 81.8 87.6 59.8 78.2 81.8 – – –

(T1) Q3 67.4 81.6 87.2 63.2 81.2 85.8 75.2 87.0 90.2

Q4 66.4 81.8 87.0 63.4 78.4 83.4 – – –

Q5 66.8 83.6 86.4 65.6 82.0 87.2 70.2 78.4 81.6

Q1 64.8 80.0 88.2 – – – – – –

MIM Q2 64.8 80.0 84.8 74.4 85.4 89.8 64.2 74.2 76.4

(T2) Q3 65.6 79.8 83.4 76.4 86.0 90.0 76.4 88.4 91.2

Q4 66.0 82.4 87.0 77.4 87.6 92.0 74.6 86.0 88.0

Q5 68.4 83.0 88.8 – – – – – –

Q1 65.6 81.4 86.0 – – – – – –

MIM Q2 63.2 80.0 86.6 – – – – – –

(T3) Q3 65.6 80.4 84.0 53.4 70.6 77.8 – – –

Q4 65.4 80.8 87.8 – – – – – –

Q5 65.4 83.0 88.6 – – – – – –

Q1 98.8 99.4 99.4 53.8 71.0 78.2 65.4 65.2 70.0

MTMIM Q2 98.0 98.0 98.2 89.0 94.4 95.6 64.6 66.6 68.0

Q3 97.0 97.4 97.4 96.6 97.0 97.2 94.4 96.4 97.0

Q4 98.4 98.8 99.0 87.6 93.2 94.6 74.8 77.4 78.2

Q5 98.6 98.6 98.6 57.2 71.8 78.4 65.6 66.2 68.0

Power (%) of QTL identification in the MIM and MTMIMmodels as observed in scenarios SI, SII and SIII across genome-wide significance levels (1, 5, and 10%) and
LOD-1.5 support interval.

correctly identified very often, power ≥ 97% (Table 2).
In scenario SII, Q1 has effect on one trait only, Q2 on
two traits, and Q3 on three traits. Power increases from
Q1 (78.2%) to Q3 (97.2%) in the MTMIM model. Results
also show that the MTMIM model can have lower power
to identify QTL that has effects on only a small sub-
set of traits when compared to the MIM model, due to
greater genome-wide threshold in the MTMIM model.
For instance, MTMIM model has less power (78.2%) than
MIM model (84.2%) to identify Q1, which affects only
T1 (same pattern is seen for Q5). However, as the subset
of traits affected by a QTL increases, power of MTMIM
model overpasses power of MIM model, even when some
traits are not affected by that QTL. For instance, Q2 affects
T1 and T2, but not T3, nevertheless, MTMIM model
identifies Q2 (95.2%) more frequently than MIM model
(81.8%) (same pattern carries over to Q4). The incre-
ment in power as the number of traits affected by a QTL
increases was also observed in scenario SIII.
In scenarios SII and SIII, we decomposed power of QTL

identification (10% genome-wide significance level and
LOD-1.5) into three nonoverlapping subsets (Table 3). In
scenario SII, there is a subset of replicates for which a

QTL affects T1 only, another subset for which a QTL
affects T1 and T2 simultaneously, and finally a subset of
replicates for which a QTL affects all traits (T1, T2, and
T3) simultaneously. In scenario SIII, there is a subset of
replicates for which a QTL affects T1 only, another sub-
set for which a QTL effects T2 only, and finally a subset
of replicates for which a QTL affects T1 and T2 simul-
taneously. These decompositions of power allow us to
decompose the total power in the MTMIM model into
QTL-trait power, therefore enabling us tomeasure the fre-
quency in which a nonpleiotropic QTL is mapped as a
pleiotropic one. In scenario SII, where all QTL are inde-
pendent, most of power to identify a QTL is concentrated
on the simulated trait affected by that QTL. For instance,
in the LOD-1.5 level, 66.4 out of 78.2% power (0.85 ratio)
to identify Q1 is due to T1 alone, which is the only trait in
which Q1 has effect on. In scenario SIII, because linkage
between QTL pairs Q1 and Q2, and Q4 and Q5, the con-
tribution of simulated traits affected by these QTL to their
overall power is lower than in scenario SII, though the
simulated traits still account for a large amount of power.
For example, 36.8 out of 70% power (0.53 ratio) to iden-
tify Q1 is due to T1 alone, which is the only trait in which
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Table 3 Decomposition of total power into QTL-trait power

Scenario Subsets

(1,0,0) (1,1,0) (1,1,1)

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

SII Ptrait 66.4 1.2 0.0 0.8 64.0 4.2 86.4 5.0 87.2 8.2 0.8 6.6 89.0 5.8 0.2

ratio 0.85 0.01 0.00 0.01 0.82 0.05 0.90 0.05 0.92 0.10 0.01 0.07 0.92 0.06 0.00

(1,0) (0,1) (1,1)

SIII Ptrait 36.8 2.8 3.4 1.0 46.0 2.8 36.2 4.0 49.6 1.2 30.4 29.0 89.6 27.6 20.8

ratio 0.53 0.04 0.04 0.01 0.68 0.04 0.53 0.04 0.63 0.02 0.43 0.43 0.92 0.35 0.31

Decomposition of total power (Ptotal in Table 2) from scenarios SII and SIII into QTL-trait power (Ptrait ) with 10% genome-wide significance level and LOD-1.5 support
interval. In SII, subsets (1, 0, 0), (1, 1, 0) and (1, 1, 1) contain replicates with QTL affecting T1 only, T1 and T2, and T1, T2 and T3, respectively. In SIII, subsets (1, 0), (0, 1)
and (1, 1) contain replicates with QTL affecting T1 only, T2 only, and T1 and T2, respectively. The QTL-trait to the overall power ratio (ratio=Ptrait/Ptotal) is also presented.

Q1 has effect on, and 46 out 68% (0.68 ratio) power to
identify Q5 is due to T1 alone, which is the only trait in
which Q5 has effect on. Notice that in scenario SIII Q1
was mapped as a pleiotropic QTL (subset (1,1) in Table 3)
more often than Q5, i.e. 30.4 out 70% (0.43 ratio) and 20.8
out of 68% (0.31 ratio), respectively. Identification of Q1
as being pleiotropic more often than Q5 is mainly because
the distance between Q1 and Q2 is shorter than the dis-
tance betweenQ4 andQ5, 10 and 15 cM, respectively. The
smaller the distance between two nonpleiotropic QTL, the
harder is to separate them in the MTMIM model. More-
over, separation of nonpleiotropic QTL is also affected by
the distance between genetic markers. Linkage maps with
markers closely spaced are expected to help in separating

nonpleiotropic QTL. On the other hand, separation of
nonpleiotropic QTL in linkage maps with sparse markers,
such as the linkage map used in our simulations, is a much
harder task.

Mean position of QTL
Our simulations show that mean estimates of QTL posi-
tion in the MIM and MTMIM models have no qualitative
difference and are in close agreement with the simulated
parameters (Table 4). There is, though, a trend of smaller
variation (measured in terms of standard error of mean)
in the MTMIM than in the MIM model. Also, in the
MTMIM model there is a trend of smaller variation for
those QTL with effects on a larger subset of traits.

Table 4 Means of QTL position, LOD-d support interval coverage and length

Position Coverage Length

Analysis (Trait) QTL Parameter Estimate 1 1.5 2 1 1.5 2

MIM (T1) Q1 23 [1] 23.7 (0.31) 91.4 95.7 99.3 21.7 (0.42) 29.4 (0.55) 37.3 (0.66)

Q2 15 [2] 14.6 (0.31) 92.2 95.8 98.1 21.1 (0.38) 27.7 (0.55) 34.9 (0.73)

Q3 45 [3] 45.4 (0.38) 88.8 95.8 98.2 23.7 (0.49) 33.0 (0.67) 41.9 (0.81)

Q4 67 [5] 66.9 (0.29) 92.2 95.8 98.4 20.2 (0.35) 26.7 (0.51) 35.4 (0.79)

Q5 53 [6] 52.9 (0.33) 93.4 98.8 99.6 21.3 (0.43) 28.7 (0.56) 36.4 (0.68)

MIM (T2) Q2 15 [2] 14.7 (0.30) 92.6 97.4 98.7 21.0 (0.88) 27.9 (0.55) 34.1 (0.67)

Q3 45 [3] 45.2 (0.35) 90.6 95.9 98.3 22.3 (0.38) 29.8 (0.56) 39.1 (0.74)

Q4 67 [5] 67.0 (0.27) 95.3 98.1 99.6 19.6 (0.33) 26.1 (0.49) 32.6 (0.67)

MIM (T3) Q3 45 [3] 44.7 (0.45) 88.8 94.6 96.8 25.3 (0.55) 35.3 (0.74) 46.2 (0.88)

MTMIM Q1 23 [1] 23.5 (0.32) 89.5 95.6 97.6 20.0 (0.38) 26.4 (0.47) 33.1 (0.56)

Q2 15 [2] 14.4 (0.22) 93.1 97.8 98.9 16.2 (0.25) 21.0 (0.33) 25.3 (0.39)

Q3 45 [3] 44.9 (0.18) 92.8 97.2 99.4 13.1 (0.22) 17.2 (0.28) 20.7 (0.33)

Q4 67 [5] 67.6 (0.19) 94.2 97.5 98.9 15.6 (0.23) 20.3 (0.31) 24.2 (0.39)

Q5 53 [6] 52.8 (0.37) 89.5 97.8 99.8 19.7 (0.41) 26.1 (0.51) 32.6 (0.60)

Means of QTL position (cM), LOD-d support interval coverage (%) and length (cM) in the MIM and MTMIMmodels as observed in scenario SII across LOD-d support
intervals (1, 1.5 and 2) and 10% genome-wide significance level. Position estimates shown here are for the LOD-1.5 support interval only. The chromosome in which
each QTL is located is shown between square brackets. Standard errors of means are between parentheses.
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Coverage and length of LOD-d support interval
In Table 4, we show the results of coverage and length
of LOD-d support interval, and as can be seen, coverage
for any LOD-d level are not remarkably different between
the MIM and MTMIM models. However, on average the
estimates of LOD-d support interval length were always
larger in the MIM model. Differences in length are only
marginal for QTL with effects on only a small subset of
traits, but there are considerable differences for thoseQTL
with effects on larger subset of traits. For instance, in
scenario SII Q1 affects one trait only and it has LOD-
1.5 support interval mean length of 29.4 cM in the MIM
and 26.4 cM in the MTMIM model. On the other hand,
Q2 affects two traits and it has LOD-1.5 support interval
mean length of 27.7 (T1) and 27.9 (T2) in theMIMmodels
and 21.0 cM in the MTMIM model. An interesting result
is that the LOD-1.5 support interval produced confidence
intervals with approximately 95% coverage in both MIM
and MTMIMmodels.

