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Abstract

underlying causes in human populations.

Background: Many efforts have been made to detect signatures of positive selection in the human genome,
especially those associated with expansion from Africa and subsequent colonization of all other continents.
However, most approaches have not directly probed the relationship between the environment and patterns of
variation among humans. We have designed a method to identify regions of the genome under selection based
on Mantel tests conducted within a general linear model framework, which we call MAntel-GLM to Infer Clinal
Selection (MAGICS). MAGICS explicitly incorporates population-specific and genome-wide patterns of background
variation as well as information from environmental values to provide an improved picture of selection and its

Results: Our results significantly overlap with those obtained by other published methodologies, but MAGICS has

several advantages. These include improvements that: limit false positives by reducing the number of independent
tests conducted and by correcting for geographic distance, which we found to be a major contributor to selection
signals; yield absolute rather than relative estimates of significance; identify specific geographic regions linked most

selection.

strongly to particular signals of selection; and detect recent balancing as well as directional selection.
Conclusions: We find evidence of selection associated with climate (P < 10°) in 354 genes, and among these
observe a highly significant enrichment for directional positive selection. Two of our strongest ‘hits’, however,
ADRA2A and ADRA2C, implicated in vasoconstriction in response to cold and pain stimuli, show evidence of
balancing selection. Our results clearly demonstrate evidence of climate-related signals of directional and balancing
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Background

Within the last 100,000 years humans dispersed from Af-
rica to occupy most of the habitable space in the world.
During this process our species has successfully combined
cultural buffering, biological plasticity and adaptation to
cope with the wide range of new ecosystems, pathogens
and climates they encountered [1-3]. Climate, in particu-
lar, comprises many diverse elements such as temperature,
humidity, precipitation and solar radiation, so it would be
surprising if many different genes had not been influenced
by natural selection. Indeed, many physiological traits ex-
hibit geographic trends that correlate with climate [4-8].
However, without an explicit link to global patterns of
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genetic variation, the extent to which these trends reflect
adaptation through natural selection remains unclear.
Many genetic studies on humans have attempted to
identify genes and genomic regions associated with re-
gional adaptation by looking for signatures of selection
[2,9-15]. These studies have relied on a diverse range of
approaches that mostly identify outliers in the empirical
genome-wide data, including searches for markers exhibiting
unusually high levels of geographic differentiation [2,9], for
genomic regions with high linkage disequilibrium and de-
rived allele frequency [10], and for markers where the loss of
genetic variability that occurred when humans migrated out
of Africa has been particularly high or low [11-14]. These ap-
proaches suggest that a substantial proportion of the human
genome contains candidates of positive selection [15].
However, it can be difficult to ascribe environmental
or biological factors to any particular signal. Furthermore,
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wherever signatures of selection are sought by considering
patterns of genetic variation in isolation, i.e. without refer-
ence to a specific hypothesis, it can become difficult to
separate genuine signals from those that arise from
other sources including genotyping errors and other
artifacts.

One way to increase statistical power when searching
for signatures of selection is to study patterns of genomic
variation across populations in relation to particular envir-
onmental characteristics. For example, physiological adap-
tations to temperature and solar radiation, as well as
several other traits, have been shown to vary along a lati-
tudinal cline [16-18], suggesting selection by climate. Even
modest regional allele frequency differences can provide
evidence of selection if they correlate strongly with one or
more environmental variables, provided the environmen-
tal variables are accurately measured and also approximate
the selective pressure over the time of evolution. Explored
earlier by Prugnolle et al. (2005) [19], this approach has
been pioneered by Hancock et al. [20-23], who use a
Bayesian algorithm [24] to search for markers at which
variations in allele frequency correlate more than the gen-
omic average with global variation in one or more climatic
variables. In this approach, absolute significance is not de-
termined. Instead, markers are ranked in terms of their
degree of association. On the one hand this makes the ap-
proach sensibly conservative, but on the other it precludes
a meaningful estimate of the proportion of the genome ac-
tually influenced by selection.

