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B chromosome in the beetle Coprophanaeus
cyanescens (Scarabaeidae): emphasis in the
organization of repetitive DNA sequences
Sarah Gomes de Oliveira1, Rita Cassia de Moura2 and Cesar Martins1*
Abstract

Background: To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic
content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the
Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ
hybridization (FISH) mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like
non-LTR transposable element (TE).

Results: The conventional analysis detected 3 individuals (among 50 analyzed) carrying one small metacentric and
mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B
chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis
revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a
pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was
observed for the LOA-like element in the sex chromosomes.

Conclusions: The results indicate that the origin of the B chromosome is associated with the autosomal elements,
as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on
the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin
and evolution of the B chromosome in C. cyanescens.
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Background
Eukaryote genomes are composed of classical genes and
genetic elements, including transposable elements (TEs), B
chromosomes and several cytoplasmic factors that do not
follow Mendelian laws of inheritance [1]. B chromosomes
(also called supernumerary or accessory chromosomes) are
not essential for the life of a species and are thus considered
“dispensable” additional chromosomes. B chromosomes
have been observed in approximately 15% of living species
[1-4]. Most B chromosomes are heterochromatic and com-
posed of repetitive DNA sequences, supporting the idea
that these chromosomes are non-coding. However, some B
chromosomes show the presence of active genes [5-7]. B
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chromosomes demonstrate an irregular behavior during
mitosis and meiosis that allows them to accumulate in the
germ line in a non-Mendelian pattern of inheritance [3,8].
Although B chromosomes have been the focus of intensive
work in a diversity of eukaryotic species [9-17], several
questions concerning their origin, evolutionary mechanism
and function remain unanswered.
In Coleoptera, the presence of B chromosomes has been

described in approximately 80 species belonging to several
families, including Buprestidae [18], Cantharidae [19],
Cicindelidae [20] and Scarabaeidae [21,22]. In general, the
studies in Coleoptera have concentrated on the presence or
absence of B chromosomes in species, with few reports
covering their frequency in populations and/or their mo-
lecular content [18,21-23]. There are a few reports on the
presence of B chromosomes in the Scarabaeidae family,
including species of the Scarabaeinae and Cetoniinae
ed Central Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:cmartins@ibb.unesp.br
http://creativecommons.org/licenses/by/2.0


Gomes de Oliveira et al. BMC Genetics 2012, 13:96 Page 2 of 6
http://www.biomedcentral.com/1471-2156/13/96
subfamilies [21,22]. Among scarabaeines, the Copropha-
naeus species (Phanaeine) showed similar karyotypes con-
sisting of 2n = 20 and meta-submetacentric chromosomes
with a gradual reduction in size, three types of sex chro-
mosomes mechanisms (XY, Xy, XYp), a high amount of
constitutive heterochromatin, and there is no description
of B chromosomes for this group until now [24-26]. Be-
sides their karyotype characteristics, the phaneines are
restricted to the Neotropical region and play an important
role in the ecosystems including nutrient recycling [27-29].
Although the cytogenetic mapping of repetitive DNA

sequences has been performed for several species of
coleopterans, the data are limited to the analysis of
satellite DNA, rRNA and H3 histone genes e.g. [22,24-
26,30-34]. Based in the heterochromatic nature of the B
chromosomes and that several families of TEs are par-
ticularly enriched in heterochromatin, it is particularly
interesting the analysis of TE sequences in relation to
their organization in B chromosomes. Considering the
gap of knowledge on the genomic content of Coleoptera
B chromosomes, the present work performed molecular
cytogenetic mapping of repetitive DNAs in the beetle
Coprophanaeus cyanescens, with emphasis in the investi-
gation of the B chromosome.
Figure 1 Metaphase I stages of Coprophanaeus cyanescens carrying 1
DNA (b), 18S (green) and 5S (red) rRNA genes (c) and LOA-like non-LTR retr
are indicated. Bar = 5 μm.
Results
The standard karyotype observed in C. cyanescens was 2n =
20, XYp (“p” refers to a “parachute” meiotic conformation
between the X and Y), with meta-submetacentric chromo-
somes that showed a gradual reduction in size (Figure 1a).
In addition, three individuals among the 50 analyzed (6%)
carried 1 small-sized B meta-submetacentric chromosome.
For each individual carrying the B chromosome, at least 30
metaphase I stages were analyzed, and 13.8% of the cells
did not present the extra chromosome, indicating mitotic
instability. The B chromosome had a condensation pattern
similar to that of the autosomal chromosomes and was ea-
sily recognized as a small univalent structure in metaphase
I (Figure 1).
The FISH analysis using the C0t-1 DNA probe

