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Abstract

with 677 SNP markers.

Background: Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study
we used a large sugar beet population of 924 lines representing different germplasm types present in breeding
populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines
have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped

Results: We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and
obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration
developed based on a training population composed of diverse lines is suited to predict the phenotypic
performance within families. Our results show that the prediction accuracy is lower than that obtained within the
diverse set of lines, but comparable to that obtained by cross-validation within the respective families.

Conclusions: The results presented in this study suggest that a training population derived from intensively
phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust
calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable
tool and can thus complement the genomics toolbox in sugar beet breeding.

Background

Genomic selection has been suggested as a novel approach
to increase selection gain in crop and livestock breeding
programs [1-3]. Whereas QTL mapping strategies are
based on the assumption that individual chromosomal re-
gions can be identified that contribute to the trait and
whose effects are estimated, genomic selection uses
genome-wide marker data to estimate genomic breeding
values of individuals. For plant breeding, genomic selec-
tion has been evaluated using empirical data from differ-
ent crops, including maize e.g., [4-11], barley e.g., [12-14],
wheat e.g., [5,15-17], as well as sugar beet [18].

Ridge regression best linear unbiased prediction (RR-
BLUP) [1,19] has been shown to provide high prediction
accuracies across a range of crops and traits [14]. RR-
BLUP assumes that each marker contributes to the trait
and has the same variance which is in accordance with
the infinitisemal model of quantitative genetics and
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explains why RR-BLUP provides good results for complex
traits [20]. Genomic selection is based on linkage disequi-
librium between markers and QTL affecting the trait. In
addition, Habier et al. [21] showed that the accuracy of
genomic selection depends on the exploitation of genetic
relationships between individuals. RR-BLUP was most effi-
cient in exploiting these genetic relationships since all
available markers are used in the model. Plants within
breeding programs will always show a certain degree of re-
latedness and in addition, most important agronomic
traits are complex traits. This suggests that RR-BLUP
should be well suited for genomic selection in applied
plant breeding. Another major advantage of RR-BLUP is
that it is computationally less demanding than other
approaches.

In genomic selection marker effects are first estimated
based on a set of individuals which have been phenotyped
and genotyped. This is often referred to as the training
population. In a second step, the breeding values of indi-
viduals that have been genotyped but not phenotyped are
predicted. It has been shown that the prediction accuracy
decreases when the genetic relatedness between the
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individuals in the training population and those in the pre-
diction set decreases [21] and that high accuracies require
that genotypes from the populations in which prediction
will be done are represented in the training population
[22]. In applied plant breeding programs different germ-
plasm types are available: large biparental families from
early generations which have not been selected yet and
which are tested less intensively, and diverse lines from late
generations that remained after several rounds of selection
[23]. The latter are tested most intensively in field trials
and are often also genotyped to characterize them at the
molecular level. A key question for an efficient and cost-
effective implementation of genomic selection in breeding
programs is therefore whether a calibration model devel-
oped based on a training population consisting of a diverse
set of lines can be used for prediction of the phenotypic
performance within segregating families.

In this study we employed a large sugar beet population
consisting of a panel of diverse lines and four segregating
families to evaluate the potential of genomic selection for
different yield- as well as quality-related traits in sugar
beet and to investigate the prediction accuracy of genomic
selection within families using a training population com-
posed of a diverse set of lines.

Results

The population under study is composed of a total of 924
lines which can be divided into two subpopulations: 248
lines are derived from four biparental families that are
connected by one common parent and 676 lines form a
diversity set with different degrees of relatedness (Figure 1).
All six traits showed significant genotypic variance esti-
mates (P < 0.01) and medium to high heritabilities in the
entire population (0.38 to 0.71) and in the diversity set
(0.51 to 0.70) while across the four families the heritabil-
ities ranged from 0.24 to 0.76 (Additional file 1: Table S1).