Here we present a new approach for detecting signa-
tures of selection based on the use of general linear
models to analyze similarity matrices. This framework al-
lows three important advantages. First, data from neigh-
boring markers can be combined into a single genetic
window, thereby reducing greatly the number of inde-
pendent tests that need to be performed. Second, the
method is flexible, allowing incorporation of possible
cofactors such as geographic distance between popula-
tions and interactions between variables. In particular,
by fitting genome-wide genetic relatedness we can
control for variation in the level of shared ancestry be-
tween different pairs of individuals or populations.
Third, statistical significance is determined through a
form of Mantel test, based on repeated randomization
(scrambling) of the data at one predictor variable, allowing
absolute estimates of significance rather than empirical
ranking. We apply this approach to genome-wide data
from 45 global populations using four climate variables,
each quantified in both the summer and the winter sea-
sons. We then compare our results with those of Hancock
et al. (2011) [21] available through the dbCLINE on-
line database (http://genapps2.uchicago.edu:8081/dbcline/
main.jsp), and identify a number of overlapping genomic
regions as candidates for recent selection.
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Results

The method we propose is designed to identify regions
of the genome that have experienced climate-related se-
lection since modern humans colonized the world ‘out
of Africa’. We aim simultaneously to reduce the impact
of false positives, by radically reducing the necessary
number of independent tests, and to minimize the im-
pact of observations that are unusual for reasons other
than natural selection, for example genotyping errors.
MAGICS is based on the identification of genomic re-
gions where genetic similarity between populations cor-
relates with climatic similarity, after correcting for
factors such as genome-wide relatedness and geographic
distance.

Previous analyses of genome-wide data and climate
have tended to use a ‘linear’ framework in the sense that
there is a 1:1 correspondence between a given marker
and the trait being measured. For example, one might
conduct a regression of solar radiation index against allele
frequency. With MAGICS, all variables are transformed
into similarity or distance matrices. Thus, solar radiation
index is scored as pairwise differences in solar radiation
index between geographic regions, while genotype data
are scored variously as genotype identity (one locus, same
or different), relatedness (between individuals over mul-
tiple loci) or genetic distance (between populations, mul-
tiple loci). The extent to which two or more similarity
matrices are correlated is classically determined using a
Mantel test, in which the raw correlation between linear-
ized matrices is tested by repeated randomization. We ex-
tend this slightly by fitting general linear models instead
of simple correlations or multiple regressions. This allows
for the inclusion of factors as well as continuous variables
and, where desired, for inclusion of interaction terms be-
tween variables. As in a classical Mantel test, significance
is determined by randomization of one predictor variable.

With this approach, and given the climatic and genetic
data from a range of globally distributed populations, we
seek to fit models of the form:

LocalFst~GWFsr + Geography + Climate

where the response variable, LocalFsy, is the genetic re-
latedness between populations/individuals at a given gen-
omic location, and the predictor variables are: GWFgr or
genome wide Fgr, defined as the genetic distance between
pairs of populations based on all available SNPs across the
genome; Geography, defined as the land-only distance be-
tween population pairs [25]; and Climate, the difference
between pairs of populations at a climate measurement of
interest. In this way we ask the extent to which a given
genomic region differs more or less than expected among
populations, relative to variation in the entire rest of the
genome, and at the same time determine whether this
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measure of difference covaries systematically with the cli-
matic difference between the regions. Geographic distance
is included as a conservative factor to control for devia-
tions from a simple isolation by distance model. This
might include instances where genetically dissimilar popu-
lations live in close proximity or where migration has
caused genetically very similar populations to be physically
distant. Our reasoning is that selective forces due to dis-
ease, for example, may differ greatly between regions with
similar climate on different continents. Local Fgt was cal-
culated across ‘genic windows’ comprising all SNPs lo-
cated + 25Kb from the midpoint of each gene; this 50Kb
window size encompasses the full transcript of roughly
65% of genes in the human genome [26]. Using ‘genic win-
dows’ enabled us to focus on regions of the genome anno-
tated by function, compare our results to those from similar
studies and account for variability in gene size. Alternative
approaches based on fixed or sliding windows could also be
used but were not pursued in the current study. No attempt
was made to weight SNPs by their function in coding, pro-
moter or enhancer regions, nor to exclude SNPs lying outside
shorter genes, although both of these are possible improve-
ments that would be worth exploring in future work.

