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Abstract

Background: MicroRNAs (miRNAs) regulate many biological processes by post-translational gene silencing. Analysis
of miRNA expression profiles is a reliable method for investigating particular biological processes due to the stability
of miRNA and the development of advanced sequencing methods. However, this approach is limited by the broad
specificity of miRNAs, which may target several mRNAs.

Result: In this study, we developed a method for comprehensive annotation of miRNA array or deep sequencing
data for investigation of cellular biological effects. Using this method, the specific pathways and biological
processes involved in Alzheimer’s disease were predicted with high correlation in four independent samples.
Furthermore, this method was validated for evaluation of cadmium telluride (CdTe) nanomaterial cytotoxicity. As a
result, apoptosis pathways were selected as the top pathways associated with CdTe nanoparticle exposure, which is
consistent with previous studies.

Conclusions: Our findings contribute to the validation of miRNA microarray or deep sequencing results for early
diagnosis of disease and evaluation of the biological safety of new materials and drugs.

Keywords: MicroRNA, Microarray, Deep sequencing, Comprehensive annotation
Background
MicroRNAs (miRNAs) are short ribonucleic acid (RNA)
molecules with an average length of 22 nucleotides (nt),
which exhibit higher stability than messenger RNAs
(mRNAs) [1,2]. They are post-transcriptional regulators
that bind to complementary sequences on target mRNA
transcripts, usually resulting in translational repression or
target degradation and gene silencing [3-5]. MiRNAs
regulate numerous biological processes, including cell via-
bility, proliferation, development and differentiation [1,2].
Similar to mRNA microarray techniques, methods for
studying miRNA expression profiles have been developed
including deep sequencing techniques [6,7]. In addition to
the evaluation of the stability of miRNA during sample
processing, the assessment of differential miRNA expres-
sion profiles has been identified as a reliable method for
the investigation of mRNAs, proteins and mechanistic
pathways involved in particular biological processes, such
as differentiation, carcinogenesis and cytotoxicity. Indeed,
methods have been developed to validate miRNA
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reproduction in any medium, provided the or
microarray or deep sequencing data for biological research
purposes, such as the prediction of miRNA function and
activity, interaction of miRNA and mRNAs and the inves-
tigation of miRNA regulatory influences on sub-pathways
[8-10].
Generally, miRNAs shown to be expressed at signifi-

cantly different levels by miRNAs array/sequencing are se-
lected out through fold-change analysis. The target genes
of selected miRNA are predicted by tools such as PicTar,
myMIR, TargetScan and miRanda [11-15]. Subsequently,
these predicted genes are enriched in KEGG pathway or
Gene Ontology (GO) analyses [16-18]. The KEGG path-
way database records networks of molecular interactions
in cells and the GO analysis provides the ontology of de-
fined terms that represent gene product properties. Three
domains are covered by GO: biological processes, molecu-
lar functions and sets of molecular events with a defined
beginning and end (Figure 1A).
However, miRNAs exhibit broad specificity and may

target several mRNAs in a given cell. The methods for
. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:sunbo@seu.edu.cn
mailto:zdxiao@seu.edu.cn
http://creativecommons.org/licenses/by/2.0


Bioinformatics analysis (KEGG, GO, etc)

miRNAa

miRNAx

mRNAx

mRNAa

A B

C

Re1

Re2

Re3

Re1+Re2+Re3

Figure 1 The global repression effect of a miRNA expression profile on a specific miRNA. Generally, for miRNA microarray or deep
sequencing data analysis, miRNAs (circle) with significantly changed expression profiles are selected through fold-change analysis. The target mRNAs
(triangle) of the selected miRNA are predicted by miRNA target prediction tools such as miRanda (A). Theoretically, a mRNA may be targeted by several
miRNAs with different context scores, which are regarded as the repression ratio score of a miRNA for its target (B). Thus, the total repression ratio score
of the total miRNA expression profile for a specific mRNA can be calculated based on the combined repression effects of the miRNAs on their target
mRNA (C, see formula (1)).
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miRNA target prediction had been intensively studied
[19-22] and the tools available generate several scores
for different potential targets of a particular miRNA.
This reflects the complex regulatory networks of miR-
NAs and mRNAs. Thus, the repression of a particular
mRNA by a given set of miRNAs is mediated by the
combined effects of each individual miRNA on this
common target mRNA [6]. Due to this combinatorial
repression effect, the abundance of each miRNA will
also contribute to the repression capacity of a given set
of miRNAs (Figure 1A).
Based on this study, a mathematical model has been