Mean effect of QTL
The average of effects of QTL in scenario SI (Table 5)
shows that estimates of QTL effects in theMTMIMmodel
are overall in close agreement with the simulated parame-
ters, mostly because of high power in this scenario. Results
of scenario SII demonstrate the robustness of theMTMIM
model in estimating the effects of QTL, whereby QTL
without effects on certain traits have estimates near zero,
while QTL with nonzero effects have estimates with low

bias. However, the robustness of the MTMIM to estimate
QTL effect with low bias is less evident in scenario SIII.
For instance, notice that while Q2 has zero effect on T1,
its effect estimate is not close to zero. In order to under-
stand why this bias is present in Q2 of scenario SIII, we
need to understand how we matched a mapped to a sim-
ulated QTL. In the forward selection we searched and
mapped pleiotropic QTL, then each mapped pleiotropic
QTL was tested against the alternative hypothesis of
closely linked nonpleiotropic QTL at the neighboring
region of the mapped pleiotropic QTL. If the pleiotropic
hypothesis was not rejected, we assumed the QTL was
pleiotropic. Then, in order to apply our summary statis-
tics, each mapped pleiotropic QTL was matched to its
closest (smallest distance) simulatedQTL. It could happen
that a mapped pleiotropic QTL in the neighboring region
of simulated Q1 and Q2 be matched to Q2, even though
the major effect of the mapped pleiotropic QTL comes
from Q1. Notice that when the previous situation hap-
pens, we mistakenly assign the effect of Q1 (which affects
only T1) to Q2 (which presumably would not affect T1),
therefore, producing biased estimated effect of Q2 on T1.
The same explanation of “bias” carries over to Q4 (T1),
Q1 (T2) and Q5 (T2) in scenario SIII. We quoted bias to
emphasize that the bias observed in scenario SIII is not
due to the MTMIM estimation per se, but rather due to
our lack of ability to separate closely linked nonpleiotropic
QTL or due to our criterion tomatchmapped to simulated
QTL.

Table 5 Mean effect of QTL

SI SII SIII

Trait QTL Parameter MIM MTMIM MIM MTMIM MIM MTMIM

T1 Q1 0.52 0.57 (0.006) 0.51 (0.007) 0.56 (0.005) 0.56 (0.005) 0.57 (0.006) 0.56 (0.011)

Q2 0.52 0.56 (0.006) 0.51 (0.006) 0.56 (0.006) 0.52 (0.007) – 0.20 (0.019)

Q3 0.52 0.56 (0.006) 0.52 (0.006) 0.54 (0.005) 0.51 (0.007) 0.57 (0.005) 0.52 (0.008)

Q4 0.52 0.55 (0.006) 0.51 (0.006) 0.55 (0.006) 0.52 (0.006) – 0.13 (0.015)

Q5 0.52 0.56 (0.006) 0.52 (0.007) 0.55 (0.006) 0.56 (0.005) 0.58 (0.005) 0.58 (0.013)

T2 Q1 0.52 0.55 (0.007) 0.50 (0.007) – 0.00 (0.004) – 0.23 (0.016)

Q2 0.52 0.56 (0.005) 0.51 (0.006) 0.57 (0.006) 0.54 (0.007) 0.58 (0.006) 0.55 (0.009)

Q3 0.52 0.56 (0.005) 0.52 (0.006) 0.57 (0.005) 0.54 (0.007) 0.57 (0.005) 0.54 (0.008)

Q4 0.52 0.55 (0.005) 0.50 (0.006) 0.57 (0.005) 0.55 (0.006) 0.58 (0.006) 0.60 (0.008)

Q5 0.52 0.55 (0.006) 0.52 (0.007) – 0.00 (0.005) – 0.09 (0.015)

T3 Q1 0.52 0.56 (0.005) 0.52 (0.006) – 0.00 (0.005) – –

Q2 0.52 0.55 (0.005) 0.51 (0.007) – 0.01 (0.004) – –

Q3 0.52 0.55 (0.005) 0.51 (0.006) 0.51 (0.006) 0.44 (0.008) – –

Q4 0.52 0.55 (0.005) 0.52 (0.007) – 0.00 (0.003) – –

Q5 0.52 0.56 (0.006) 0.53 (0.008) – 0.00 (0.004) – –

Mean effect of QTL in the MIM and MTMIMmodels as observed in scenarios SI, SII and SIII with 10% genome-wide significance level and LOD-1.5 support interval.
Standard errors of means are between parentheses.
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The effects of all QTL were overestimated in the MIM
model. This phenomena is expected due to estimation
conditional on detection, the so-called “Beavis effect” [22].
A qualitative comparison of results show that overall the
estimation of QTL effects in the MTMIM model are less
biased than in the MIM model.

Pleiotropic versus closely linked nonpleiotropic QTL
In scenario SIII, after selecting an MTMIM model in
the forward selection, each mapped pleiotropic QTL
was tested against the alternative of closely linked non-
pleiotropic QTL. In the bivariate model, we performed a
two-dimensional search for positions of putative closely
linked nonpleiotropic QTL in the neighborhood of the
position of each pleiotropic QTL, as suggested in [10].
The model with nonpleiotropic QTL that showed high-
est likelihood within the two-dimensional search region
was selected and tested against the model with pleiotropic
QTL. We compared two criteria for model selection, the
AICc and LRT. The critical value for the LRT at 5% signif-
icance level was obtained from a chi-squared probability
distribution with one degree of freedom.
Because Q3 was simulated as being pleiotropic, rejec-

tion of pleiotropic hypothesis for Q3 provides a measure
of type I error. On the other hand, Q1 and Q2, and
Q4 and Q5 were simulated as pairs of closely linked
nonpleiotropic QTL. Therefore, rejection of pleiotropic
hypothesis at these QTL provides a measure of power.
Under our simulation setting, the LRT performed better
than the AICc. The LRT was able to keep the best balance
between type I error and power. Estimated frequency of
rejecting pleiotropy for Q3 (4%) using the LRT agrees very
well with the expected 5% nominal error rate, and esti-
mated frequency of rejecting pleiotropy for Q1 (38%) and
Q2 (36%) are satisfactory high, taking into account that Q1
and Q2 are considerably close to each other in a linkage
map with markers considerably distant from each other
(10 cM from marker-to-marker). On the other hand, the
AICc criterion showed higher power for Q1 (45%) and Q2
(45%), but with a cost of high type I error for Q3 (15%).
Moreover, because Q4 and Q5 are 15 cM apart from each
other, the frequency of rejecting pleiotropy using LRT for
these two QTL (41 and 48%, respectively) is higher than
for Q1 (38%) and Q2 (36%), which are 10 cM apart from
each other.

Motivating example revisited
Motivated by the fact that the joint analysis of PC1 and
ADJPC1 in the Drosophila dataset could provide addi-
tional information to distinguish between genetic effects
of QTL on size and shape of posterior lobe, we then
analyzed these two traits with the MTMIM model. Such
additional information are: (1) testing pleiotropic versus
closely linked nonpleiotropic QTL, and (2) estimating

the contribution of each QTL in the fitted model to the
genotypic variance-covariance matrix between PC1 and
ADJPC1. In what follows, we show results of the MIM
andMTMIMmodel of the pooled samples from BM1 and
BM2 (n=192+299), the BM data. We also take advantage
of this dataset to test the GEM-NR algorithm formaximiz-
ing the likelihood function under theMTMIMmodel with
many QTL. Using data from a genetic experiment would
providemore realistic comparisons between the GEM-NR
and ECM algorithms than a simulated dataset would do.
The LRT profiles of genome-wide scan in the BM

data (Figure 1) shows that the MTMIM model pro-
duced smaller values of LRT than the MIM model for
some genomic positions, therefore, seemingly violating
the expectation that the MTMIM model would produce
greater LRT values than the nested MIM models [10].
Nevertheless, this violation is easily explained because not
all positions of putative QTL in the MIM and MTMIM
models coincide. Therefore, the MIM models are not
nested within the MTMIM model shown here. Seventeen
regions in the genome showed statistical evidence of puta-
tive QTL in the MTMIM model with 10% genome-wide
significance level (Figure 1 and Table 6).
MIM models of PC1 and ADJPC1 all together showed

statistical evidence of twelve genomic regions with statis-
tical significant QTL affecting both traits, and five regions
with statistically significant QTL affecting either one of
the traits (regions 3, 6, 9 , 12 and 15 shown in Figure 1 and
Table 6). MTMIMmodel mapped these five regions either
exactly or very close to their respective estimated posi-
tions in the MIM models. Moreover, the estimated effects
of these five regions in the MTMIM model showed small
discrepancy from those estimates in the MIM models
(Table 6). Nevertheless, empirical results from our simu-
lations suggest that both estimates of positions and effects
of QTL in the MTMIM model are more accurate than in
the MIM models.
Positions of QTL in regions 4, 5, 7, 10, 11, 13, 14, 16

and 17 (Figure 1 and Table 6) did not coincide with those
in the MIM models of PC1 and ADJPC1. Therefore, one
could hypothesize the existence of two closely linked non-
pleiotropic QTL at each of these regions. We tested the
hypothesis of pleiotropic QTL versus closely linked non-
pleiotropic QTL at each of these regions, and on the basis
of the data available the null hypothesis of pleiotropic
QTL could not be rejected for any region. Thus, since
PC1 contains attributes of both shape and size of posterior
lobe, whereas ADJPC1 contains attributes of size only, the
available data provides strong evidence that the genetic
mechanisms controlling shape and size of posterior lobe
are highly similar.
Partition of the phenotypic variance-covariance matrix

between PC1 and ADJPC1 in terms of their environ-
mental and genotypic components, as estimated in the
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Table 6 Estimates of QTL position andmain effect on PC1 and ADJPC1 of BM data

MIM MTMIM (GEM-NR) MTMIM (ECM)

PC1 ADJPC1 (PC1 and ADJPC1) (PC1 and ADJPC1)