We applied the MAGICS approach to 28,784 genic
windows for which SNP data were available in a genome-
wide data set of 45 human populations. Given known is-
sues with ascertainment bias [27,28] affecting particularly
African — non-African population comparisons, most
African populations were omitted, the exception being
Egypt where geographic and genetic distance fits well
with the pattern of isolation by distance observed outside
Africa. We searched for signatures of selection associated
with four climate variables over two seasons, summer
and winter. To explore the impact of different data scram-
bling strategies we repeated the entire analysis twice. In the
first run the climate variable was scrambled across the en-
tire dataset, as in a classical Mantel test (CS=0). In the
second run we employed a more conservative approach
whereby scrambling was restricted to within each of six
continents (CS = 1). The latter will tend to exclude associ-
ation driven entirely by differences between continents.
Over both analyses we identified a total of 397 significant
associations (P < =10"hits’) spread across 354 unique
genes included in as many genic windows. Since some hits
involve multiple, adjacent overlapping genic windows and
are therefore non-independent, we also estimated the likely
number of independent hits. For this we define ‘genic
region’ as contiguous groups of genic windows where
no P value > 107, Our hits represent 1.2% of the genic
windows analyzed, and map to 317 different genic regions
(Table 1). The full list of hits by climate variables and associ-
ated Ensembl Gene IDs are provided in Additional file 1:
Table S3. Approximately 93% of these associations (328 out of
397 hits) were revealed using the global scrambling (CS = 0)
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Table 1 Count of hits for each climate variable

a. Summary of hits

Solar Relative Temperature Precipitation

radiation humidity
cs=0
Summer 7 55 4 59
Winter 79 5 67 52
cS=1
Summer 3 1 3 14
Winter 27 1 19 1
CS=0&CS=1
Summer 0 0 0 5
Winter 8 0 3 0

b. CS=0 and CS =1 overlaps

CS=1 <=0.001 <=0.0001 <=0.00001
=0 TOTAL 1283 235 69
<=0.001 3031 634 (135) 153 (25) 53 (7)
<=0.0001 783 269 (35) 75 (6) 23 (2)
<=0.00001 328 147 (15) 44 (3) 16 (1)

Table 1a. Count of hits (-log10P > =5) for each climate variable partitioned
by whether significance testing was conducted by scrambling globally across
all populations (CS = 0) or with scrambling restricted to within each continent
(CS = 1). Table 1b. Dependence of number of hits on the method of
randomization used in significance testing. TOTAL gives the number of genic
windows that achieve the specified significance, determined using CS=0
(worldwide scrambling) or CS=1 (scrambling within continents). Numbers in
the table indicate overlap between the methods with the expected overlap in
brackets, calculated assuming complete independence. Thus, the bottom left
cell indicates that 147 of 328 hits achieving top significance with CS=0
achieved at least the lowest level of significance with CS=1 when the
expected number was 15. Of these 147, 44 achieved at least P<=0.0001,
including 16 that achieved top significance.

strategy. Adding the continent-specific scrambling option
(CS =1) was, as expected, more conservative, yielding only 69
hits. The overlap between CS=0 and CS=1 was small but
significantly non-random (Table 1, chi-square, P = 1.2 x 10°*).

A typical output from MAGICS is presented in Figure 1
for an arbitrarily selected region spanning 25 Mb of
chromosome 1. This figure illustrates several important
characteristics. First, as is well-documented, genes are
patchily distributed, with dense clusters interspersed by
gene-poor regions, for example at ~30 Mb. The conse-
quent clustering of hits is then translated by MAGICS
into ‘genic regions’. A clear example of such local clus-
tering is the group of summer humidity associations
at ~29 Mb, in a region extending more than 2 Mb. This
might indicate either the existence of several genes related
by their function that lie in the same region. Alternatively,
this clustering could be due to locally high levels of linkage
disequilibrium, as suggested in the lower panel.