Page 2 of 8

In single families the heritabilities ranged between 0.02 to
0.60. The Box-Whisker-Plots indicate significant differ-
ences among the four families for all traits (Figure 2). Con-
sequently, the data set presents a good basis to evaluate
the prospects of genomic selection in applied sugar beet
breeding.

We used fivefold cross-validation to assess the accur-
acy of genomic predictions for the six traits in the entire
population and in the diversity set (Figure 3). We found
that the cross-validated prediction accuracy was high for
all traits except for a-amino nitrogen content in the
entire population which showed only a moderate predic-
tion accuracy. The highest prediction accuracy was ob-
served for white sugar yield. The prediction accuracies
in the four families were generally lower than those
obtained in the diversity set. It must be noted here, that
for comparison the variance component and heritability
estimates of the entire population were used also for the
families. To exclude the possibility that the obtained
prediction accuracies were affected by the unbalanced
phenotyping, we repeated the fivefold cross-validation
with a subset of lines that has been evaluated in at least
three locations. The prediction accuracies were compar-
able to those of the full data set (Additional file 1:
Figure S1). Consistent with previous studies [8,15], we
observed that an increase in population size or marker
density resulted in an increased prediction accuracy with
less variation across cross-validation runs (Additional file
1: Figure S2).

We next evaluated the accuracy obtained by estimat-
ing marker effects in the diversity set and predicting
the breeding values in each of the four families (Figure 4).
We found that the prediction accuracy varied among the
families and was even negative for Family 3. With
the exception of a-amino nitrogen content in Family 4,
the prediction accuracies were substantially lower than
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Figure 2 Box-Whisker-Plots for the six traits shown for the diversity set and for each of the four families. The width of the plots is
proportional to the number of individuals in each group and the notches provide evidence whether or not two medians differ. White sugar yield
(WSY), sugar content (SC), root yield (RY), sodium content (Na), potassium content (K), and a-amino nitrogen content (N).

those obtained within the diversity set (Figure 3). We then  Discussion

varied the size of the training population by randomly  Genomic selection in sugar beet breeding

selecting different numbers of individuals from the diver-  Sugar beet is well suited for genomic research as many
sity set for prediction in the families. For most traits and =~ SNP markers are already available and the assembly of a
families the prediction accuracy decreased slightly with de-  draft genome sequence is approaching completion. In
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Figure 3 Box-Whisker-Plots for the accuracy of genomic predictions assessed by fivefold cross-validation. Results are shown for the
entire population, the diversity set, and the four families, for white sugar yield (WSY), sugar content (SC), root yield (RY), sodium content (Na),
potassium content (K), and a-amino nitrogen content (N).
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Figure 4 Accuracy of genomic predictions for effect estimation in the diversity set and prediction in individual families. Results are
shown for different numbers of plants sampled from the diversity set for effect estimation. White sugar yield (WSY), sugar content (SC), root yield
(RY), sodium content (Na), potassium content (K), and a-amino nitrogen content (N).

germplasm, we observed high cross-validated prediction
accuracies between 0.72 and 0.80 for all traits except for
a-amino nitrogen content which only showed an accur-
acy of 0.48 (Figure 3). This may be attributed to the low
heritability of this trait. Hofheinz et al. [18] recently
reported the application of genomic selection in sugar
beet. Based on a population consisting of 310 inbred
lines derived from 34 crosses they obtained prediction
accuracies for sugar content and loss to molasses of
0.82 and 0.86, respectively. We investigated two add-
itional yield-related and three quality-related traits and
overall our results on the accuracy that can be achieved
for complex traits in sugar beet are in agreement with
those reported in the previous study of Hotheinz et al.
[18]. Our results are also in agreement with those for
complex traits in maize and wheat for which prediction
accuracies of comparable magnitude have been reported
[6,8,14-16,24].