QTL p̂a β̂1 p̂ β̂2 p̂ β̂1 β̂2 β̂1 β̂2

Chromosome X

1 1 0.0020 1 0.0165 1 0.0021 0.0175 0.0021 0.0175

2 20 0.0018 20 0.0284 20 0.0017 0.0275 0.0017 0.0275

Chromosome 2

3 – – 1 0.0304 1 0.0007 0.0293 0.0007 0.0293

4 14 0.0018 17 0.0215 17 0.0018 0.0220 0.0018 0.0220

5 26 0.0017 30 0.0141 29 0.0012 0.0146 0.0011 0.0146

6 71 0.0016 – – 70 0.0017 -0.0048ns 0.0017 -0.0048ns

7 111 0.0009 116 0.0147 116 0.0011 0.0176 0.0011 0.0177

8 144 0.0012 144 0.0091 144 0.0011 0.0082 0.0011 0.0082

Chromosome 3

9 5 0.0013 – – 4 0.0011 0.0107 0.0011 0.0107

10 17 0.0022 16 0.0503 17 0.0022 0.0427 0.0022 0.0426

11 48 0.0033 44 0.0279 45 0.0027 0.0253 0.0027 0.0254

12 – – 54 0.0235 54 0.0007ns 0.0255 0.0007 0.0254

13 82 0.0033 83 0.0391 83 0.0034 0.0394 0.0034 0.0394

14 112 0.0009 116 0.0324 115 0.0009 0.0257 0.0009 0.0257

15 129 0.0015 – – 128 0.0012 0.0094ns 0.0012 0.0094ns

16 147 0.0007 146 0.0116 145 0.0009 0.0092 0.0009 0.0092

17 169 0.0021 166 0.0268 167 0.0021 0.0273 0.0021 0.0273

Total QTL 15 14 17

�̂p 2.761 31.73

31.73 521.6

�̂g 2.358 – 2.369 31.48

– 453.0 31.48 453.2
Estimates of QTL position (p̂) and main effect on PC1 (β̂1) and ADJPC1 (β̂2) in the MIM and MTMIMmodels of BM data with 10% genome-wide significance level. QTL
effects in the MTMIMmodel were estimated via GEM-NR and ECM algorithms. Estimated phenotypic (�̂p) and genotypic (�̂g) variance-covariance matrices (multiplied
by 105) are also shown.
aEstimated position (cM) of QTL from the leftmost genetic marker on the chromosome.
nsNonsignificant main effect tested with the LRT and 5% significance level. The critical value of the LRT was obtained from the chi-squared distribution function with
one degree of freedom.
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MTMIM model, shows that most of the phenotypic
variance-covariance between these traits is due to the
genotypic component (Table 6). Moreover, we partitioned
the total genotypic variance-covariance matrix in terms
of QTL-specific variance-covariance matrices (Table 7) as
proposed in [11] and [12] (pages 109-110). This decompo-
sition of the genotypic variance-covariance matrix shows
how much of the total genotypic variance-covariance is
explained by each QTL in the fitted model.
The possibility of fitting many traits and many QTL

in the MTMIM model imposes severe burden in the
estimation of parameters both in terms of reliability of
parameter estimates (accuracy) and computation time
(speed). The GEM-NR and ECM algorithms are two alter-
native approaches suitable for parameter estimation in
such complex models. We evaluate these two algorithms
with the BMdata by fitting anMTMIMmodel for PC1 and
ADJPC1. The results (Figure 3) show a tremendous gain
of GEM-NR over ECM in terms of number of iterations,
19 and 52, respectively, as well as in terms of computing
time, 8.2 and 30.6 seconds in a desktop PC, respectively.
The gain in computation time from GEM-NR is even
more evident in genome-wide scan and model selection
because likelihood maximization have to be computed
many times. Parameter estimates delivered in the GEM-
NR and ECM were very similar (Table 6).

Conclusions
A novel statistical method for multiple trait multiple
interval mapping (MTMIM) of QTL from inbred line
crosses was proposed and developed. We also proposed a
novel method for estimating genome-wide threshold and
assessing the significance level of putative QTL effects in
the MTMIMmodel. The method of genome-wide thresh-
old estimation is based on the score-based resampling
framework [17]. The MTMIM model has the advantage
of allowing us to map QTL with effects on multiple traits,
while taking advantage of information from correlations
between traits. The MTMIM model has been imple-
mented in the freely available software Windows QTL
Cartographer [23].
The MTMIM model provides a comprehensive frame-

work for QTL inference on multiple traits and the score-
based threshold serves as an essential and elegant tool
for computing significance level of effects of putative
QTL in the genome-wide scan. The MTMIM model and
score-based threshold were evaluated through simula-
tions. Also, we analyzed data from an experiment with
Drosophila for the purpose of illustrating the MTMIM
model and evaluating the performances of the GEM-NR
and ECM algorithms.
Results from our simulations showed many interesting

features of the MTMIM model and score-based thresh-
old. First, the score-based threshold maintained the type

I error at a desired nominal level when no QTL effects
were present in the simulated datasets. Second, discovery
of spurious QTL (false discovery rate) was almost con-
stant across genome-wide significance levels of 1, 5 and
10%, while power to identify simulated QTL increased
substantially as the significance level grew less stringent.
Therefore, a more liberal (10%) genome-wide significance
level could be used in the genome-wide scan, corroborat-
ing the results of C. Laurie, S. Wang, L. A. Carlini-Garcia
and Z-B. Zeng as observed in the MIM model (unpub-
lished observations). Third, the MTMIM model could
show lower power than the MIM model for QTL with
effects on only a small subset of traits. However, as the
number of traits affected by a QTL increases, power in
the MTMIM model overpasses power in the MIM model
even when not all traits under analysis are affected by that
QTL. Forth, on average the estimates of QTL position in
the MIM and MTMIM models were very similar, but the
MTMIM model delivers estimates with smaller sampling
variances. Fifth, the LOD-1.5 support interval produced
confidence intervals for QTL position with approximately
95% coverage in both the MIM and MTMIM models.
However, the support interval was much wider in the
MIM than in MTMIM model. Overall, a qualitative com-
parison of results from the MIM and MTMIM models
shows that effect estimates in the latter are less biased
than in the former. Lastly, the LRT was shown to keep
adequate type I error level when testing the null hypoth-
esis of pleiotropic QTL against the alternative of closely
linked nonpleiotropic QTL in the bivariate analysis, while
it delivered reasonable power when data were generated
under the alternative.
Throughout this paper, we provided compelling empir-

ical evidences that the score-based threshold maintained
proper type I error rate and tend to give a false discovery
rate within acceptable level, and that the MTMIM model
can deliver better parameter estimates and power than
the MIM model, and yet the MTMIM model provides a
framework to test hypotheses of pleiotropic QTL versus
closely linked nonpleiotropic QTL, QTL by environment
interaction, and to estimate the total genotypic variance-
covariances matrix between traits and to decompose it in
terms of QTL-specific variance-covariance matrices. An
analysis of phenotypic and genotypic data from an exper-
iment with Drosophila illustrated the new tools present in
the MTMIM model. In conclusion, the MTMIM model is
a valuable tool to better extract information from experi-
ments with measurements in multiple quantitative traits,
therefore, providing more details on the genetic architec-
ture of complex traits.

Methods
In what follows, for any matrix A, its transpose is denoted
by A′, its inverse by A−1, its uth row by A[u,·], its vth
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Table 7 Estimated QTL-specific (multiplied by 105) genotypic variance-covariancematrix between traits PC1 and ADJPC1

QTL

Traits QTL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

PC1 1 0.11 0.93 0.12 1.49 0.00 0.08 0.01 0.07 0.00 0.03 0.00 -0.01 0.00 0.05 0.01 0.07 0.00 -0.02 -0.01 -0.11 -0.03 -0.28 -0.01 -0.13 0.01 0.06 -0.01 -0.10 -0.01 -0.05 0.00 0.02 0.00 0.03

ADJ 0.93 7.69 1.49 16.20 0.08 1.06 0.07 0.64 0.03 0.30 -0.01 0.11 0.05 0.57 0.07 0.54 -0.02 -0.16 -0.11 -1.32 -0.28 -2.44 -0.13 -1.74 0.06 0.61 -0.10 -1.23 -0.05 -0.39 0.02 0.21 0.03 0.28

PC1 2 0.08 1.21 0.00 0.00 0.00 0.00 0.00 0.02 0.00 -0.03 0.01 0.10 0.01 0.09 0.00 0.02 0.00 0.05 -0.01 -0.16 0.00 -0.05 0.01 0.20 -0.01 -0.13 -0.01 -0.10 0.00 0.00 -0.01 -0.10

ADJ 1.21 19.13 0.00 -0.05 0.00 0.05 0.02 0.26 -0.03 0.17 0.10 1.57 0.09 0.92 0.02 0.29 0.05 0.81 -0.16 -1.83 -0.05 -1.09 0.20 2.66 -0.13 -2.57 -0.10 -1.00 0.00 0.04 -0.10 -1.36

PC1 3 0.01 0.52 0.05 1.30 0.02 0.47 0.00 0.09 0.00 -0.03 0.00 -0.04 0.00 0.07 0.00 -0.02 -0.01 -0.22 0.00 -0.08 -0.01 -0.28 0.00 -0.01 0.00 0.04 0.00 0.04 0.00 -0.04

ADJ 0.52 21.64 1.30 24.16 0.47 9.37 0.09 -0.57 -0.03 -0.63 -0.04 -0.51 0.07 1.06 -0.02 -0.55 -0.22 -3.36 -0.08 -3.13 -0.28 -5.17 -0.01 -0.20 0.04 0.49 0.04 0.70 -0.04 -0.72

PC1 4 0.10 1.18 0.07 0.92 0.03 0.15 0.00 0.00 -0.01 -0.05 0.01 0.11 0.00 -0.02 -0.03 -0.32 -0.01 -0.16 -0.02 -0.24 0.01 0.13 0.01 0.07 0.01 0.06 0.00 -0.03

ADJ 1.18 14.08 0.92 11.44 0.15 -1.12 0.00 -0.03 -0.05 -0.45 0.11 1.14 -0.02 -0.36 -0.32 -3.32 -0.16 -2.94 -0.24 -2.88 0.13 2.22 0.07 0.64 0.06 0.68 -0.03 -0.41

PC1 5 0.02 0.31 0.03 0.13 0.00 0.04 0.00 -0.01 0.00 0.05 0.00 -0.02 -0.01 -0.13 0.00 -0.07 -0.01 -0.10 0.00 0.05 0.00 0.03 0.00 0.03 0.00 0.03

ADJ 0.31 4.06 0.13 -0.93 0.04 0.57 -0.01 -0.05 0.05 0.50 -0.02 -0.39 -0.13 -1.40 -0.07 -1.44 -0.10 -1.19 0.05 0.83 0.03 0.32 0.03 0.37 0.03 0.38

