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Abstract

genetic survey data with complex designs.

Background: This study is motivated by National Household Surveys that collect genetic data, in which complex
samples (e.g. stratified multistage cluster sample), partially from the same family, are selected. In addition to the
differential selection probabilities of selecting households and persons within the sampled households, there are
two levels of correlations of the collected genetic data in National Genetic Household Surveys (NGHS). The first
level of correlation is induced by the hierarchical geographic clustered sampling of households and the second
level of correlation is induced by biological inheritances from individuals sampled in the same household.

Results: To test for Hardy-Weinberg Equilibrium (HWE) in NGHS, two test statistics, the CCS method [1] and the QS
method [2], appear to be the only existing methods that take account of both correlations. In this paper, | evaluate
both methods in terms of the test size and power under a variety of complex designs with different weighting
schemes and varying magnitudes of the two correlation effects. Both methods are applied to a real data example
from the Hispanic Health and Nutrition Examination Survey with simulated genotype data.

Conclusions: The QS method maintains the nominal size well and consistently achieves higher power than the
CCS method in testing HWE under a variety of sample designs, and therefore is recommended for testing HWE of
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Background
This study is motivated by population-based family data
collected from National Genetic Household Surveys
(NGHS), in which complex samples (i.e. sample collected
with stratified multistage cluster sampling), partially from
the same family, are selected. There are two levels of
correlations of the collected genetic data in NGHS. The
first level of correlation is induced by the hierarchical geo-
graphic clustered sampling of households and the second
level of correlation is induced by biological inheritances
from individuals sampled in the same household. More-
over, national household surveys often apply differential
selection probabilities of selecting households and persons
within the sampled households.

NGHS from various countries, such as the Canadian
Health Measures Survey [3], Health 2000 Survey from
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Finland [4] and the US National Health and Nutrition
Examinations Survey [5], have collected blood samples,
from which DNA can be extracted for genetic analyses.
For example, the NHANES III, a nationally representa-
tive survey of the U.S. population conducted by National
Center for Health Statistics (NCHS), has genotyped can-
didate genes for participants 12 years and older.
NHANES III employed a complex sample design, involv-
ing stratified multistage cluster sampling, to select
participants [6,7]. Multiple blood-related individuals are
often sampled from the same household. On average 1.6
persons are sampled per household [8].

There are at least three complications to analyze data
collected in NGHS: 1) differential population weights, 2)
hierarchical geographical correlation among families,
and 3) genetic correlation within families. As known,
genetic variability can differ by race [9] and social-
economic factors [10]. The same factors, in complex
sample designs, are often used to define sampling strata.
Different selection probabilities are applied to each
stratum and oversampling is often conducted to increase

© 2013 Lj; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:yli@survey.umd.edu
http://creativecommons.org/licenses/by/2.0

Li BMC Genetics 2013, 14:14
http://www.biomedcentral.com/1471-2156/14/14

the efficiency of the estimates for certain subgroups (e.g.
African Americans were oversampled in NHANES III).
As a result, differential population weights related to
genetic variability are associated with participants in the
study. The second complication of geographic correlation
in genetic variations is induced because race and social-
economic status of individuals vary by location of resi-
dence, and multi-stage clustered sampling is often
geography-based. Lastly, genetic correlation is induced
by genetic inheritance from biological parents within the
household. Therefore, inflated variances of the estimates
for the genetic quantities due to differential population
weights, geographical intracluster correlation among
households, and the genetic correlation within households
are resulted. Consequently, the sample distribution with
respect to genetic factors can be considerably different
from the underlying population distribution. Researchers
who implement complex sample designs should perform
analyses with adjustments for the sample design
complications. If analysis for simple random samples
(SRS), instead, is performed on data collected with com-
plex sample designs, the inference may be invalid.