A recent association mapping approach in this popu-
lation identified QTL for all six traits but only few QTL
explained a proportion of the genotypic variance suffi-
ciently high to warrant a marker-assisted selection ap-
proach [25]. This suggests that the traits studied here
must all be regarded as complex traits that are mainly
controlled by many small effect QTL. These will escape
detection in QTL mapping approaches but their effects

can be captured in genomic selection. It must be noted
here, that the prediction accuracy in applied plant
breeding will decrease across cycles as allele frequencies
change, QTL become fixed, and novel QTL alleles are in-
troduced. Thus, genomic selection represents a promising
and powerful genomics tool for sugar beet breeding but will
require a constant recalibration of the prediction models.

Training populations in applied plant breeding

In plant breeding programs, late generation lines rep-
resenting the future varieties are tested most intensively in
multi-location field trials and are often also characterized
with molecular markers [23]. Consequently, these lines
represent the most obvious training population that could
be used in applied plant breeding as both, high-quality
phenotypic data and genotypic data are available for these
lines. Our results revealed high prediction accuracies
within such a diversity set (Figure 3). However, as these
lines are subjected to intensive field testing anyhow, the
potential of genomic selection with these lines lies in the
prediction of traits that are difficult to score or that do not
occur regularly and are therefore difficult to phenotype
conventionally (e.g., certain quantitative resistances or abi-
otic stress). Genomic selection could then be applied to
late generation lines for such traits to reduce resource-
intensive phenotyping.
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Selection within segregating families

In applied plant breeding new crosses are initiated every
year and an important step is the selection of lines
within these segregating families. The question that
arises is whether the above mentioned training popula-
tion consisting of a diversity set can be used for the
prediction within families. This might represent an inter-
esting complement to phenotypic selection for traits
with high genotype times environment interactions. Ap-
plying this approach, we observed that the prediction ac-
curacy was lower than that observed in the diversity set
and varied among families (Figure 4). There was, how-
ever, no consistent trend with regard to their ranking
and the prediction accuracy was not affected by the gen-
etic relatedness of the single families to the diversity set.
Family 2 was on average most closely related to the di-
versity set, but did not show a higher accuracy of gen-
omic predictions as compared to the other families
(Additional file 1: Table S2 and Figure S3). It must be
noted, however, that the average genetic distances to the
diversity set were not much different between families.
A possible explanation for the observed differences in
the ranking between families is that the accuracy of gen-
omic predictions in the families will be high if similar
QTL are segregating in a family and in the diversity set,
and if QTL alleles have comparable effects. As this will
vary between traits, the prediction accuracy will also
vary and consequently the accuracy that can be expected
in any of the families for a given trait cannot be pre-
dicted beforehand.

In general, the prediction accuracies obtained in the
families for effect estimation in the diversity set were
lower than those in the diversity set. Potential reasons for
this decrease in accuracy include but are not limited to: (i)
Insufficient size of the training population. We did ob-
serve a dependency on the size of the training population
as the accuracy decreased with fewer plants sampled from
the diversity set. However, this effect was rather small and
the potential to further increase the accuracy within fam-
ilies by increasing the size of the training population com-
posed of diverse lines was limited in this study. (ii) The
genetic architecture. The number and the effect sizes of
the QTL may differ between the diversity set and families.
In addition, epistasis (QTL-times-genetic background in-
teractions) which has been shown to affect these traits in
the population under study [25] may contribute to the
traits to a different extent. (iii) Different extent of LD be-
tween the markers and QTL. Especially for markers that
are more distant from the QTL the LD may vary [25]. In
addition, the markers closest to the QTL may not be seg-
regating in the families making prediction less accurate
(Additional file 1: Figure S4). High marker densities that
are available nowadays at competitive costs for most crops
can restrict the effect of LD since a high genome coverage
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ensures a consistently high LD between markers and QTL
in each population. (iv) Multiple alleles. SNPs markers are
usually biallelic and can thus only distinguish two alleles.
If multiple alleles at a QTL are present and the QTL is
linked to a SNP, then one SNP allele may be linked to two
or more different QTL alleles. Therefore, the presence of
identical SNP alleles in two plants does not necessarily
imply identical QTL alleles. (v) Genetic distance. RR-
BLUP achieves its accuracy mainly by efficiently exploiting
genetic relationships between individuals and the accuracy
has been shown to decrease with increasing genetic dis-
tance between the training and prediction set [21]. How-
ever, since the parents of the families were derived from
the same breeding pool and are related to the lines from
the diversity set, the lines within families are also not en-
tirely unrelated to the diversity set (Figure 1). The reduc-
tion in accuracy observed here may thus be attributed to
combinations of the above mentioned reasons.