PC1 6 0.07 -0.20 0.02 0.16 0.01 0.02 0.00 -0.01 -0.01 -0.06 -0.01 -0.02 0.00 -0.01 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.01 0.00 0.01

ADJ -0.20 0.57 0.16 -1.08 0.02 -0.17 -0.01 0.08 -0.06 0.39 -0.02 0.16 -0.01 0.08 0.00 0.03 0.05 -0.33 0.01 -0.05 0.01 -0.07 0.01 -0.09

PC1 7 0.03 0.49 0.03 0.32 0.00 0.01 0.00 0.08 0.00 0.03 0.00 0.02 0.00 0.02 0.00 -0.10 0.00 -0.05 0.00 -0.03 -0.01 -0.11

ADJ 0.49 7.76 0.32 3.09 0.01 0.09 0.08 1.38 0.03 0.30 0.02 0.35 0.02 0.21 -0.10 -2.07 -0.05 -0.56 -0.03 -0.41 -0.11 -1.61

PC1 8 0.03 0.22 0.00 0.00 0.00 0.04 0.00 -0.02 0.00 0.00 0.00 0.03 0.00 -0.04 0.00 -0.01 0.00 -0.01 0.00 -0.02

ADJ 0.22 1.54 0.00 0.01 0.04 0.37 -0.02 -0.13 0.00 0.01 0.03 0.26 -0.04 -0.44 -0.01 -0.11 -0.01 -0.04 -0.02 -0.15
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Table 7 Estimated QTL-specific (multiplied by 105) genotypic variance-covariancematrix between traits PC1 and ADJPC1 (Continued)

QTL

QTL 9 10 11 12 13 14 15 16 17

9 0.03 0.30 0.08 1.24 0.04 0.34 0.01 0.15 -0.01 -0.08 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.30 2.88 1.24 16.13 0.34 3.25 0.15 2.34 -0.08 -0.85 0.01 0.14 0.00 0.00 0.00 -0.01 0.00 -0.05

10 0.12 2.32 0.13 1.93 0.02 0.73 0.02 0.29 0.00 0.06 0.00 -0.01 0.00 -0.04 -0.01 -0.20

2.32 45.50 1.93 24.29 0.73 18.94 0.29 4.25 0.06 1.36 -0.01 -0.07 -0.04 -0.61 -0.20 -3.05

11 0.18 1.64 0.07 1.66 0.15 1.58 0.01 0.27 0.01 0.08 0.00 -0.01 -0.01 -0.14

1.64 15.19 1.66 24.92 1.58 16.29 0.27 3.81 0.08 0.68 -0.01 -0.14 -0.14 -1.48

12 0.01 0.38 0.05 1.16 0.00 0.14 0.00 0.07 0.00 0.00 0.00 -0.07

0.38 14.74 1.16 20.87 0.14 4.55 0.07 0.89 0.00 -0.04 -0.07 -1.41

13 0.27 3.12 0.05 0.91 0.04 0.39 0.01 0.17 0.01 0.09

3.12 36.41 0.91 15.12 0.39 3.66 0.17 1.89 0.09 1.06

14 0.02 0.53 0.04 0.70 0.02 0.31 0.01 0.31

0.53 15.11 0.70 8.66 0.31 5.01 0.31 5.53

15 0.04 0.29 0.03 0.30 0.04 0.38

0.29 2.27 0.30 2.82 0.38 3.73

16 0.02 0.18 0.05 0.57

0.18 2.03 0.57 6.83

17 0.11 1.44

1.44 18.55

Total 2.36 31.48

31.48 453.20
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Figure 3 Comparison of performances between ECM and GEM-NR algorithms. Comparison of performances between ECM and GEM-NR
algorithms in terms of number of iterations required to the convergence of the likelihood function. Both algorithms were applied to an MTMIM
model of traits PC1 and ADJPC1 of the BM data. The algorithms were said to have converged whenever the difference between the natural
logarithm of the likelihood function of two consecutive iterations was smaller than or equal to 10−4. (A) shows the values of the natural logarithm of
the likelihood function at each iteration [loge(Lk)] until convergence was reached. The GEM-NR algorithm began with 5 iterations of ECM algorithm.
Therefore, the first 5 iterations produced identical values in the likelihood function of both algorithms, and because of that we omitted the first 4
iterations. (B) shows the difference between the natural logarithm of the likelihood function of two consecutive iterations until convergence was
reached. In (B), the y-axis was rescaled via logarithm of base ten to improve graphical resolution.

column by A[·,v], and its element in row u and column v by
A[u,v].

Statistical model
Our statistical model for multiple trait multiple QTL
inference for a backcross (BC) population is a linear
model, in which the measurement yti of trait t (t =
1, 2, · · · ,T) on each subject i (i = 1, 2, · · · , n) is regressed
on variables xir (r = 1, 2, · · · ,m). These variables are
defined according to Cockerham genetic model [24,25].
For each subject i, xir takes either value 1

2 or − 1
2 , depend-

ing on whether QTL r has homozygous or heterozygous
genotype, respectively. The coefficient βtr is called the
main effect of the rth QTL on trait t. The linear model also
includes an intercept μt for each trait, it may include a
subset p of epistatic effects (wtrl) among all pairwise QTL
interactions (r and l ∈ {1, 2, · · · ,m}), and it includes a
residue eti. The linear model is:

yti = μt +
m∑
r=1

βtrxir +
p∑
r<l

wtrlxirxil + eti (1)

For each subject i, let yi = (y1i, y2i, · · · , yTi)′ be a T × 1
vector of trait measurements, and ei = (e1i, e2i, · · · , eTi)′
be a T × 1 random vector assumed to be indepen-
dent and identically distributed according to a multi-
variate normal distribution with mean vector zero and

positive definite symmetric variance-covariance matrix
�e, i.e., ei ∼ MVNT (0,�e). For each r, let βr =
(β1r ,β2r , · · · ,βTr)′ be a column vector of main effects. For
each pair r and l (r < l, r = 1, 2, · · · , p) of interaction, let
wb = (w1rl,w2rl, · · · ,wTrl)

′ be a column vector of epistatic
effects (b = 1, 2, · · · , p). Lastly, let μ = (μ1,μ2, · · · ,μT )′
be a T × 1 vector of means.
We collect all effect parameters (m main and p

epistatic effect vectors) into a T × s (s = m + p)
matrixB = ( β1, β2, · · · , βm, w1, w2, · · · , wp), and all
model parameters into a column vector θ = (θ1, θ2, · · · ,
θ s,μ′, vect(�e))′, where θb = β ′

b for 1 ≤ b ≤ m and
θb = w′

b for m < b ≤ s, and vect(�e) is an operator
that stacks the rows of �e into a column vector one on
the top of the other and then transposes it. Motivated by
the fact that a QTL may not have significant effect on all
traits under analysis, we allow for the insignificant param-
eter effects in each vector θb to be constrained to zero.
Therefore, theMTMIMmodel allows each trait to have its
own set of effect parameters, as in the seemingly unrelated
regressionmodel [26].

Likelihood function
In order to search the entire genome for significant QTL
effects, the genome is partitioned into H points, usu-
ally at 1-centiMorgan (cM) grid. This partition is denoted
by ζ . The set of positions of m putative QTL, λ =
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{λ1, λ2, · · · , λm}, is assumed to be a subset of ζ [27]. For
any subject i, letMi be the genotypic information of mark-
ers flanking themQTL, andMr

i,L andMr
i,R be the flanking

markers on left and right of QTL r, respectively. In a
diploid species, a subject from a BC population generated
from inbred line crosses has either genotype QQ or Qq
for a locus, assuming the recurrent parent has genotype
QQ. Therefore, if there are m QTL affecting a trait, there
are 2m possible genotypes for any subject i. Genotypes
of the form Gj = Q1Q2 · · ·Qm, where Qr ∈ {QQ,Qq},
r = 1, 2, · · · ,m and j = 1, 2, · · · , 2m. Then, assuming
no crossover interference between marker intervals and
no more than one QTL existing within a marker inter-
val, the probability of any genotype Gj, conditional on
the genotypes of markers flanking the m QTL is pij =
P(Gj|Mi,R,λ) =

m∏
r=1

P
(
Qr |Mr

i,L,M
r
i,R, λr

)
, where the

probabilities on the right hand side of this equation can be
estimated via a Hidden Markov model [28].
We define an s×2m matrixZ of coded genotypes accord-

ing to Cockerham genetic model [24,25]. In the matrix
Z each row b, Z[b,·], corresponds to a column of effect
parameters in B (b = 1, 2, · · · , s) and each column j, Z[·,j],
represents a coded genotype Gj. If b ≤ m, Z[b,j] = xr , oth-
erwise Z[b,j] = xr ∗ xl, where xu (u ∈ {r, l}) is either 1

2 or
− 1

2 , depending on whether the genotype of QTL Qu in Gj
is QQ or Qq, respectively.
The individual (Li) and overall likelihood (L)

functions of data under the MTMIM model with
m QTL are mixtures of 2m multivariate nor-
mal distribution functions with different means
(μ + BZ[·,j]), assumed same variance-covariance
(�e), and mixing probabilities pij (j = 1, 2, · · · , 2m),

i.e., Li(θ |yi,Mi,λ) =
2m∑
j=1

pijφ(yi|μ + BZ[·,j],�e) and

L(θ |Y ,M,λ) =
n∏

i=1
Li(θ |yi,Mi,λ), where Y is a T × n

matrix of trait measurements, and φ(yi|μ + BZ[·,j],�e)
is the probability distribution function of a multivariate
normal random variable yi with mean μ + BZ[·,j] and
variance-covariance �e. In what follows, �i(θ |yi,Mi,λ)

and �(θ |Y ,M,λ) are the natural logarithm of the
individual and overall likelihood functions, respectively.

Parameter estimation
Estimation of parameters in the likelihood function
is cumbersome due to mixture of distributions. The
expectation-maximization (EM) [29] algorithm is very
popular for parameter estimation in mixture models.
The EM algorithm is very simple to program, given
that efficient estimators are available for the “complete-
data”. Moreover, the EM algorithm guarantees that the
likelihood function is nondecreasing in every iteration.