Testing Hardy-Weinberg Equilibrium (HWE) of marker
genotype frequencies has been widely recommended as a
crucial step in genetic association studies [11-13]. The
Hardy- Weinberg principal states that without disturbing
genetic-related factors (e.g., non-random mating, selec-
tion, migration, or mutation) the genotype frequencies at
an autosomal locus will attain equilibrium (i.e,, HWE) in a
single generation and maintain this equilibrium in future
generations. Testing for HWE is useful because for non-
codominant loci that are in HWE, genotype frequencies
can be estimated from allele frequencies or vice versa, and
more powerful genetic association studies are possible
[14]. A variety of test methods have been developed to test
HWE in SRS [15-20]. There are, however, limited
literatures in developing HWE tests for genetic data
collected in NGHS, considering both levels of correlations
and differential weights.

Methods developed by She et al. [1] and Li et al. [2]
appears to be the only two HWE tests available that con-
sider all of the three complications. Interestingly, both
methods are derived along different directions. In brief,
tests developed by She et al. [1] are essentially corrected
Pearson Chi-Square (CCS) tests. The exact joint distri-
bution of the three genotypes from father, mother, and
offspring were derived under HWE. Assuming a diallelic
locus (i.e. alleles A and a) of autosomal genes, there are
10 possible genotype combinations among parents-child
triads when ignoring the mating orders of father and
mother. If HWE holds, the observed number of families
in each of the 10 categories follows a multinomial distri-
bution. Departure from HWE was then tested with the
corrected Pearson chi-square statistics, including first-
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Table 1 Joint distributions of three genotypes from
parents-child triads

Genotype

Familial type Parents Child Joint probability Count
1 AA-AA AA p I,
2 AA-Aa AA 2p3pq 15
3 AA-Aa Aa 2p3p, J3
4 AA-aa Aa 2p2p? Ja
5 Aa-Aa AA pin2 Js
6 Aa-Aa Aa 2p2p2 J
7 Aa-Aa aa pip? J;
8 Aa-aa Aa 2p4p3 Jg
9 Aa-aa aa 2psp3 Jo
10 aa-aa Aa P Jio

order correction, second-order correction, or a Satterthwaite
E-version second-order correction [21,22]. By contrast, Li
et al. [2] proposed a quasi-score (QS) test based on quasi-
generalized estimating equations (GEE). Different from the
regular GEE where the covariance matrix are often un-
known, covariance matrix of the observed genotypes in the
quasi-GEE are derived from the condensed coefficients of
identity (CCI) [23], which appropriately measures the sec-
ond level of genetic correlation among family members
within families. The first level of correlation due to hierarch-
ical geographic sampling of families is considered in the
variance estimation of the estimated quasi- scores with re-
spect to the fixation index (correlations between any pair of
alleles within individuals, characterizing the departure from
the HWE) using Taylor linearization methods.

In Li et al. [2], the QS method is claimed to advantage
over the CCS method because the CCS method is
limited to one type of family structure, i.e., 2 parents
and 1 offspring (2P10), while the QS method allows for
a wide range of family structures. Trio (2P10), however,
is one of the common study designs in genetic associ-
ation studies, e.g. transmission disequilibrium test. For
the analysis of genetic data from 2P10O, Li et al. [2]
didn’t make thorough comparisons between the two
methods analytically or numerically. In addition, the QS
and the CCS methods appear to be the only two existing
methods that take account of the two levels of clustering
effects induced by the national genetic household
surveys (NGHS) (i.e. geographic correlation among fam-
ilies within PSUs and genetic correlation within fam-
ilies). Which method should be recommended in the
analysis of NGHS genetic data collected from 2P10 fam-
ilies? For survey practitioners, it is important to select a
proper test that maintains the nominal levels, but with
higher power.

In this paper, we examine and compare the perform-
ance of two methods, in terms of the sizes and powers,
via Monte-Carlo simulation studies under a variety of
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complex sample designs with differential weighting
schemes and varying magnitudes of the correlation
effects. It is observed that the QS method maintains the
nominal size relatively well and consistently achieves
higher power than the CCS method in testing HWE
using data collected from 2 parents and 1 offspring in
NGHS. In Section “Methods”, we outline the detailed
methodology of the CCS and the QS tests. Both
methods are compared in Section “Results” via simula-
tion studies on the finite sample performance and
applied to a real data example from the Hispanic Health
and Nutrition Examination Survey with generated geno-
type data. Finally, the paper is wrapped up in Section
“Conclusions”.