The negative accuracies observed for Family 3 are in-
triguing and similar results have recently been reported
for prediction among less related biparental families in
maize [26]. Notably, the prediction accuracy for Family 3
showed the same trend as observed for the other fam-
ilies, as the accuracy often became increasingly stronger
(albeit negative) with increasing size of the training
population. This suggests that the training population
provided a negative prediction signal which points to op-
posite linkage phases between markers and important
QTL in the diversity set and in Family 3. Consistently,
findings from a simulation study showed that the com-
bination of families into a training population requires
persistence of marker-QTL LD across these families
[22]. It must be noted, that this information may not be
captured by the genome-wide estimates as they do not
necessarily reflect the similarities or differences at the
essential QTL regions. In addition, as indicated by the
principal coordinate plot, Family 3 possessed the lowest
within-family genetic variation of all families and we ob-
served a strong correlation between this within-family
genetic variation and the obtained prediction accuracies
(Additional file 1: Table S2). A lower genetic variation will
result in a lower variation of predicted phenotypes. As this
within-family genetic variation was not mirrored in the
phenotypic variation of the families (Additional file 1:
Table S1), this may be another cause for the low or even
negative prediction accuracies. Furthermore, we observed
a higher number of monogenic markers in Family 3 which
in contrast to the other families may leave important QTL
regions without segregating markers (Additional file 1:
Figure S4). The example of Family 3 illustrates that the
prediction in families for effect estimation in a diversity
set may not always work and requires a careful choice of
the lines used as training population. Only if the training
population is representative for the family in which
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prediction is to be done, genomic selection can be advan-
tageous with high prediction accuracies.

With some exceptions the prediction accuracies in the
families were not high, but nevertheless at a level where
genomic selection could be attractive for preselection in
early stages to screen many genotypes with less accur-
acy. It must be noted, however, that in order to enable a
comparison the heritability estimates from the entire
population were used. Standardizing with the lower her-
itability estimates of the families to obtain rgs would in-
crease the obtained prediction accuracies. Likewise,
the obtained cross-validated accuracies within the fam-
ilies were also rather low (Figure 3). The prediction ac-
curacies in the families when effect estimation was
performed in the diversity set were often as high or even
higher than the ones obtained by cross-validation in the
respective family (Figure 5).

Conclusions

We have shown that genomic selection is a promising
genomic approach for sugar beet breeding. In addition,
we present an approach of using a set of diverse lines as
training population for prediction within segregating
families. The obtained prediction accuracies were prom-
ising and show that this approach does hold some
potential for application in applied plant breeding and
warrants further research.
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Methods

Plant materials, field experiments, and molecular markers
This study was based on 924 diploid elite sugar beet (Beta
vulgaris L.) inbred lines which have been described before
by Wiirschum et al. [25]. The lines are all pollinators with
approximately equal proportions of S1, S2 and S3 inbred
lines. The population consists of 676 diverse lines (the di-
versity set) and four biparental families which combined
constitute 248 individuals (Figure 1). Testcross progenies
were produced by crossing the genotypes to the same
single-cross hybrid as tester. All material used in this study
was provided by the breeding company Syngenta Seeds
AB (Sweden).