However, EM may show slow convergence rate if there
are many missing data, and EM does not provide standard
errors of parameter estimates.
Many modifications of the EM algorithm and many

hybrids of EM and Gauss-Newton (GN) methods have
been proposed [30-32]. GN methods are not guaranteed
to converge when the logarithm likelihood function is not
concave, but if there is convergence its rate is usually
quadratic, as opposite to the linear rate of EM. Therefore,
speed of convergence of GNmay be much faster than EM.
We describe two algorithms to obtain the maximum like-
lihood estimators (MLE) of parameters in the MTMIM
model: expectation-conditional maximization (ECM) and
a hybrid of EM and Newton-Raphson called generalized
EM-NR (GEM-NR).

Expectation-conditional maximization algorithm
The EM algorithm [29] solves the incomplete logarithm
likelihood function iteratively in terms of the unob-
served complete-data logarithm likelihood function. If
the complete-data logarithm likelihood function is messy
and the M-step is complex, then the EM algorithm is no
longer attractive. For such cases of complicate M-step,
[33] proposed a class of generalized EM algorithm, called
expectation-conditional maximization (ECM). The ECM
enjoys the convergence properties of the EMwhile simpli-
fying the estimation of parameters. In the ECM, a complex
M-step is broken down into many simpler CM-steps, each
one of them maximizes the expected complete-data log-
arithm likelihood function conditional on some function
of the parameters. Besides simplifying the M-step, the
CM-step is often faster and more stable than the M-step
because the conditional maximization are over spaces of
smaller dimensions [33].
E-step: The E-step requires computation of the expec-

tation of the complete-data logarithm likelihood function,
conditional on the observed data Y and evaluated at a cur-
rent value of θ (see Appendix). The E-step at the (ν + 1)
iteration consists of updating the probabilities πij as
follows:

π
(ν+1)
ij =

pijφ
(
yi|μ(ν) + B(ν)Z[·,j],�(ν)

e
)

2m∑
j=1

pijφ
(
yi|μ(ν) + B(ν)Z[·,j],�(ν)

e
)

It is worth mentioning that in the E-step above, the
updating equation at step ν + 1 does not use the proba-
bilities from the previous step ν, i.e, it uses pij instead of
π

(ν)
ij . This is the case in QTL mapping literature because

the a priori probabilities are indeed exellent estimates of
the conditional probabilities of QTL given the flanking
markers.
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The CM-step consists of maximizing the expected com-
plete logarithm likelihood function with respect to the
unknown parameters (see Appendix). CM-step without
constrained parameters: We split the parameters into
the groups B[·,1],B[·,2], · · · ,B[·,s], μ, and �e. Parameters
within the same group are estimated simultaneously, while
parameters in distinct groups are estimated consecutively.
The parameter estimators can be shown to be:

μ(ν+1) = 1
n

n∑
i=1

⎛
⎝yi −

2m∑
j=1

π
(ν+1)
ij B(ν)Z[·,j]

⎞
⎠

�(ν+1)
e = 1

n

n∑
i=1

2m∑
j=1

π(ν+1)
ij

(
yi−μ(ν+1)−B(ν)Z[·,j]

)(
yi−μ(ν+1)−B(ν)Z[·,j]

)′

B(ν+1)
[·,b] =

n∑
i=1

2m∑
j=1

π
(ν+1)
ij

(
yi−μ(ν+1)−

b−1∑
u=1

B(ν+1)
[·,u] Z[u,j]−

s∑
u=b+1

B(ν)

[·,u]Z[u,j]

)
Z[b,j]

n∑
i=1

2m∑
j=1

π
(ν+1)
ij Z2

[b,j]

for b ∈ {1, 2, · · · , s}.
CM-step with constrained parameters: The estimator of

B[·,b] shown previously is not appropriate if some param-
eters in B[·,b] are constrained to zero. For instance, when
estimating parameters in a model with closely linked non-
pleiotropic QTL. If there exist zero-constrained effect
parameters in the MTMIM model, our strategy is to
update each element in B[·,b] one at a time. Given the
current estimate B(ν)

[·,b], the updating equation for the
unconstrained effect parameter B[t,b] is:

B(ν+1)
[t,b] =

n∑
i=1

2m∑
j=1

π
(ν+1)
ij �−1(ν)

e[t,·]

[(
yi−μ(ν)

)−b−1∑
u=1

B(ν+1)
[·,u] Z[u,j]−

s∑
u=b+1

B(ν)

[·,u]Z[u,j]

]
Z[b,j]

n∑
i=1

2m∑
j=1

π
(ν+1)
ij �−1(ν)

e[t,t]
Z2
[b,j]

The E- andCM-steps are computed iteratively until con-
vergence of the likelihood function. Our choice of initial
values for μ and �e are the sample mean and the sam-
ple variance-covariance, respectively, and all parameters
in B are set to zero. In the genome-wide scan, an alter-
native efficient choice of initial values is to use converged
parameters of a previous position in the search grid. For
any small positive real number ε, a stoping rule for the
convergence of the likelihood function can be defined as
[ L(θ (ν+1)|Y ,M,λ)−L(θ (ν)|Y ,M,λ)] /L(θ (ν)|Y ,M,λ) < ε.
It is worth mentioning that for many combinations of

i and j, the probabilities pij are zero or very close to
zero. Therefore, one may choose to ignore unimportant
small probabilities in the computations, whichmay lead to
significant improvement on computation time.

Generalized EM algorithm based on Newton-Raphson
methods
The generalized EM-Newton-Raphson (GEM-NR) meth-
ods combine the EM algorithm with the NR method for
maximizing the complete-data logarithm likelihood func-
tion [30,31]. The hybrid methods take advantage of the
EM algorithm for generating an accurate starting point
for the NR algorithm, which usually has faster conver-
gency rate. By introducing a step-size κ(ν) (0 < κ(ν) ≤ 1)
and by having the incomplete-data logarithm likelihood
function (�) replaced by the expected complete-data log-
arithm likelihood function (Qc) in the updating NR for-
mula, a modified version of the updating equation [32]
(see Appendix) is:

θ (ν+1) = θ (ν) + κ(ν)

(
−∂2Qc(θ |Y )

∂θ∂θ ′

∣∣∣∣
θ (ν)

)−1
∂Qc(θ |Y )

∂θ

∣∣∣∣
θ (ν)

(2)

The advantage of using equation (2) is that an appropri-
ate choice of κ(ν) guarantees that the logarithm likelihood
function increases at each iteration. So long as κ(ν) is
chosen to make (3) positive definite, the logarithm likeli-
hood function is guaranteed to increase at every iteration
(Appendix).

B =
(
I + 1

2
κ(ν) ∂2Qc(θ |Y )

∂θ∂θ ′

∣∣∣∣
θ (ξ)

C′C
)

(3)

where C is the Cholesky decomposition of the negative
of the matrix of second order derivatives of the complete
logarithm likelihood function (see Appendix) and I is an
identity matrix.
To guarantee that the logarithm likelihood function is

nondecreasing, [31] proposed to start the EM algorithm
with five iterations to quickly approach the MLE and then
to switch to NR until either convergence or decrease of the
logarithm likelihood function. If the logarithm likelihood
function decreases, they suggested halving the step-size κ

up to five times. If the logarithm likelihood function still
decreases, they suggested to return to the EM, run five
iterations, and then to switch back to NR. [31] argued that
their choice of running the EM algorithm for five itera-
tions is based on previous experiences of [34] that 95%
of the change in the initial value of logarithm likelihood
function until its maximum value often happens in five
EM iterations.
As θ (ξ) lies in the line segment from θ (ν) to θ (ν+1), and θ

lives in high-dimensional space, the choice of κ(ν) to make
(3) positive definite may not be easy. We implemented an
iterative GEM-NR procedure as follows:

1. Run the ECM algorithm a couple of iterations (say
five iterations);
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2. Let θ (ν) be the parameter estimate in the νth EM
iteration;

3. Set κ(ν) = 1;
4. Estimate θ (ν+1) using equation (2) with the first and

second order derivatives of Qc(θ |Y ) evaluated at θ (ν);
5. • If �(θ (ν+1)|Y ,M,λ) > �(θ (ν)|Y ,M,λ), then set

θ (ν+1) as the updated parameter;
• Otherwise, keep repeating step 4 with smaller

and smaller κ(ν), until the likelihood function
increases or until κ(ν) gets too small, in which
case start again in step 1;

In cases in which the complete-data logarithm likeli-
hood function does not allow for closed form solution
of parameter estimators, [30] have found that the GEM-
NR can reduce significantly the computation burdenwhen
compared to the EM algorithm. In the Appendix, we
derived all expressions (first and second order derivatives
of the complete-data logarithm likelihood function) to
implement the GEM-NR algorithm.

Genome-wide significance level andmodel selection
Score-based threshold
We extend the score statistic [17] to assess the genome-
wide statistical significance level of QTL effect in the
MTMIM model. Based on the individual and overall like-
lihood functions, we derived all required expressions to
compute the score statistic to test any effect parameter in
the MTMIMmodel (see Appendix).
Under some regular conditions, the score and LRT

statistics are asymptotically equivalent in large sample
[35]. But, an interesting characteristic of the score statis-
tic is that it can be approximated by a sum of independent
random components. Motivated by this characteristic and
based on the decomposition of the score function [17,36]
derived the large-sample distribution of the score statistic
for genome-wide QTL mapping.
In multiple trait genome-wide scan, a putative

pleiotropic QTL is assumed at every position λ ∈ ζ

and the significance level of its effects (main or epistatic
effects) is tested against the null of no effects. For
instance, assume a model with m − 1 QTL with
main effects and p epistatic effects between certain
QTL pairs. Assume we are scanning for a putative
mth QTL. Let l = λ denotes the testing position
of the putative QTL coming into the model. Let
λ = (λ1, λ2, · · · , λ(m−1), l) be the current positions of all
m QTL in the model. Let θm = β ′

m be a T × 1 vector of
effects for the new QTL coming into the model, and let
θ = (θ1, θ2, · · · , θm−1, θm, θm+1, · · · , θ s,μ′, vect(�e))′ be
a column vector of all parameters in the model, where
θb = β ′

b for 1 ≤ b ≤ m and θb = w′
b for m < b ≤ s.