The difference between using CS =0 and CS =1 is less
than one would expect by chance. If selection occurs
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Figure 1 Typical MAGICS output for a 25 Mb region on chromosome 1. A typical MAGICS output is exemplified by a randomly selected
region of chromosome 1 in which all genic windows are represented by their —log;oP values. Windows yielding a —log;oP > =3 are colored
according to the climate variable associated with the p value. The bottom part of the plot reports the average worldwide linkage disequilibrium
structure for the same region, obtained by Haploview software [29] on all the samples in the study. The LD structure is provided for the sample

region to indicate the independence of MAGICS hits.

only on one continent, worldwide scrambling (CS =0)
will produce a far lower P-value than scrambling within
continents. In contrast, if selection acts globally on the
same trait and in the same way, the difference between
the two scrambling regimes should be much less. Sum-
mer relative humidity yielded 55 hits with CS=0 but
only 1 with CS=1, suggestive of localized selection,
whereas winter solar radiation and winter temperature
yield similar numbers of hits under both regimes and
these are themselves strongly correlated on a global scale
(Spearman rank p =0.76). Similarly, winter precipitation
and winter temperature are strongly correlated (Spear-
man rank p =0.64) and yield similar numbers of hits for
CS =0 (Table 1, Additional file 1: Table S2). These pairs
of environmental variables may therefore exert similar
selection pressures and hence create parallel associa-
tions. Interestingly, this does not seem to be the case be-
cause among all our hits only 36 are associated with
more than one environmental variable at a high signifi-
cance level (P <10) (Additional file 1: Figure S1). Note
that some lack of concordance can be attributed to a
threshold effect. Where the true P-values of two climate
variables are both 107, the stochasticity of randomizations
will cause random variation about this expectation and in
only 25% of such cases will both climate variables be

judged ‘hits’. This effect will operate, albeit to a lesser
extent, wherever both climate variables yield similar
P-values close to the threshold.

For the 397 ‘genic windows’ which yielded at least one
P=0 after 10> randomizations, suggestive of P values
below 107, additional randomizations were added up to
a maximum of 2x10° to identify stronger hits. A total of
56 ‘genic windows’ remain with P = 0 even after the add-
itional randomizations. We therefore implemented a
data-splitting approach to facilitate P-value extrapola-
tion, dividing the data into two randomly selected halves
and then combining the two resulting P-values (see
Methods). Plotting —log(P) for the full data against the
equivalent value obtained by data-splitting reveals a
strong linear relationship, though with appreciable scat-
ter (Additional file 1: Figure S2). Averaging within bins
exposes consistent linearity over the entire range of
values explored, with a slope of 2 and intercept of —0.93.
Importantly, a full-dataset P-value of 1x 10 requires
only 1000 split data randomizations, while one success-
ful randomization in 10° in each half implies an overall
P-value of 10", While acknowledging that there is con-
siderable scatter, we used this approach to assign extrap-
olated P-values to all 56 hits that still yielded P=0 in
2,000,000 randomizations using the following -log;oPyye =
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2 (-log Ppaies) — 0.93. The two top extrapolated values are
for ADRA2A and ADRA2C, two of the three subunits of
the Alpha-2 Adrenergic Receptor. It is remarkable and
provides strong evidence of selection that these belong to
the same gene family and yet are located on different chro-
mosomes and yield highly significant climate associations
for two different variables (summer precipitation and win-
ter temperature respectively). Furthermore, worldwide
patterns of the slope of the correlation between Fgr
and geographic distance for each of the ADRA2A and
ADRA2C loci show a clear inverse relationship with
both summer precipitation and winter temperature, re-
spectively (Figure 2).

To interpret the mode of selection acting at any par-
ticular ‘genic window/region, we used the approach of
Amos and Bryant [30]. Neutral variability declines linearly
with land-only distance from Africa [25,31-35]. Balancing
and directional selection tend respectively to retard and to
accelerate loss of diversity, creating slopes that are
shallower and steeper, respectively. We therefore calcu-
lated the slope of the relationship between heterozygosity
and distances from Africa for all genic windows and asked
whether our hits exhibit an excess of extreme slopes. An
excess of extreme slopes should give the hits a higher vari-
ance, and indeed, the slopes obtained for our hit loci do
exhibit a significantly higher variance than the slopes of
the non-hit loci (F-test, F35328783 = 1.24, P =0.0017). We
find that our hits show a significant enrichment of ex-
treme negative slopes, indicative of directional selection.
Interestingly, our top two hits both show evidence of
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balancing selection, as indicated by shallower than
expected slopes (Additional file 1: Figure S3).