proposed that can comprehensively predict genes that
are effectively regulated by a given miRNA. This is
achieved by integrating the effect of each miRNA on
their target mRNA based on the combined repressive
effects of the relevant miRNAs. This model can be
used to elucidate the combined effects of a miRNA
profile.
Methods
Data source
MiRNA microarray data from four Alzheimer’s disease
subjects were obtained from the NCBI Gene Expres-
sion Omnibus (GEO), as reported previously [23]. In
this study, postmortem human brain samples were ob-
tained and RNA was extracted from parietal lobes of
postmortem brains of Alzheimer’s disease patients and
controls. The mRNA array measurements were per-
formed at the UCLA microarray core using Affymetrix
HG-U133 Plus 2.0 arrays. MicroRNAs were assayed by
LC Sciences using a custom -Paraflo array containing
probes for 470 miRNAs from Sanger miRBase and 419
miRNAs predicted by miRNAMap.
MiRNA deep sequencing data were obtained in a

previous study that evaluated CdTe nanoparticle cyto-
toxicity [6]. In this study, NIH/3 T3 cells were exposed
to cadmium telluride quantum dots (CdTe QD) to ex-
tract the small RNAs. After exposure to nanomaterials
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for 24 h, the cells were harvested with the trypsin to
extract the miRNAs. Then, the small RNAs in a sample
were converted into a double-stranded cDNA library.
The results of SOLiD sequencing were in the form of
nucleotide sequences and their coverage. The regis-
tered miRNAs were screened out by comparing them
in GenBank (http://www.ncbi.nlm.gov/genbank/) and
miRbase (http://www.mirbase.org/).

Methods
A mathematical model to evaluate the comprehensive
repression rate of specific mRNAs using total miRNA
expression profiles
The repression (Re) of mRNA is directly proportional
to the inhibitory effect (IE) of miRNA. For instance, for
a specific mRNA, mRNAα, regulated by specific miR-
NAs, the formula is as follows:

RemRNAα ∝
Xn
i¼a

IEi−α ð1Þ

Where IEi-αindicate the inhibitory effect of a specific
miRNAi (i = a, b, c,……n) to mRNAα.
For a particular miRNA, miRNAa, IEa is directly pro-

portional to the distribution of miRNAa (DUa) on its
target mRNAα (represented as DUa-α in the following
formula) and the repression score (RS) of miRNAa for
its target mRNAα, which can be obtained from miRanda
or other tools:

IEa−α ∝ DUa−α�RSa−α ð2Þ
DUa-α is directly proportional to the abundance of

miRNAa (AUa) in the given miRNA array or sequencing
database and the ratio of miRNAa combined with
mRNAα (COa,α):

DUa−α ∝ AUa�COa−α ð3Þ
A single miRNAa may target several mRNAs. By in-

duction of Pa − α as the proportion of miRNAa com-
bined with mRNAα, COa − α can be calculated as:

COa−α ¼ Pa−α
Xn
i¼α

Pa−i
ð4Þ

Scoring in prediction tools is designed to reveal the
ability of miRNA to bind complementary regions of
mRNAs [24] and previous work has shown that con-
texts of 7-nt or 8-nt matches appear sufficient for
miRNA-like regulation [25,26]. Studies have concluded
that additional recognition features, such as pairing
with the remainder of the miRNA, accessible mRNA
structures and protein-binding sites are usually
dispensable or occur so frequently that they impart lit-
tle overall specificity [27]. Hence,

Pa−α ∝ RSa−α ð5Þ
In formula (3), AUa indicates the abundance of miR-

NAa in the given miRNA array or sequencing database.
We designated Ca as the counts of miRNAa in the se-
quencing data (or the signal value in microarray data),
and TCmiRNAs as the total counts (or the signal value
for microarray analysis) of miRNA provided by the se-
quencing data. Thus, AUa can be calculated as:

AUa ¼ Ca
TCmiRNAS

ð6Þ

By combining formulae (3), (5) and (6), DUmiRNAa can
be calculated as:

DUa−α ∝
Ca

TCmiRNAs
� RSa−α
Xn
i¼α

RSa−i

0
BBB@

1
CCCA ð7Þ

Hence, according to formula (2), IEmiRNAa can be cal-
culated as:

IEa−α∝
Ca� RSa−αð Þ2

TCmiRNAs�
Xn
i¼α

RSa−i
ð8Þ

By combining formulae (8) and (1), and induction of K
as a coefficient factor, the total regression of a given
miRNA sequencing data to mRNAα can be calculated
as:

RemRNAα ¼ K �
Xn
i¼a

Ca� RSi−αð Þ2

TCmiRNAs�
Xn
i¼α

RSa−i

ð9Þ

Statistical analysis
Z-tests were performed to investigate differences in the
repression of target mRNAs by miRNAs. p0 was calcu-
lated using formula (10), which was used to investigate
the null hypothesis.

p0α ¼ RemRNAαControl þ RemRNAαTest
TCmiRNAControl þ TCmiRNATest

ð10Þ
Here, RemRNAαControl and RemRNAαTest indicate the

repression of mRNAα in the control and test groups,
whereas TCmiRNAControl and TCmiRNATest indicate the
total counts of miRNA in the control and test groups.

http://www.ncbi.nlm.gov/genbank/
http://www.mirbase.org/
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Then, the Z-test was performed according to the fol-
lowing formula:

Za ¼ RemRNATest‐RemRNAαControlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0αð1‐p0αÞð 1

TCmiRNAControl
þ 1

TCmiRNATest Þ
q

ð11Þ

The null hypothesis was rejected at Z-values >2.58
or < −2.58, which indicated significant differences be-
tween the repression of mRNAs in the test and control
groups.

Results and discussion
The global repression effect of a miRNA expression
profile on a specific mRNA
It has been reported that an individual miRNA s may
target different mRNAs. Indeed, context scores for rank-
ing the predicted targets of each miRNA have been pro-
vided by previous studies [10,28,29]. In contrast, one
mRNA may be targeted by several miRNAs with differ-
ent context scores, which are represented by the repres-
sion ratio score of an individual miRNA for its target
(Figure 1B) [30]. To validate miRNA microarray or deep
sequencing results for the prediction of changes in pro-
teins or mechanistic pathways, the total repression ratio
score of the total miRNA expression profile for a specific
mRNA was calculated based on the combined miRNA
repression effects on their target mRNA (Figure 1C, see
formula (1)).
The repression capacity of an individual miRNA on its

target mRNA is affected by miRNA concentration and the
repression score identified using programs such as PicTar.
MiRNAs bind targets with different efficiencies and there-
fore, the distribution of an individual miRNA on the spe-
cific target should be considered. As scoring in prediction
tools is designed to reveal the capacity of miRNA to bind
complementary regions of mRNAs, the repression ability
of a miRNA is directly proportional to the square of the
repression score as shown in formula (9). Formula (9)
shows that, for a given miRNA, the efficiency of binding
to a given miRNA affects the repression capacity in an ex-
ponential manner. Based on the total repression effect of a
given miRNA expression profile on a specific mRNA, the
significantly regulated mRNA can be selected out by Z-
tests for further analysis.

Prediction of biological pathway and process regulation
using miRNA expression profiles based on array data
In order to validate our method for identification of spe-
cific pathways or biological processes regulated by a
given miRNA profile, the significantly regulated mRNA
selected by our algorithm was enriched in KEGG path-
ways or GO terms.
Data from four Alzheimer’s disease subjects and one
control subject were used in this study. In order to apply
KEGG pathway or GO terms analyses for the precise and
comprehensive elucidation of the effects of miRNAs on
biological processes in Alzheimer’s disease, the repression
effect of Alzheimer’s disease miRNA profiles on a specific
mRNA were calculated according to the repression value
obtained using miRNA target prediction tools and the
interaction properties of miRNA and mRNA. Formula (9)
gives a total repression score of a specific mRNA, which is
directly proportional to the abundance of the related
miRNA and the square of the repression value obtained
using miRNA target prediction tools. For example, in sam-
ple S3, beta-catenin mRNA (ENTREZ_GENE_ID:1499;
NM_001904) is regulated by several miRNAs with differ-
ent repression scores given by miRanda, such as hsa-miR-
139, hsa-miR-200a and hsa-miR-320. The total repression
rate calculated using formula (9) was 10,296 in S3 com-
pared with 5,096 in the control group. Based on the re-
pression rate, a Z-test was performed for selection of
mRNAs for further analysis.
The selected mRNAs were enriched into KEGG by