Let η = (θ1, θ2, · · · , θm−1, θm+1, · · · , θ s,μ′, vect(�e))′
be the column vector of nuisance parameters. Then the

hypothesis H0 : θm = 0 versus H1 : θm �= 0 is assessed at
every position l in the genome by the LRT. The genomic
position with the maximum LRT among all l is assessed
for the presence of a QTL via the score-based method.
The score statistic to test H0 vs H1 can be written as

S = Û ′V̂−1
Û [17,36], where Û =

n∑
i=1

Û i, V̂ =
n∑

i=1
Û iÛ

′
i,

and Û i is:

Û i = ∂�i (θ1, η)

∂θ ′
1

∣∣∣∣
(θ1=θ10,η=η̃)

− ∂� (θ1, η)

∂θ1∂η′

∣∣∣∣
(θ1=θ10,η=η̃)

×
(

∂� (θ1, η)
∂η∂η′

∣∣∣∣
(θ1=θ10,η=η̃)

)−1
∂�i (θ1, η)

∂η′

∣∣∣∣
(θ1=θ10,η=η̃)

(4)

where η̃ is the MLE of η under H0 (see Appendix for a
detailed derivation of first and second order derivatives of
the likelihood function).
In order to maintain equal expected variances in the

resampled score and score statistic [17], we multiply Û i by
random variables zi from the univariate normal distribu-
tion with mean zero and unit variance, i.e. zi ∼ N(0, 1).
Let Û i(l) be equation (4) evaluated at testing position l.

Similarly let Û(l) =
n∑

i=1
Û i(l) and V̂ (l) =

n∑
i=1

Û i(l)Û
′
i(l) be

evaluations of Û and V̂ at testing position l, respectively.
Then the steps of the resampling score-based algorithm
are:

1. generate n independent normal variables zi
(i = 1, 2, · · · , n) from N(0,1);

2. for each l, compute Û
∗
(l) =

n∑
i=1

Û i(l)zi,

S∗(l) = Û
∗′
(l)V̂

−1
(l)Û

∗
(l). Then, compute

S∗ = max
l∈ζ

{S∗(l)};
3. repeat steps 1 and 2 many times, say N times

(resampling), to obtain a sequence (S∗
1, S∗

2, · · · , S∗
N );

4. the score-based threshold for a given significance
α-level is the 100(1 − α) percentile of the ascending
ordered values (S∗

(1), S
∗
(2), · · · , S∗

(N)).

If Û i(l) in Û
∗
(l) and V̂ (l) are assumed to be fixed and

zi in Û
∗
(l) to be random, then: (I) The conditional distri-

bution of Û
∗
(l) on the observed data is normal with mean

zero and limiting covariance as that of Û(l); (II) From I,
it follows that the distributions of n− 1

2 Û
∗
(l) and n− 1

2 Û(l)
are asymptotically equivalent; and, (III) From II, it is pos-
sible to approximate the distribution of S(l) by that of S∗(l)
under the null hypothesis [17,37].
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Model selection
The search for QTL effects on phenotypic traits consists
on identifying those subset of genomic regions for which
statistical tests are significant. [38] elaborated the prob-
lem of finding such a subset of genomic regions as the one
of model selection, for which many tools are available in
the vast literature of variable selection. However, in QTL
studies the identification of a reasonable model, which
maximizes the correct number of QTL while controlling
the rate of false discovery is predominant over the iden-
tification of models with the smallest prediction errors,
which is the major criterion for model selection [38].
The score-based threshold can be used as a criterion to

build and refine models with many QTL. Starting with a
model with no QTL effect we can select putative QTL and
refine the model, by including to or excluding from the
MTMIM model any effects, all based on their statistical
significance assessed via the score-basedmethod.We pro-
pose an algorithm, analogue to the algorithm described
in [11], to build an initial MTMIM model and to refine it
upon using the score-based threshold criterion.

Forward selection
Assuming that model (1) starts with no QTL, one QTL
is added at each step of the forward selection. In the
mth step of the forward selection, we assume a puta-
tive pleiotropic QTL at every position l ∈ ζ (one at the
time), but avoiding positions within 5 cM neighboring
regions of the m − 1 QTL already in the model and
compute the MLE of all parameters. For each position l,
we compute the LRT statistic to test the null hypothe-
sis H0 : (β1m,β2m, · · · ,βTm)′ = (0, 0, · · · , 0)′ versus H1 :
(β1m,β2m, · · · ,βTm)′ �= (0, 0, · · · , 0)′. A putative QTL at
the position with maximum LRT statistic is added to the
model if the LRT statistic is larger than the score-based
threshold. Next, the effect of the selected QTL on each
trait is tested individually against the null of no effect using
the LRT and critical value from a chi-squared probabil-
ity distribution function with one degree of freedom and
pre-specified corrected error rate αc, i.e., when T traits
are analyzed jointly, the corrected significance level (Bon-
ferroni correction) to test each effect of the mth QTL at
an error rate α is αc = α/T . Finally, any nonsignificant
effect of the mth QTL is removed from the model, ending
the mth step of the forward selection. The forward selec-
tion continues until no maximum LRT statistic exceeds
the score-based threshold.

Model optimization
In turns, we update the positions of all QTL in the model.
We pick a QTL and hold the other QTL fixed at the posi-
tions that they were mapped. The effects of the picked
QTL are then removed from the model and a new search
is done within the region delimited by its two neighboring

QTL, avoiding 5 cM from each neighbor (the search is per-
formed until the end of the chromosome if no neighbor
QTL is found on either side of the picked QTL). The new
position of the picked QTL is set to the position of the
maximum LRT statistic within the searched region and all
parameters in the model are updated. This procedure is
repeated until the positions of all QTL are updated.

Some suitable hypotheses in the MTMIMmodel
Testing pleiotropic versus closely linked nonpleiotropic QTL
Although testing for pleiotropic versus closely linked non-
pleiotropic QTL is a part of model selection, we preferred
to separate it from the model selection because in general
this test is performed at the end of the model selection
procedure, when the final model is almost fitted.
As previously stated, an advantage of multiple trait

analysis is the possibility of testing for a single locus affect-
ing multiple traits versus the alternative of two or more
closely linked nonpleiotropic loci. For instance, suppose
we have measurements of two traits and a total of three
nonepistatic QTL at positions λ1, λ2 and λ3. The multiple
trait multiple QTL pleiotropic model for a subject i would
look like:

(
y1i
y2i

)
=

(
μ1
μ2

)
+

(
β11 β12 β13
β21 β22 β23

) ⎛
⎝ xi1

xi2
xi3

⎞
⎠ +

(
e1i
e2i

)

(5)

The model above assumes that all QTL have the same
pattern of pleiotropy, but instead, suppose we want to
test whether the last locus in model (5) is indeed two
closely linked nonpleiotropic loci. The model with two
pleiotropic (positions λ1 and λ2) and two closely linked
nonpleiotropic QTL (positions λ3 and λ4) for a subject i
would look like:

(
y1i
y2i

)
=

(
μ1
μ2

)
+

(
β11 β12 β13 0
β21 β22 0 β24

) ⎛
⎜⎜⎝
xi1
xi2
xi3
xi4

⎞
⎟⎟⎠ +

(
e1i
e2i

)

(6)

Or, suppose we want to test whether the last two QTL
in the model (6) are both pleiotropic. The model with four
pleiotropic QTL for a subject i would look like:

(
y1i
y2i

)
=

(
μ1
μ2

)
+

(
β11 β12 β13 β14
β21 β22 β23 β24

) ⎛
⎜⎜⎝
xi1
xi2
xi3
xi4

⎞
⎟⎟⎠ +

(
e1i
e2i

)

(7)

Many hypotheses can be formulated and tested, for
example, the hypotheses of model (5) versus (6) can be
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stated as H0 : λ3 = λ4 versus H1 : λ3 �= λ4, and
the hypotheses of model (6) versus (7) can be stated as
H0 : β14 = β23 = 0 versus H1 : β14 �= 0 and β23 �= 0.
In general, testing whether QTL r has pleiotropic main
effect or not in a subset S (S ∈ T) of traits in the model,
means testing H0 : βtr = 0 ∀ t ∈ S versus H1 : βtr �=
0 for some t ∈ S. And, testing whether QTL r and l has
pleiotropic epistatic effect or not in a subset S (S ∈ T) of
traits in the model, means testing H0 : wtrl = 0 ∀ t ∈ S
versus H1 : wtrl �= 0 for some t ∈ S. Model (6) illus-
trates a situation in which parameters are constrained to
zero and the parameter estimators derived previously in
the CM-step with constrained parameters are suitable.
When models are nested, the critical value to assess

the strength of the LRT is straightforward, in the sense
that under regular conditions the LRT has asymptotic chi-
squared distribution with degrees of freedom equal to the
difference between the number of parameters in the full
and reduced models. However, the pleiotropic and closely
linkagemodels may not be nested (for instance, models (6)
and (7)), which then requires some correction for the LRT
[39,40]. The parametric bootstrap method [13] is an alter-
native for computing the empirical distribution of the LRT
statistic in QTL mapping when models are not nested. In
recognizing the test of pleiotropic versus closely linked
nonpleiotropic QTL as one of model selection, we eval-
uate the performance of Akaike’s Information Criterion
corrected (AICc) [41] and LRT, using simulation.
When a QTL has epistasis, testing this QTL for

pleiotropy versus close linkage is not trivial because the
test not only depends on the QTL being tested but also
on any other QTL in the model that might interact with
it. In general, we suggest to search for QTL main effects,
and upon finishing this search to test for pleiotropy ver-
sus close linkage, and finally to search for epistasis and
no longer to test pleiotropy or to test solely those QTL
without epistasis.

QTL by environment interaction
The possibility of testing for QTL by environment inter-
action arises as another advantage of the multiple trait
analysis. There are two situations in which we are able
to study the differential expression of QTL. First, when
the same set of genotypes are evaluated phenotypically in
different environments (design I), and second when the
phenotypic evaluations are done in different sets of geno-
types in different environments (design II) [10]. We regard
the model for analysis of data in design II as multiple pop-
ulation model, and thus we shall omit further discussion
about it while talking about the multiple trait analysis in
this paper.
Let us reiterate that in design I we regard the expres-

sion of a trait in different environments as different trait
states [42]. Therefore, the index t (t = 1, 2, · · · ,T), which

was previously defined to index traits, is regarded as the
environment index in what follows. With this in mind,
testing whether the main effect of QTL r on a trait is
statistically different or not in a subset S (S ∈ T) of envi-
ronments, means testing H0 : βtr = βr ∀ t ∈ S versus
H1 : βtr �= βr for some t ∈ S. And, testing whether QTL
r and l epistatic effect on a trait is statistically different or
not in a subset S (S ∈ T) of environments, means testing
H0 : wtrl = 0 ∀ t ∈ S versus H1 : wtrl �= 0 for some t ∈ S.
The LRT may be used to evaluate the hypotheses above.