Methods

Consider household surveys with stratified multistage
cluster sample designs such as used in NHANES. These
types of sample designs are described briefly as follows:
The population of individuals is subdivided into disjoint
primary sampling units (PSUs) usually based on the geo-
graphic locations of residence. For example, PSUs can be
small cities or counties or contiguous cities/counties.
The PSUs are grouped into strata so that they are ap-
proximately homogeneous with respect to certain demo-
graphic and geographic characteristics. At the first stage
of sampling, a random sample of PSUs is selected from
each stratum. At the second stage, smaller geographical
units, so called secondary sampling units (SSUs), are
randomly sampled from the sampled PSUs. Households/
families are further randomly selected from the sampled
SSUs, and at the ultimate stage individuals are randomly
selected from sampled households/families. For each
sampled individual, the inclusion probability is the
product of the inclusion probabilities at each stage of
sampling, and the corresponding sample weight is
defined as the inverse of the inclusion probability. In
most surveys the sample weights also involve adjust-
ments for nonresponse and poststratification and can be
considered as the number of people in the population
represented by the sampled individual.

Let there be H strata with I;, PSUs in the /-th strata
for h=1, 2,..., H Within the PSU-ki for i=1, 2, ..., I,
data is collected on J,; families with Kj; individuals
selected in the jth familyand j=1, 2, ..., Jj:

Corrected chi-square tests

She et al. [1] considered a diallelic locus, and the family
structure of parents-child triads. The joint distribution
of the three genotypes from the family under HWE was
derived (see Table 1). Under simple random sampling
setting, if HWE holds then the observed number of fam-
ilies in each of the ten categories has a multinomial
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distribution with parameter vector (leil]l,ﬂ), where
J; is the number of families in the /™ family type and
7 = (P4: 293P0 203Pa 203P%, PaPy: 2iPa, PaPa 2PAP;,
2pap3,p*)" with p, defined as the frequency of allele A
and p, the frequency of allele a.

The departure from HWE can be tested by Pearson
chi-square test statistics [22]. Under complex sampling
setting, each sampled individual represents certain num-
ber of persons (usually>1 depending on the sampling
design) in the population. Accordingly, weighted version
of Pearson chi-square test statistic was proposed and
given by

Xaw = 00w, 710) M(Jy, 71) 0, 7). (1)

where

Jw= (]lw:]2w’]3w1]4w:]5w:]6w:]7w:]8w:]9w:]10w)T with Jiw
representing the weighted number of families belonging
to familial type / for /=1, 2, ..., 10; 7,, is obtained by re-
placing allele frequencies py4 and p, in m by p,, =
(4]1W + 3(]2W + ]3w) + 2(]4w + ]5w + ]6W + ]7w) + ]8w+

]9W)/ (421121]ZW) ’ and ﬁuw =1 _pAW 5 e(jwaﬁw) =
( W — ( 1121]1“’) ﬁw)T , le. the difference vector of

observed number of families and the estimated expected
number of families in each genotype combination; and

A~ -1
. B p/%w 0 )
D3 . ...
M(]w:f[w) = (Z]Zw) 0 2pA‘WpAW . 0
=1 : : ‘. .
o 0 Paw

Due to both levels of correlations and the differential
sample weights under the setting of complex survey de-
sign, the test statistics )(ELW does not have asymptotic
chi-square distribution. Therefore, She et al. [1] made
several corrections based on the x7 ,, test. Via simulated
and empirical studies, they recommended the use of the

Rao-Scott first order corrected test in surveys like
NHANES, and the test is given by

(D) = o/, 2)

where j: Z?:l/ii/g and /i,» are the non-zero

eigenvalues of the matrix XM(J,, 7,,). Here X is a con-
sistent estimator of covariance matrix of 6(J,, 7T, )
derived by Taylor linearization method [24]. According
to Rao and Scott [21], the x% (1) was asymptotically
distributed as x2 under Hy, We also considered the
following tests for comparison purpose.
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~2

Bw® =X (1) (1+57), (3

~

~ ~ 2\ 2 22
where b° = %Z?:l(/li —A) /A . The test x4 ,/(2) has
an asymptotic chi-square distribution with degree of
freedom (df) of 8/ (1 + 152) under the null hypothesis.