The 924 genotypes were evaluated in routine plant breed-
ing trials in 2008 with two replicates at 1-7 locations in Eur-
ope (Additional file 1: Table S3). The evaluated traits were
white sugar yield (WSY, t ha*), sugar content (SC, %), root
yield (RY, t ha!), potassium content (K, mM), sodium con-
tent (Na, mM), and a-amino nitrogen content (N, mM).

The 924 genotypes were fingerprinted following standard
protocols with 677 single nucleotide polymorphism (SNP)
markers that are polymorphic in the population under
study. These markers were randomly distributed across the
sugar beet genome with an average marker distance of 1
c¢M and a maximum gap between adjacent markers of 23
c¢M. Map positions of all markers were based on the link-
age map of Syngenta Seeds AB with a total map length of
698 cM. Following the suggestion of Crossa et al. [5] miss-
ing marker genotypes were imputed with probabilities cor-
responding to the respective allele frequencies.

Phenotypic data analyses

The analyses were based on adjusted entry means calcu-
lated for each location. The following linear mixed model
was used to estimate variance components of the test-
crosses: y; ~ i + lj + g; + e, where y;; is the adjusted entry
mean of the ith sugar beet line at the jth location, 4 the
intercept term, /; the effect of the jth location, g; the gen-
etic effect of the ith sugar beet line, and e; the error term
including the genotype times location interaction effect.
Locations and genotype were modeled as random effects.
Variance components were determined by the restricted
maximum likelihood (REML) method. Significance for
variance component estimates was tested by model com-
parison with likelihood ratio tests where the halfed P
values were used as an approximation [27]. As for test-
cross progenies with one common tester the variance
components due to general and specific combining ability
effects cannot be estimated independently [6] we used the
heritability on an entry-mean basis being aware that this
might result in an underestimation of the prediction ac-
curacy. Furthermore, genotypes were regarded as fixed ef-
fects and best linear unbiased estimates (BLUEs) were
determined for all genotypes and traits.
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Associations among the 924 genotypes were analyzed by
applying principal coordinate analysis (PCoA) [28] based
on the modified Rogers’ distances [29]. PCoA computations
were performed with the software package Plabsoft [30].

Genomic selection
Genomic selection was done by ridge-regression BLUP
(RR-BLUP) [4,19,31]. For RR-BLUP, the following
model was used to obtain estimates of the marker ef-
Ny
fects y = p + ZX,-aj + e, where y is a N x 1 vector of
=1
BLUESs estimated across locations; N,,, refers to the num-
ber of fitted markers; 4; is the effect of the jth marker; X; is
a N x 1 vector denoting the genotype (coded as 0-1-2) of
the individuals for marker j. Following the suggestion of
Meuwissen et al. [1], we assumed that the variance of 4; is
0% /N,,. For a more detailed discussion see Gianola et al.
[32]. We used the error variance of the BLUEs across loca-
tions, i.e., 02, divided by the number of locations (L) to de-
rive the penalty parameter 1. Consequently, A was defined
as (02/L) / (0% /N,,). The estimates of a; were obtained
from mixed-model equations [33]. Given the estimates
of a; and the marker genotypes, genetic values were pre-
Ny
dicted as, PV; = ZX ,»jd/ where Xj; is the marker genotype
=1
of individual i for marker j, and 4; is the estimated effect of
marker ;.

Cross-validation

For the fivefold cross-validation, the respective data set
was randomly divided into five subsets. Four of the sub-
sets (80%) were used for the estimation of marker effects
and the remaining subset (20%) was used as validation
set. In the validation set phenotypic values were esti-
mated based on the estimated marker effects as de-
scribed above. The correlation between observed and
predicted phenotypes (rvip) was calculated. The accuracy
of genomic selection was expressed as rgs = rvp / h
[34,35], where /1 refers to the square root of heritability.
The sampling of training and validation sets was always
repeated 10,000 times.

Additional file

Additional file 1: Supplementary Information. This file contains the
Supplementary Tables and Figures.
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