The cut-off point for the test can be obtained from the
chi-squared probability distribution function with degrees
of freedom being the difference between the number of
parameters in the full (H1) and reduced (H0) models.

Evaluation of the MTMIMmodel by simulation
We implemented the MTMIM model and score-based
threshold method, and evaluated them with several sim-
ulated datasets. More specifically, we evaluated type I
error, model fitting, and the efficiency of pleiotropic ver-
sus closely linked nonpleiotropic QTL testing hypothesis
delivered by the MTMIMmodel.

Genome-wide type I error
We use simulation to evaluate the proportion of falsely
discovered QTL (type I error) in the analysis of datasets
simulated without QTL effects. The LRT statistic is used
for hypothesis testing and the score-based threshold is
used as the criterion to assess significance level of QTL
effects in a genome-wide scan. Each replicate has six chro-
mosomes, each with nine markers evenly spaced 10 cM
apart from each other, 300 subjects, and three quantita-
tive traits (see Scenario S0 in Table 8). In the genome-wide
scan a putative pleiotropic QTL with main effects on all
traits, β = (β1,β2,β3)′, was assumed at each 1 cM in
the genome as the alternative hypothesis. The effects of
putative QTL were then tested against the simulated null
hypothesis of no effects, β = (β1,β2,β3)′ = (0, 0, 0)′ (Sce-
nario S0 of Table 8). For each position in the genome,
we resampled the score statistic 1000 times to obtain
the genome-wide score-based threshold. One thousand
replicates were analyzed in this type I error study.

Model fit evaluations
We use simulation to evaluate the overall performance of
the MTMIM model and score-based threshold as the cri-
terion to assess the significance level of QTL effects in
the genome-wide scan. We examined the performance of
the MTMIM in three different scenarios (SI, SII and SIII
shown in Table 8), each evaluated with R = 500 replicates.
Each replicate was simulated with six chromosomes, each
with nine markers evenly spaced 10 cM apart from each
other, and 300 subjects. The genetic architecture of quan-
titative traits in each scenario is described with details in
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Table 8 Simulated genetic architecture of traits

Effects of each QTLd �e f

Scenarioa h2b μc Q1 Q2 Q3 Q4 Q5 T1 T2 T3

T1 0 30 0 0 0 0 0 1 0.2 0

S0 T2 0 35 0 0 0 0 0 0.2 1 -0.2

T3 0 30 0 0 0 0 0 0 -0.2 1

T1 25 30 0.52 0.52 0.52 0.52 0.52 1 0.2 0

T2 25 35 0.52 0.52 0.52 0.52 0.52 0.2 1 -0.2

SI T3 25 30 0.52 0.52 0.52 0.52 0.52 0 -0.2 1

Chr. – – 1 2 3 5 6 – – –

Positione – – 23 15 45 67 53 – – –

T1 25 30 0.52 0.52 0.52 0.52 0.52 1 0.2 0

T2 18 35 0 0.54 0.54 0.54 0 0.2 1 -0.2

SII T3 5 30 0 0 0.46 0 0 0 -0.2 1

Chr. – – 1 2 3 5 6 – – –

Position – – 23 15 45 67 53 – – –

T1 18 30 0.54 0 0.54 0 0.54 1 0.2 –

T2 18 35 0 0.54 0.54 0.54 0 0.2 1 –

SIII Chr. – – 1 1 3 6 6 – – –

Position – – 23 33 45 38 53 – – –

Simulated genetic architecture of traits T1, T2, and T3, as dictated by QTL Q1, Q2, Q3, Q4, and Q5.
aScenario S0 is for type I error evaluation. Scenarios SI, SII and SIII are for model fitting evaluations.
bHeritability (%) due to all QTL affecting a trait.
cGeneral mean of each trait.
dMain effect of QTL. The percentage of phenotypic variation of each trait due to each QTL is 5%.
ePosition, in cM, of the QTL from the leftmost marker in the chromosome (Chr).
fResidual variance-covariance matrix.

Table 8. For each replicate we build an MTMIM model
using our proposed forward selection and model opti-
mization procedure. The genome was partitioned at 1-cM
grid for genome-wide scan. For the sake of comparison, we
also build an MIM model for each trait in each replicate
using our proposed forward selection and model opti-
mization procedure. For every position in the genome, the
score statistic was resampled 800 times for the purpose of
genome-wide score-based threshold estimation.
The general goal of each simulated scenario is: (SI) With

a basic and favorable situation, we want to evaluate basic
properties of the MTMIM model; (SII) With a mixture
of QTL affecting one, two and three traits, we want to
evaluate how well theMTMIMmodel handles the estima-
tion of QTL with effects on only a subset of traits; (SIII)
With presence of closely linked nonpleiotropic QTL and a
pleiotropic QTL, we want to evaluate the MTMIMmodel
undermore complex genetic architecture. In SIII, we build
an MTMIM model for each replicate using the forward
selection without testing for pleiotropic versus closely
linked nonpleiotropic QTL. Each MTMIM model built
in the forward selection was then refined with a follow-
up test of pleiotropic versus closely linked nonpleiotropic

QTL. The pleiotropic versus closely linked nonpleiotropic
test was carried out for every pleiotropic QTL in the
MTMIMmodel.
We evaluated the MTMIMmodel under three genome-

wide significance levels: 1, 5 and 10%. For each replicate,
all QTL selected in the forward selection are defined as
mapped QTL. We summarize the performance of the
MTMIM model with measures that are function of the
logarithm of odds ratio (LOD) support interval of mapped
QTL. The LOD-d (d = 1, 1.5, and 2) support interval
of a mapped QTL is a continuous genomic region that
includes the position of the mapped QTL and all positions
on its left and right sides with LOD values greater than
or equal to the LOD value at the position of the mapped
QTL after subtraction of a positive constant d [1]. Let Qr ,
for r ∈ {1, 2, · · · ,m = 5}, be a simulated QTL. A simu-
lated QTL is defined as being paired with a mapped QTL
if the simulated and mapped QTL are nearby. A mapped
QTL is defined as being matched to a paired QTL if the
LOD-d support interval of the mapped QTL includes the
paired QTL. A mapped QTL is defined as mismatched
if it is not matched. A simulated QTL Qr is defined as
identified if it has a matched QTL. For each simulated
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Qr and for each d, let 
Qr ,d be the set of replicates for
which Qr is identified. We define |
Qr ,d| as the number of
elements in 
Qr ,d. A criterion to match mapped and sim-
ulated QTL which uses both LOD-d support interval and
closest distance between mapped and simulated QTL is
more appropriate than the usual criterion that uses clos-
est distance alone. Our measures of model fit are: (1) False
discovery rate per replicate, FDRb(d), which is the ratio of
number of mismatchedQTL in replicate b to total number
of mapped QTL in replicate b; (2) FDR over all repli-

cates, FDR(d)=
R∑

b=1
FDRb(d)/R; (3) Power to identify Qr ,

Power(Qr , d)=|
Qr ,d|/R; (4) LOD-d support interval cov-
erage of Qr , C(Qr , d), which is the ratio of |
Qr ,d| to the
number of replicates for whichQr is paired with a mapped
QTL; (5) Mean length of LOD-d support interval of Qr ,
which is the average length of LOD-d support intervals of
Qr over replicates in 
Qr ,d; (6)Mean effect of Qr , which is
the average effects ofQr over replicates in 
Qr ,d; (7)Mean
position of Qr , which is the average positions of Qr over
replicates in 
Qr ,d; and (8) Model size, which is the num-
ber of mapped QTL. These summary statistics have been
proposed by C. Laurie, S. Wang, L. A. Carlini-Garcia and
Z-B. Zeng (unpublished observations).

Appendix
Parameter estimation
Expectation-conditional maximization algorithm
Let z∗

i = (
z∗i1, z∗i2, · · · , z∗i2m

)′ be a vector with information
on “missing” genotypes ofmQTL for subject i. Each z∗ij =
1 if ith subject has genotype Gj (j=1,2,· · · ,2m), otherwise
z∗ij = 0. Let z∗ = (z∗

1, z∗
2, · · · , z∗

n) be a matrix containing
missing information from all subjects. The joint distri-
bution of observed and missing data (yi, z∗

i ) for subject
i is:

p(yi, z∗
i ) =

2m∏
j=1

[
φ(yi|μ + BZ[·,j],�e)pij

]z∗ij

where pij = P(Gj|Mi,R,λ), and φ(yi|μ + BZ[·,j],�e)
is the probability density distribution of a multi-
variate normal random vector yi with mean vector
μ + BZ[·,j] and variance-covariance matrix �e. The
joint distribution of observed and missing data allow
us to obtain the complete-data logarithm likelihood
function (�c):

�c
(
θ |Y , z∗) =

n∑
i=1

2m∑
j=1

z∗ij
(
log pij + log

× (
φ

(
yi|μ + BZ[·,j],�e

)))

The E-step requires computation of the expectation of
the complete-data logarithm likelihood function, condi-
tional on the observed data y and evaluated at current
estimated values of θ (denoted here as θ (ν)) [32]:

Qc
(
θ |θ (ν)

)
= Eθ=θ (ν)

[
�c

(
θ |y, z∗) |y]

=
n∑

i=1

2m∑
j=1

π
(ν)
ij

(
log pij + log

× (
φ

(
yi|μ + BZ[·,j],�e

)))
where

π
(ν)
ij = Eθ=θ (ν)

[
z∗ij|yi

]

=
pijφ

(
yi|μ(ν) + B(ν)Z[·,j],�(ν)

e
)

2m∑
j=1

pijφ
(
yi|μ(ν) + B(ν)Z[·,j],�(ν)

e
)

The CM-step consists of maximizing the expected com-
plete logarithm likelihood function with respect to the
unknown parameters through derivatives (see Section
Derivatives).