ECw(2) =G (@)/{8(1+5) }. (4)

an F version of x7/(2), is asymptotically distributed
as F distribution with df numerator = 8(1 +l;2) and
df _denominator = (Zlelh -H ) under the null hypothesis.

Quasi score test

Li et al. [2] suggested a quasi-score test for testing HWE.
They considered a locus with a (>2) different alleles and
general familial relationships with family size Kj,; (=1, 2,
3...). Define M = a(a + 1)/2, the number of possible dis-
tinct genotypes. The data are collected on the vector of
variables Yy =( Yniks- - Ynijkg- - -Ynijka-1) for each
sampled individual, where y,;, equals to 1 if individual-
hijk has genotype g and 0 otherwise for g=1, ..., M-1. De-
fine a parameter vector 6 = (p, 17T, where pP=Wwn. b
Pa-1) denotes the (a-1) independent allele frequencies and
the frequency of the last allele, p, = 1-X4_}p/ and r
denotes the fixation index. Under the null hypothesis of
HWE, we have fixation coefficient r = 0.

Define E(yuijr) = Wijx With e = ( tuipcrs- - Hhijkgr- - -
tnijkam-1)- If the genotype g is homozygote (e.g. l/)),
Hnijkg = (1-r)p? + py; if the genotype g is heterozygote
(e.g. I/I' for allele [ is not allele ['), pp o =2(1 - r)ppy-
The estimating equations for the estimation of parameters
0 are given by

H I

I, Opty _
5(6) = ; 2 z; S Wi Var™ (i) Wik (vas = mg) = O,
==
(5)

where y,; and u,; are vectors representing values over
family members k = 1,2. . .,Kj,;, and wy,; represent a block-
diagonal matrix whose block-matrices are wy;, a (M-1) by
(M-1) diagonal matrix with each of diagonal elements the
sampling weight associated to individual-/ijk. Note that
the quasi-estimating equation, constructed at the family
level, considers genetic correlation among family members
via Var(yn).

To simplify the notation, the subscript of the jth family
in the ith PSU in the Ath stratum (/ij) is ignored. The co-
variance matrix Var(y) for family-4ij in (5) appropriately
accounts for genetic correlation among family members
within the family. For example, in the case of a biallelic
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locus (A and a) and the family structure of parents-child
triads,

Xp 2Zpo, Z2po,
Var(y) = Zo, Zov0, |,
SYS o,

where SYS denotes that Var(y) is symmetric, and

2 1— 2 —2 3 »
Xp=2X9, =20, = (pA(SYSpA) PaP ),

2papa(1 — 2papa)
3 2
PiDa Papa(1—2pa) )
b)) =2 = sand
pon = aro: ( SYS  pApa +pipa — (2papa)’

1 3
3PAPa = 2P;Pa) ) _

1 2+1 3 3 4
20,0, = <4PA 2PA 417,4
Papa(l — 3papa)

SYS

As known, family sizes and family relationships differ
across families.
To test the null hypothesis of =0, a quasi-score test

statistic was proposed. Let 8 = (p,,,r = 0)” denotes the

solution to S, (5) =0,, where S, is the first vector in
T
the estimating Equations (5) and S(0) = (SPT ,SF ) is
partitioned in the same way as 6 Under suitable
conditions [25,26], a quasi-score (QS) test statistic,

Qs =387 (é) v,'s, (é), (6)
is asymptotically a 7% distributed variable with ({/-H) de-
nominator degrees of freedom with U = Zillh the

total number of sampled PSU’s, where V is a consistent

estimator of the covariance matrix of S, (5) Please refer

to [2] for the estimation of covariance of S, (5)