using the web-based GO analysis tool, DAVID and it was
shown that the four Alzheimer’s disease samples shared
most of the KEGG pathways that were found to be signifi-
cantly altered under miRNA regulation (Figure 2A).
Among these significantly regulated KEGG pathways, four
pathways (WNT signaling pathway, MAPK signaling path-
way, axon guidance and pathways involved in cancer) were
highly regulated by miRNA in all of the four Alzheimer’s
disease samples (Table 1). Other pathways, such as endo-
cytosis, focal adhesion, neurotrophin signaling pathway
and regulation of the actin cytoskeleton also showed a sig-
nificant difference between the four Alzheimer’s disease
samples and the control samples (P < 10-5). Studies have
illustrated the close correlation of these pathways with
Alzheimer’s disease [31-38]. Several other selected path-
ways (P < 0.01) are also shown in Figure 3. Most of these,
such as gap junctions, have been reported in the studies
on Alzheimer’s disease [39].
The GO provides the ontology of defined terms repre-

senting gene product properties. Among the three domains
covered by the GO, biological processes, operations or sets
of molecular events with either a defined beginning or end,
can relevantly describe the functioning of integrated genes.
The biological processes involved in Alzheimer’s disease
were assessed based on the significantly regulated genes,
using DAVID. Cellular processes were widely regulated in
Alzheimer’s disease compared with the control group.
Among these cellular processes, the nervous system devel-
opment process was markedly altered in all four Alzheimer’s
samples (P < 10-25). In this process, genes selected using
our algorithm included presenilin (NM_000021), super-
oxide dismutase (NM_000384) and the oxytocin receptor
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Figure 2 KEGG pathways and GO terms significantly regulated by miRNAs in Alzheimer’s disease. KEGG pathways significantly regulated
by miRNAs are summarized in (A). Most KEGG pathways were shared by all four Alzheimer’s disease samples (64%, 32/50) (B). GO terms
significantly regulated by miRNAs are summarized in (C). Four Alzheimer’s disease samples shared most of these biological processes (72%, 42/58)
(D). (+) indicates the positive regulation while (−) indicates negative regulation.
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(NM_000794), which have been reported to be involved in
Alzheimer’s disease [40-42]. Other processes implicated in
Alzheimer’s disease are also presented in Figure 2A. Some
processes were significantly regulated in only one sample.
For example, dysregulation of cell death and programmed
cell death were detected only in S3.
Table 1 The top 5 pathways that were most affected by the m

S2 S3

KEGG pathways -lg(P Value) KEGG pathways -lg(P Value)

MAPK signaling 18.25 Axon guidance 16.54

Wnt signaling 15.34 MAPK signaling 16.04

Axon guidance 15.00 Wnt signaling 15.92

Cancer 14.10 Cancer 14.55

Endocytosis 8.85 Melano-genesis 8.82
Most of the selected pathways and GO terms predicted
by our algorithm were shared by all four Alzheimer’s dis-
ease samples (Figure 2B and D), indicating that this algo-
rithm can be used to predict biological processes and
pathways in cells or tissues based on their miRNA expres-
sion profiles.
iRNAs in the four Alzheimer’s disease samples

S12 S16

KEGG pathways -lg(P Value) KEGG pathways -lg(P Value)