Newton-Raphsonmethod
The NR updating formula for parameter estimation [32]
is:

θ (ν+1) = θ (ν) +
(

−∂2�(θ |Y )

∂θ∂θ ′

∣∣∣∣
θ (ν)

)−1
∂�(θ |Y )

∂θ

∣∣∣∣
θ (ν)

(8)

The NRmethod is not very stable for complex functions
because it requires accurate initial values of parameters,
in certain problems, in order for right convergency. More-
over, the NR method has almost equally chances to move
either in the direction of saddle points, local minima or
local maxima [32]. Nevertheless, NR method has a major
advantage in terms of quadratic convergence rate (when
it does converge) and it can provide an estimate of the
variance-covariance matrix of parameters at the limiting
value of θ , θ∗, through the inverse of the observed Fisher’s
information matrix:

I−1(θ∗|Y ) =
(

−∂2�(θ |Y )

∂θ∂θ ′

∣∣∣∣
θ∗

)−1

Generalized EM-Newton-Raphsonmethod
By introducing a step-size κ(ν) (0 < κ(ν) ≤ 1) and
by having the incomplete-data logarithm likelihood func-
tion (�) replaced by the expected complete-data logarithm
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likelihood function (Qc) in the updating NR formula (8), a
modified version of the updating equation [32] is:

θ (ν+1) = θ (ν)+κ(ν)

(
−∂2Qc(θ |Y )

∂θ∂θ ′

∣∣∣∣
θ (ν)

)−1
∂Qc(θ |Y )

∂θ

∣∣∣∣
θ (ν)

(9)

The advantage of using the modified version of the
updating equation is that an appropriate choice of
κ(ν) guarantees that the logarithm likelihood function
increases at each iteration. The negative of the matrix
of second order derivatives is positive definite under
usual conditions. Therefore, its inverse has the Cholesky
decomposition (10), where C is an upper triangular
matrix.(

−∂2Qc(θ |Y )

∂θ∂θ ′

∣∣∣∣
θ (ν)

)−1
= C′C (10)

Let θ (ξ) be a point in the line segment from θ (ν) to
θ (ν+1), the Taylor’s expansion of the complete-data loga-
rithm likelihood function around θ (ν) is:

Qc
(
θ (ν+1)|Y

)
− Qc

(
θ (ν)|Y

)
=

(
θ (ν+1) − θ (ν)

)′ ∂Qc(θ |Y )

∂θ

∣∣∣∣
θ (ν)

+ 1
2

(
θ (ν+1) − θ (ν)

)′ ∂2Qc(θ |y)
∂θ∂θ ′

∣∣∣∣
θ (ξ)

×
(
θ (ν+1) − θ (ν)

)
(11)

Plugging θ (ν) from (2) into (11), and upon making some
algebra using (10), we obtain:

Qc
(
θ (ν+1)|Y

)
−Qc(θ

(ν)|Y )=κ(ν)

(
∂Qc(θ |Y )

∂θ

∣∣∣∣
θ (ν)

)′
C′CB ∂Qc(θ |Y )

∂θ

∣∣∣∣
θ (ν)

(12)

where

B =
(
I + 1

2
κ(ν) ∂2Qc(θ |Y )

∂θ∂θ ′

∣∣∣∣
θ (ξ)

C′C
)

(13)

and I is an identity matrix. From (12), we can see that so
long as κ(ν) is chosen to make (13) positive definite, the
logarithm likelihood function is guaranteed to increase at
every iteration.

Derivatives
We provide analytical formulae of the first and second
order derivatives of the logarithm of individual and over-
all likelihood functions of data under the MTMIMmodel.
We borrowed useful ideas from [43,44]. These papers pro-
vide many results regarding matrix derivatives as well as
their applications in multivariate analysis.

Auxiliarymatrices
We assume b = 1, 2, · · · , s, i = 1, 2, · · · , n and j =
1, 2, · · · , 2m.
Ju� is a T ×T matrix with 1 at positions J [u,�] and J [�,u],

and zero elsewhere I is a T × T identity matrix

T ij = yi − μ − BZ[·,j]

Sij = 1
2
T ijT ′

ij�
−1
e − 1

2
I

∂πij

∂θb
= πij�

−1
e

⎛
⎝T ijZ[b,j] −

2m∑
u=1

πiuT iuZ[b,u]

⎞
⎠

∂πij

∂μ
= πij�

−1
e

⎛
⎝T ij −

2m∑
u=1

πiuT iu

⎞
⎠

∂πij

∂�e
= πij�

−1
e

⎛
⎝Sij −

2m∑
u=1

πiuSiu

⎞
⎠

∂T ij

∂θ ′
b

= −Z[b,j]I

∂T ij

∂μ′ = −I

∂φ
(
yi|μ + BZ[·,j],�e

)
∂θb

= φ
(
yi|μ + BZ[·,j],

�e) �−1
e T ijZ[b,j]

∂φ
(
yi|μ + BZ[·,j],�e

)
∂μ

= φ
(
yi|μ+BZ[·,j],�e

)
�−1

e T ij

∂φ
(
yi|μ + BZ[·,j],�e

)
∂�e

= φ
(
yi|μ+BZ[·,j],�e

)
�−1

e Sij

First order derivatives of the logarithm of the individual
likelihood function
In the following equations we use a short-hand notation
�i(θ) = �i(θ |yi,Mi,λ), and assume b = 1, 2, · · · , s.

∂�i(θ)

∂θb
= �−1

e

2m∑
j=1

πijT ijZ[b,j]

∂�i(θ)

∂μ
= �−1

e

2m∑
j=1

πijT ij

∂�i(θ)

∂�e
= �−1

e

2m∑
j=1

πijSij
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Second order derivatives of the logarithm of the overall
likelihood function
In the following equations we use a short-hand notation
�(θ) = �(θ |Y ,M,λ), and assume b = 1, 2, · · · , s, k =
1, 2, · · · , s, u = 1, 2, · · · ,T , and � = 1, 2, · · · ,T .

∂2�(θ)

∂θk ′∂θb
= �−1

e

⎛
⎝ n∑

i=1

2m∑
j=1

πijZ[b,j]Z[k,j]T ijT ′
ij

⎞
⎠ �−1

e

− �−1
e

⎛
⎝ n∑
i=1

2m∑
j=1

πijZ[b,j]T ij

2m∑
c=1

πicZ[k,c]T ′
ic

⎞
⎠�−1

e

− �−1
e

n∑
i=1

2m∑
j=1

πijZ[b,j]Z[k,j]

∂2�(θ)

∂μ′∂μ
= �−1

e

⎛
⎝ n∑

i=1

2m∑
j=1

πijT ijT ′
ij

⎞
⎠�−1

e

− �−1
e

⎛
⎝ n∑

i=1

2m∑
j=1

πijT ij

2m∑
c=1

πicT ′
ic

⎞
⎠ �−1

e

− n�−1
e

∂2�(θ)

∂μ′∂θb
= �−1

e

⎛
⎝ n∑

i=1

2m∑
j=1

πijZ[b,j]T ijT ′
ij

⎞
⎠�−1

e

− �−1
e

⎛
⎝ n∑

i=1

2m∑
j=1

πijZ[b,j]T ij

2m∑
c=1

πicT ′
ic

⎞
⎠�−1

e

− �−1
e

n∑
i=1

2m∑
j=1

πijZ[b,j]

∂2�(θ)

∂�e[u,�] ∂θb
= �−1

e

n∑
i=1

2m∑
j=1

∂πij

∂�e[u,�]
T ijZ[b,j]

− �−1
e Ju��

−1
e

n∑
i=1

2m∑
j=1

πijZ[b,j]T ij

∂2�(θ)

∂�e[u,�] ∂μ
= �−1

e

n∑
i=1

2m∑
j=1

∂πij

∂�e[u,�]
T ij

− �−1
e Ju��

−1
e

n∑
i=1

2m∑
j=1

πijT ij

∂2�(θ)

∂�e[u,�] ∂�e
= �−1

e

n∑
i=1

2m∑
j=1

∂πij

∂�e[u,�]
Sij

+ 1
2
n�−1

e Ju��
−1
e

− 1
2
�−1

e Ju��
−1
e

⎛
⎝ n∑

i=1

2m∑
j=1

πijT ijT ′
ij

⎞
⎠�−1

e

− 1
2
�−1

e

⎛
⎝ n∑

i=1

2m∑
j=1

πijT ijT ′
ij

⎞
⎠�−1

e Ju��
−1
e

First and second order derivatives of the expected
complete-data logarithm likelihood function
Given current estimated values of θ = (θ1, θ2, · · · , θ s,μ,
vect(�e))′, denoted as θ (ν), the first and second order
derivatives of the expected complete-data logarithm like-
lihood function are shown bellow. We assume b =
1, 2, · · · , s, k = 1, 2, · · · , s, u = 1, 2, · · · ,T and � =
1, 2, · · · ,T .

∂Qc
(
θ |θ (ν)

)
∂θb

= �−1
e

n∑
i=1

2m∑
j=1

π
(ν)
ij T ijZ[b,j]

∂Qc
(
θ |θ (ν)

)
∂μ

= �−1
e

n∑
i=1

2m∑
j=1

π
(ν)
ij T ij

∂Qc
(
θ |θ (ν)

)
∂�e

= �−1
e

n∑
i=1

2m∑
j=1

π
(ν)
ij Sij

∂2Qc
(
θ |θ (ν)

)
∂θ ′

k∂θb
= −�−1

e

n∑
i=1

2m∑
j=1

π
(ν)
ij Z[b,j]Z[k,j]

∂2Qc
(
θ |θ (ν)

)
∂μ′∂μ

= −n�−1
e

∂2Qc
(
θ |θ (ν)

)
∂μ′∂θb

= −�−1
e

n∑
i=1

2m∑
j=1

π
(ν)
ij Z[b,j]

∂2Qc
(
θ |θ (ν)

)
∂�e[u,�]∂θb

= −�−1
e Ju��

−1
e

n∑
i=1

2m∑
j=1

π
(ν)
ij Z[b,j]T ij

∂2Qc
(
θ |θ (ν)

)
∂�e[u,�]∂μ

= −�−1
e Ju��

−1
e

n∑
i=1

2m∑
j=1

π
(ν)
ij T ij
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∂2Qc
(
θ |θ (ν)

)
∂�e[u,�]∂�e

= 1
2
n�−1

e Ju��
−1
e

− 1
2
�−1

e Ju��
−1
e

⎛
⎝ n∑
i=1

2m∑
j=1

π
(ν)
ij T ijT ′

ij

⎞
⎠�−1

e

− 1
2
�−1

e

⎛
⎝ n∑
i=1

2m∑
j=1

π
(ν)
ij T ijT ′

ij

⎞
⎠�−1

e Ju��
−1
e

Extension to other crosses
The extension of score statistic to other cross types (for
instance, intercross F2, recombinant inbred lines, double
haploids) is straightforward, in fact, the auxiliary matri-
ces, expressions of first and second order derivatives of the
logarithm of individual and overall likelihood functions
can be straightly obtained from the general expressions
derived previously. For a specific cross type, the extension
consists basically of building an appropriate design matrix
Z and matrix of parameters B, and substituting 2m in the
summations by the appropriate value according to that
cross type (for instance, 3m for intercross F2).
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