Results

Monte Carlo simulations

Let the finite population be of size N =300,000 individuals
consisting of M = 2,500 PSU’s with each PSU composed of
40 families with each family having 2 parents and 1 child.
Considering a biallelic locus (allele A and allele a), the par-
ental genotypes are generated independently according to a
multinomial distribution with frequencies of p(aa) =
(1-r)py +rpa » pAa) =201 -rpaps, and  p(AA) =
(1-r)p% + rpa. Given the parental genotypes, the genotype
of the child is generated according to Mendelian law.

In the simulations, two different sample weight
distributions are employed: (1) the sample weight value
of one is assigned to all the sample individuals, i.e. w=1,
so that there is no differential weighting effect; and (2)
sample weight values of 1, 3, and 5 are each randomly
assigned to one third of the sample of individuals,
denoted by w = {1, 3, 5}. The second weighting scheme is
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to mimic the real situation where the sample weights are
noninformative of the genetic data. For example, surveys
oversample the older person or younger children (e..g
NHANES), leading to differential sample weights that
are independent of the genotypes. The type I error rate
and power are calculated based on 1,000 simulation runs
with varying values of allele A frequency ps =0.1, 0.3, or
0.5. We calculate the rejection rates, defined by the pro-
portion of 1,000 simulation runs for which the p-value is
less than the significance level o (=0.05), to evaluate the
performance of the five tests X%y, X4 (1), X5 w(2),
F Xi,w(z) and QS, given by (1), (2), (3), (4), and (6), respect-
ively. Please recall the first 4 tests were proposed by She
et al. [1] and the QS test was proposed by Li et al. [2].

In the first simulation study, the genetic data are
correlated among family members, but independent
among families within PSUs. Specifically, we select 60
PSU’s by simple random sampling from 2,500 PSU’s. As
described above, the genetic information for each pair of
parents of the 40 families in the PSU are independently
generated by multinomial distributions. Thus, the gen-
etic information among the families within PSUs is inde-
pendent. Table 2 presents the sizes and powers given by
the five tests when p, = 0.3. The results when p, = 0.1 or
0.5 showed the similar pattern, and therefore not shown.
It can observed that the sizes of x5 (1) and QS (when
r=0) maintain the nominal level across different
weighting strategies (please see the bolded numbers in
Table 1). Consistent with the findings in [1], the x7 \,(2)
and Fx3 ,(2) are conservative, especially under the case
of differential weighting strategy w = {1, 3, 5}. When r =
0.03, the powers achieved by the x2 /(1) is slightly
higher than the x% y(2); whereas the QS test achieves
the greatest power, more than 50 % higher than the
power by x7 ,(1). For example, under w= {1, 3, 5} the
power of QS test is 66 % [=(0.209-0.126)/0.126] higher

Table 2 Sizes and powers given by five HWE tests: 40
families within each PSU are independent
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than the power achieved by the x7 (1) test. The similar
pattern can be observed when r = 0.05.

In the second simulation study, the genetic data are
correlated among family members as well as among
families within PSUs. In order to introduce the correl-
ation among families within PSUs, we generate a
clustered finite population. In detail, we sort all the
100,000 families by the number of genotype aa within
the family. The 2,500 PSU’s are then formed by grouping
every 40 families sequentially in the sorted population.
Thus, the genetic information among the families in
each PSU is correlated. A simple random sample of 60
PSU’s is then selected from the 2,500 reformed PSU'’s.
Table 3 presents the sizes and the powers of the five
HWE tests when the families in each PSU are correlated.
As expected, the sizes are conservative for x% ,(2) and
Fx%w(2) tests. The x3,(1) test, however, produces
inflated sizes ranging from 0.11 ~0.12. The QS test
maintains the nominal size relatively well. In terms of
the power, however, the QS test consistently achieves
higher power than )(ELW(I), )(%’W(Z) or Fx3(2) when
fixation coefficient r=0.1 or 0.2 across different
weighting strategies.