MAPK signaling 16.29 Axon guidance 16.54

Axon guidance 13.41 MAPK signaling 16.04

Cancer 11.70 Wnt signaling 15.92

Wnt signaling 11.15 Cancer 14.55

Endocytosis 7.77 Melano-genesis 8.82
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Figure 3 KEGG pathways and GO terms significantly regulated by miRNAs after CdTe QD treatment. SOLiD sequencing based miRNA
expression profile data of the CdTe QD treated cells were applied to our algorithm. Selected mRNAs indicated to be under significant repression by
miRNA profiling were enriched using KEGG pathways (A) and GO terms (B). (+) indicates the positive regulation while (−) indicates negative regulation.
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Evaluation of nanomaterial cytotoxicity using miRNA
expression profiles based on deep sequencing data
Due to their unique properties and diverse application in
the life sciences, nanomaterials have attracted considerable
interest recently [43-45]. However, knowledge of the cellu-
lar effects of nanomaterials, such as cytotoxicity, is limited
compared with the rapid increase in biological and medical
applications [6]. The lack of reliable methods to assess the
overall cellular effects of nanomaterials as opposed to con-
sideration of conventional toxicity assays remains a crucial
challenge. MiRNAs have been shown to repress gene ex-
pression at the post-transcriptional level and to participate
in a wide range of cellular processes. Moreover, it is con-
ceivable that miRNAs participate in the cytotoxic activity of
nanomaterials, such as apoptosis-like cell death [46]. Com-
bined with the higher stability of miRNA relative to that of
mRNA, investigation of miRNA expression profiles repre-
sents a beneficial technique for elucidation of the biological
effects and the biocompatibility of nanomaterials.
Previously we have reported that miRNAs may partici-

pate in the cytotoxicity of cadmium telluride quantum
dots (CdTe QD) [6,16]. The expression patterns of miR-
NAs were extensively affected after CdTe QD treatment,
resulting in apoptosis-like cell death. SOLiD sequencing
based miRNA expression profile data were applied to our
algorithm. Selected mRNAs indicated to be under signifi-
cant repression by miRNA profiling were enriched using
KEGG pathways and GO terms. KEGG pathways signifi-
cantly regulated after CdTe QD exposure are shown in
Figure 3A. The top pathway on this list was “apoptosis”
(P < 0.001). Figure 4A summarizes the factors involved in
apoptosis pathways. According to this diagram, CdTe QD
treatment induced cell apoptosis via the caspase-3 pathway.
Other factors including Fas, IL1 or calcium-related path-
ways may participate in regulating capsase-3. Furthermore,
this diagram also displays a cell self-protection mechanism
against apoptosis mediated via the inhibitors of apoptosis
(IAP) pathway (Figure 4A).
The functions of the mRNAs selected as significantly

regulated genes by miRNA profiling with GO analysis
were then annotated. As shown in Figure 3B, at the bio-
logical process level 4, the top five processes induced by
CdTe QDs were: negative regulation of growth, regulation
of developmental growth, negative regulation of develop-
mental growth, regulation of cell motion and negative
regulation of developmental growth. Other processes in-
cluded the regulation of cell death, regulation of pro-
grammed cell death, negative regulation of cell migration,
apoptosis and endocytosis (Figure 3B).
In KEGG pathways and GO terms analyses, one of the

main effects induced by CdTe QDs was apoptosis-like cell
death and the apoptosis-related proteins were shown to be
modulated. According to KEGG pathway analysis, apop-
tosis proteins were significantly regulated and GO terms



Figure 4 Biological processes in GO terms significantly regulated by miRNAs after CdTe QD treatment.
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analysis annotated CdTe QDs exposure may arrest cell
growth and induce apoptosis, which is in accordance with
other reports that CdTe QDs induce cell death in variety
of cell types [45,47-49].
MiRNAs play a major role in cellular biological pro-

cesses, including viability, proliferation, development and
differentiation. Due to the stability of miRNAs during ana-
lysis and the development of sequencing methods, miRNA
expression profiling identified as a reliable method for in-
vestigation of mRNAs, proteins and pathways involved in
particular biological processes. In this study, we proposed
a new method for validation of miRNA microarray or
deep sequencing results for prediction of proteins and
pathways under regulation. Our findings may contribute
to early diagnosis of disease and assessment of the bio-
logical safety of new materials and drugs.

Conclusion
MiRNAs play a major role in cellular biological processes,
including viability, proliferation, development and differ-
entiation. Due to the stability of miRNAs during analysis
and the development of sequencing methods, miRNA ex-
pression profiling identified as a reliable method for
investigation of mRNAs, proteins and pathways involved
in particular biological processes. In this study, we pro-
posed a new method for validation of miRNA microarray
or deep sequencing results for prediction of proteins and
pathways under regulation. Using our method, the path-
ways and biological processes involved in Alzheimer’s dis-
ease were predicted with high correlation in four
independent samples. Moreover, this method was success-
fully used for annotation of miRNA expression profiles
from deep sequencing data for evaluation of CdTe nano-
material cytotoxicity. As a result, apoptosis pathways were
selected as the top pathways involved in CdTe nanoparti-
cle treatment. Our findings may contribute to early diag-
nosis of disease and assessment of the biological safety of
new materials and drugs.
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