revealed positive hybridization in the long arms of all
the autosomal chromosomes and the X and Y chromo-
some and in a pericentromeric block in the B chromo-
some (Figure 1b). The chromosomal mapping using the
18S and 5S rDNA probes showed clusters on distinct
chromosomes (Figure 1c). The 18S rDNA clusters were
observed at nine sites (four autosomal pairs plus one
single chromosome), and the 5S rDNA clusters were
observed at two sites (one autosomal pair) (Figure 1c).
B chromosome. Conventional staining (a), FISH mapping of C0t-1
otransposon (d). The B chromosome and the XYP sex chromosomes



Gomes de Oliveira et al. BMC Genetics 2012, 13:96 Page 3 of 6
http://www.biomedcentral.com/1471-2156/13/96
None of the rDNA probes hybridized with the B
chromosome (Figure 1c).
Analysis of the non-LTR retrotransposon sequence

(hereafter named the LOA-like non-LTR retrotransposon),
which was isolated by polymerase chain reaction (PCR)
and subsequently cloned, revealed a segment of 223 bp
that shared ~65% similarity to the Baggins-1_Nvi family
previously identified in Nasonia vitripennis [35]. The
alignment of these sequences is shown in Additional file 1.
FISH analysis using probes for the LOA-like element
revealed large pericentromeric blocks in eight autosomal
bivalents and the B chromosome and a pericentromeric
block extending to the short arm in one autosomal pair; a
positive hybridization signal was not observed in the sex
chromosomes (Figure 1d).

Discussion
Basic characteristics of the C. cyanescens karyotype
The basic karyotype structure for C. cyanescens (com-
posed of 2n = 20, XYp, with meta-submetacentric chro-
mosomes) is in concordance with previous karyotype
data reported for Coprophanaeus species [26,31,32].
However, this is the first study to identify a B chromo-
some in this species as well as in the Phanaeini tribe. In
contrast to the small size of the B chromosome observed
in C. cyanescens, the B chromosomes were medium- or
large-sized in the other Scarabaeidae species [21,22,36].
In Onthophagus vacca, the presence of one medium-
sized B chromosome was observed with the presence of
heterochromatin in its centromeric region, whereas
Onthophagus similis and O. gazella showed respectively
medium- and small-sized B chromosomes; however,
there was no information about the heterochromatic
pattern. Large heterochromatic B chromosomes, ranging
in number from three to nine, were detected in all the
specimens studied for Bubas bubalus [21]. Individuals
carrying one heterochromatic B chromosome in two
populations of Dichotomius geminatus, corresponding to
an average prevalence rate of 20.93% and 25.00% in each
of the populations, were observed [22].
The frequency with which B chromosomes are

detected in natural populations varies widely between
populations. B chromosomes can be present in high fre-
quencies based on the degree to which a species can to-
lerate the extra chromosome and their power of
accumulation [23]. It is difficult to determine the factors
that are involved in the low frequency of B chromo-
somes in the population studied, and several mecha-
nisms may be involved, including selection, random
transmission, and historical factors.
Among Coleoptera species, the studies reporting the

presence of B chromosomes have generally focused on the
presence or absence of this element and have not consi-
dered their frequency in the population or their molecular
content [18,21,23,36]. The presence of B chromosomes
was reported in representatives of the Cetoniinae and
Scarabaeinae, subfamilies of Scarabaeidae [21,22]. The
evolution of the Scarabaeinae karyotype appears to have
occurred under diverse mechanisms of chromosomal rear-
rangements [37], which could have contributed to the ori-
gin of the B chromosome in this group.