By comparing results from two simulation studies
(see Tables 2 and 3), it can be observed that the tests
are more powerful when the families within PSUs are
independent, relative to that when the families within
PSUs are correlated. For example, under w = {1, 3, 5},
it requires r=0.03 for the QS test to achieve the
power of 0.209 when the families are independent
(see last row of Table 2); whereas r needs to be as
large as 0.10 for the QS to reach the similar power of
0.216 when there exists correlation within PSUs (see
last row of Table 3).

In conclusion, the QS test appropriately incorporates
two levels of correlations of genetic data, and thus main-
tain the nominal levels relatively well, and consistently

Table 3 Sizes and powers given by five HWE tests: 40
families within each PSU are correlated

r=0 r=003 r=005 r=0 r=0.1 r=02
w =1 =135 =1 =135 =1 =135 w =1 =(135 =1 =135 =1 =(135}
X' 0056 0856 0178 0932 0667 0994 X' 0998  1.000 1000 1.000 1000 1.000
X2 (1) 0049 0044 0163 0126 0646 0512 X2 () 0116 0111 0215 0210 0539 0535
@) 0038 0032 0140  0.106 0616 0478 w2 0035 0031 0078 0072 0242 0232
2 ,(2)° 0030 0021 0103 0085 0551 0408 Fx2 o (2)° 0027 0024 0065 0061 0218 0204
os” 0043 0047 0244 0209 0800 0697 os” 0076 0071 0215 0216 0668 0667

" Tests proposed by She et al. (2009).
“Tests proposed by Li et al. (2011).

#Sizes ranging from 0.036 (: 0.05 — 1.96 x /05 x .95/1000) t0 0.064

(: 0.05 4 1.96 x /.05 x .95/1000) maintain the nominal level and

are bolded.

"Tests proposed by She et al. (2009).
“Tests proposed by Li et al, (2011).

*Sizes ranging from 0.036 (: 0.05— 1.96 x /.05 x .95/1000) to 0.064

(: 0.05 + 1.96 x /205 x 95/1000) maintain the nominal level and
are bolded.
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achieve the highest power compared to x4 (1), x5 v (2)
or F )(i’W(2), across different sampling strategies.

Example from the Hispanic health and nutrition
examination survey with generated genotype data

We use data from the Mexican-American part of the
HHANES [27] that consisted of household interviews
and physical examinations conducted between 1982 and
1984 for a random sample of non-institutionalized Mexi-
can Americans aged 6 month to 74 years residing in
selected areas in the southwestern part of the US.

The HHANES had a stratified multistage cluster sam-
ple design; see [27] for further details about the sample
design. At the last stage of sampling, individuals were
sampled from selected households with rates based on
age: 50 % for 2-19 years, 75 % for 20—44 years, and
100 % for 45-74 years. This within-household sampling
was accomplished systematically from a household ros-
ter obtained by the interviewer. Within a sampled
household, all household members related by blood,
marriage, or adoption were considered to be a family.
To compare the CCS and QS methods, we restricted our
analyses to families with two parents and one child,
resulting in 307 sampled families. Thus, totally 921
sampled individuals are involved in the data analysis.

Since the HHANES did not genotype their sampled
individuals, we generated genotype data using a two-step
procedure by following [2]. In step 1, the allele A fre-
quency pa was generated from the Beta distribution p4
~Beta((1 = r)fa/ r (1= r)(1 - f4)/ ) when r= 0. When r =
0, pa takes f4, where r is the fixation coefficient. In step
2, for each parent, two alleles were drawn at random
from the binomial distribution Bin (2, p,). Given paren-
tal genotypes, the genotype of a child was randomly
generated by the Mendelian law.

According to the within-family sampling design of
HHANES, we set the within-family weights to be 2 if the
individual is 2—19 years; 1.33 if the person is between
20—44 years; and 1 if the person is 45-74 years. The
final sample weight for each sampled individual was
provided and calculated by the product of inclusion
probabilities at each stage of sampling with nonresponse
and postratification adjustments. For construction of
family-level weights, we follow [28] by taking the average
of the remaining weights (= final sample weight /
within-family weight) of 2 parents and 1 child in each of
the sampled families. Family-level weights will be
employed in the analysis.