Molecular cytogenetic mapping of C. cyanescens
The hybridization of the C0t-1 DNA to the pericentromeric
regions extending up to the long arms of C. cyanescens
chromosomes is in agreement with the heterochromatin
distribution pattern observed in this species [26]. Although
heterochomatin analyses were not conducted in the present
work, the accumulation of repeated DNAs in the peri-
centromeric region of the B suggests also the comparti-
mentalization of heterochromatin in the same region.
The formation of the heterochromatic chromocenters in
the Phanaeini species [38,39] indicates that this mecha-
nism of heterochromatin amplification may be involved in
the formation of diphasic chromosomes, including the
large pericentromeric block of the B chromosome.
The distribution of C0t-1 DNA in the A complement

and the B chromosome suggests an intraspecific origin of
the extra element and the occurrence of homogenization
mechanisms in the heterochromatic regions between the
B and A elements. Generally, B chromosomes of more re-
cent origin are enriched in repetitive DNA sequences
when compared with the genome from which they origi-
nated [1,23]. This enrichment is indicative of a massive
amplification of repetitive sequences over a relatively short
time-scale; and, it has also been suggested that repetitive
sequences amplification may be a mechanism through
which a chromosome fragment (as a neo-B chromosome)
may become stabilized and selected [1,23]. This does not
appear to be the case for C. cyanescens, indicating that the
B chromosome may not have been recently established in
this species. Although the data obtained indicates an
intraspecific origin of the B chromosome, it was not pos-
sible to identify which chromosomal A element was
involved in the process. However, the chromosomes carry-
ing the 5S and 18S RNA genes are probably not involved
in this process, as the B element does not contain rRNA
gene sequences.
The cytogenetic mapping of the LOA-like non-LTR

retrotransposon mostly to the pericentromeric regions,
including those of the B chromosome, indicates the ex-
change of genetic material between the A and B chro-
mosomes, implying that the B chromosome has
coexisted with the A chromosomes during the period of
transposition. However, it is not possible to reject the
hypothesis that the B chromosome originated from a
segment without LOA-like that was received later, by
transposition. According to a previous report [40], B
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chromosomes can accumulate DNA from various
sources, including transposable elements, and may affect
the structure of the genome by ectopic recombination. A
study in Drosophila melanogaster identified 25 transposon-
mediated rearrangements by ectopic recombination in the
region flanking the white locus [41]. The B chromosomes
could act as a refuge for TEs, which in turn would gener-
ate structural variability in the whole genome. The
hybridization that occurred in homologous regions, such
as the pericentromeric regions, is another indication of re-
combination between the A complement and the B
chromosome, and this recombination event could be
explained by the chromocenter formation during the be-
ginning of meiosis [37].
The present study is the first report on the cytogenetic

mapping of a transposable element in coleopteran chro-
mosomes. The LOA non-LTR retrotransposon was first
isolated from the genome of Drosophila silvestris, a spe-
cies that is endemic to the Hawaiian Islands [42]. These
elements belong to evolutionarily younger clades of non-
LTR retrotransposons [43], contain very few known ele-
ments, and have mostly been identified in Drosophila,
Aedes and Ciona genomes [44].
The distribution of LOA-like elements in the chromo-

somes reinforces an evolutionary relationship between
the A complement and the B chromosome at least in
the pericentromeric area. Recent work involving the
centromere-enriched retrotransposons indicates that
these elements preferentially insert into the centromeric
regions [45]. The LOA-like elements may have been
maintained in the genome of C. cyanescens due to a pos-
sible functional role they play in the maintenance of the
pericentromeric regions. The absence of LOA-like ele-
ments in the sex chromosomes suggests that sex differ-
entiation occurs before the distribution of this
transposable element into the genome. Subsequently, the
suppression of recombination could have produced the
differences observed in the distribution of TEs between
the A complement and the sex chromosomes. These
results suggest that LOA-like element could have been
involved in the maintenance of the pericentromeric
regions and might contribute to the origin of the B
chromosome.
Conclusions
The results obtained by the hybridization of C0t-1 DNA
and the LOA-like non-LTR retrotransposon indicate that
the origin of the B chromosome is associated with auto-
somal elements. The present study is the first report on
the cytogenetic mapping of a transposable element in
coleopteran chromosomes. Our work further suggests
that TEs could also have been involved in the origin and
evolution of the B chromosome in C. cyanescens.
Methods
Animal sampling and cytogenetic analysis
Fifty adult specimens of Coprophanaeus cyanescens
(Olivier, 1789) (Coleoptera: Scarabaeidae: Scarabaeinae:
Phanaeini) were obtained from Parque João Vasconcelos
Sobrinho, Caruaru, Pernambuco State, Brazil. The speci-
mens were collected in the wild according to Brazilian
laws for environmental protection (wild collection per-
mit, MMA/IBAMA/SISBIO no. 2376–1). The experi-
mental research on animals was conducted according to
the international guidelines followed by São Paulo State
University (Protocol no. 35/08 – CEEA/IBB/UNESP).
The testes were fixed in Carnoy solution (3:1 ethanol:

acetic acid) and later stored at −20°C. The chromosome
preparations were obtained by using the classical testicu-
lar follicle squashing technique. Conventional chromo-
some analysis was performed after staining the slides
with 5% Giemsa.

Chromosomal probe isolation
The DNA samples were obtained from frozen tissues
collected from specimens. The procedure for extraction
of genomic DNA followed the protocol previously
described [46] with minor modifications. The quality
and quantity of purified DNA was evaluated in 0.8%
agarose gel and spectrophotometry.
Three sets of DNA sequences were used as probes for

fluorescence in situ hybridization (FISH) as follow: (i)
sequences for the 18S and 5S rRNA genes were obtained
from cloned sequences of the dung beetle, Dichotomius
semisquamosus [22]; (ii) sequences of the LOA-like non-
LTR retrotransposon were obtained from C. cyanescens
by PCR with the RF-Co (5’ CGC CTA CTT CAG GAC
CAG AG 3’) and RR-Co (5’ AGA CTG CAG GCC GTA
GAA AA 3’) primers [47]; (iii) C0t-1 DNA sequences
were isolated from C. cyanescens based on the DNA re-
association kinetics [48] with modifications [49].
PCR products from the non-LTR retrotransposons

were inserted into the pGEM-T plasmid (Promega)
according to the manufacturer’s recommendations, and
the recombinant plasmids were used to transform com-
petent Escherichia coli cells (Invitrogen, San Diego, CA,
USA). The presence of the inserts in the recombinant
plasmids was analyzed by PCR, and the recombinant
clones were stored at −80°C. The recombinant plasmids
were subjected to nucleotide sequencing using an Ap-
plied Biosystems sequencer (3500 Genetic Analyzer).

Analysis of transposable elements
The LOA-like non-LTR retrotransposon sequences iso-
lated by PCR from C. cyanescens were used as queries to
detect related TEs in other genomes available from the
Repbase (http://www.girinst.org/repbase/) and NCBI
(National Center for Biotechnology Information - http://
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www.ncbi.nlm.nih.gov/) databases. The search included
whole genome shotgun contigs, nucleotide collections,
and high throughput genomic sequences. Analysis of the
recovered DNA sequences were performed with the
LIRMM software (Laboratoire Le d’Informatique, Robot-
ique et de Microélectronique of Montpellier) available
online (http://www.phylogeny.fr/) [50-52].

Fluorescence in situ hybridization
The DNA probes were labeled by nick translation with
biotin-11-dATP (Invitrogen) or digoxigenin-11-dUTP
(Roche, Mannheim, Germany) by PCR. The FISH tech-
nique was performed according to a protocol adapted for
Coleoptera [22]. The chromosome spreads were counter-
stained with DAPI (4', 6-diamidino-2-phenylindole), and
the slides were mounted in Vectashield mounting medium
(Vector, Burlingame, CA, USA). The images were cap-
tured using an Olympus DP71 digital camera coupled to a
BX61 Olympus microscope and were optimized for
brightness and contrast using Adobe Photoshop CS2 and
Corel Photo-Paint 13.

Additional file

Additional file 1: Alignment of the LOA non-LTR retrotransposon
nucleotide sequences from Nasonia vitripennis (Baggins-1_NVi) and
Coprophanaeus cyanescens (Cc-1 to Cc-3). The asterisks (*) indicate
similarity in sequence, and the dashes (−) indicate indels.
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