We varied the values of the fixation coefficient r
to be 0, 0.1, 0.2 and 0.3. Table 4 presents the p-values of
Xaw(1)s Xaw(2), Exiw(2), and QS for testing Hardy-
Weinberg Equilibrium (HWE) with specified f,; = 0.3. All
the four tests take account of the correlation induced
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Table 4 P-value from Hispanic Health and Nutrition
Examination Survey data analysis where the genotype
data is generated with allele frequency f, =0.3 and
varying fixation coefficient r

r=0 r=0.1 r=02 r=03
XD 0347 0207 0.000 0.000
w2 0347 0241 0.006 0.000
X2 (2) 0414 0329 0051 0013
as” 0535 0014 0.000 0.000

“Tests proposed by She et al. (2009); ““Tests proposed by Li et al. (2011).

from the selection of the families, and the biological cor-
relation within the family. Consistent with results from
the simulation studies, f; are conservative, producing
larger p-values than x3 /(1) across varying values of r
and w. All the four tests accept HWE when r=0. The
QS starts rejecting null hypothesis of HWE with p-
values < 0.05 when r>0.1; whereas )(iw(l) accepts the
null hypothesis of HWE when r=0.1 with p-value =
0.207.

Conclusions

In this paper, we compared test statistics recently
proposed by She et al. [1] and Li et al. [2] for testing
Hardy-Weinberg Equilibrium of genetic data collected
from 2P10 families in NGHS. Both methods consider
two levels of clustering (correlation) effects with the first
level induced by the hierarchical clustered sampling of
families and the second level induced by the biological
inheritance within families. Based on results from our
small sample simulation studies, we have the following
observations. First, when genotypes among families
within PSUs are independent, i.e. there is no first-level
correlation from sampling families, the sizes of )(f,ﬁW(l)
and QS (when r=0) maintain the nominal level across
different weighting strategies and the QS test achieves
the greater power under alternative hypothesis of r>0.
Second, when genotypes among families within PSUs are
correlated, the sizes are conservative for Xi,w(z) and
Fxiw(2) tests. Compared to x7,(1), the QS test
maintains the nominal level relatively well. In terms of
the power, however, the QS test consistently achieves
higher power than x3 y, (1), x4 w(2) or Fxj y(2) across
different sampling strategies. Therefore, based on our
limited simulation results, we would recommend the QS
test for testing HWE of NGHS genetic data.

Discussion

We originally planned for testing HWE using the
National Health and Nutrition Examination Survey III
(NHANES III) genetic data. However, in order to access
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NHANES III genetic data, researchers are required to be
onsite at NCHS in Hyattsville, Maryland. Being located
out of the state of Maryland, we are not able to access
the data. Considering the similar survey components in
Hispanic Health and Nutrition Examination Survey
(HHANES) as in the NHANES III, we decided to apply
the developed tests to HHANES with simulated genotype
data. Although the genetic data are simulated, all the sam-
pling components, such as the stratification, hierarchical
clustering, family size, and family relationships, are real,
and thus the analysis can still serve as a useful illustration
for testing HWE in NGHS. However, we admit that the
fact of simulated genotypes in the real data analysis is one
of the limitations in this study.

In the simulation studies, the family members are
selected by family relationship (ie. 2P10). In real
surveys, however, individuals could be selected by their
phenotypic characteristics, e.g., diseased or disease-free,
which are often correlated within certain susceptible
genetic variations. The magnitude of this correlation will
differ depending on the susceptible genetic variations of
interest. In our simulation studies (results not shown),
both methods produced biased estimates of allele fre-
quencies and the type I error rate is inflated when
within-family selection is highly related to the genotypes.
In future research, an extension of the QS estimator will
be studied to account for within-family weights that are
correlated with genetic variations.
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