To assess the performance of MAGICS in a wider
context, we compared our results with those published
by Hancock et al. (2011) [21]. Since they analyze each
SNP independently while we use genic windows, we
extracted the most significant SNPs from their dataset in
each of the 27,096 genic windows covered by both stud-
ies. For every climate variable, we explored the overlap
between our top 5% of windows with the top 5% of
Hancock et al. (2011)’s results and assessed the extent
to which windows achieved equal ranking in both ana-
lyses. Our results are summarized in Tables 2 and 3.
We find significant overlap (tested using chi-squared,
all p <10°) for seven out of the eight climate variables,
the exception being summer solar radiation (Table 3),
though it should be remembered that only P-values
that comfortably exceed the ‘hit’ threshold are expected to
show good agreement (see above).

With respect to specific genes, overlaps between the top
MAGICS hits (P < = 10”°) and Hancock et al. hits (P <107>)
are summarized in Table 2. Of note are the appearances of:
a) POLD3 (OMIM: 611415) for both winter solar radiation
and temperature; b) the psoriasis associated [36] solute car-
rier transporter locus SLC12A8 (OMIM: 611316) for winter
solar radiation; c) delta-7-sterol reductase gene DHCR7
(OMIM: 602858), the penultimate enzyme of cholesterol
synthesis, for winter solar radiation; and d) ADRA2A for
both summer precipitation and winter solar radiation. The
association between genes involved in metabolism and

-50
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Figure 2 Relationship between climate and genetic variation around genes ADRA2A and ADRA2C. Interpolated worldwide distributions of
Summer Precipitation and Winter Temperature are presented in panels A and B respectively. Our two top hits, ADRA2A and ADRA2C were
identified as loci in which two or more populations exhibit unusually strong or weak genetic differentiation relative to that expect based on
genome-wide Fst. To capture this, for each population we calculated the slope of the relationship between Fst at the locus of interest and
geographic separation after correcting for genomewide Fsr. Panels C and D present heat maps of these slopes for ADRA2A and ADRA2C
respectively. As seen, the climate heat maps are a close match for the inverse of the genetic differentiation heat maps.
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Table 2 Overlap between our hits, defined as genic windows that yielded a significance of P < =10 with MAGICS and

were also significant in the analysis of Hancock et al. (2011) [21] at P<= 1073

Gene window number Chr Midpoint -log1o(p) Ensembl_gene Hugo_gene Climate variable
3957 1 246259095.5 5522878745 ENSG00000200085 ENSG00000200085 T Winter

4409 2 427934375 5.045757491 ENSG00000200550 ENSG00000200550 Sr Winter

5939 2 2045221285 4769551079 ENSG00000163600 ICOS T Winter

7408 3 126349236.5 4619788758 ENSG00000221955 SLC12A8 Sr Winter

7818 3 173051823 8.107645718 ENSG00000186329 TMEM212 rH Summer

12431 6 108664283.5 6 ENSG00000112335 SNX3 rH Winter

13542 7 42105104.5 5.698970004 ENSG00000106571 GLI3 T Winter

19172 10 98101022.5 4657577319 ENSG00000197430 OPALIN Pr Summer

19390 10 112828735.5 10.1 and 54 ENSG00000150594 ADRA2A Pr Summer and Sr Winter
20844 1 70830115 6 ENSG00000172893 DHCR7 Sr Winter

20915 11 74006345 8and 5 ENSG00000077514 POLD3 Sr Winter and T Winter
20917 1 74074065 5.20E + 00 ENSG00000223202 ENSG00000223202 T Winter

25106 14 103201459 5.00E + 00 ENSG00000126214 KLCT Sr Winter

32676 20 60900313 6.10E + 00 ENSG00000101189 C200rf20 Pr Summer

Climate variables are abbreviated as following: Pr = precipitation, rH = relative humidity, T = temperature, and Sr = solar radiation.

climate variables describing the degree of cold experienced
is consistent with known associations between cold adapta-
tions and metabolism [37].

To understand more about global differences in the way
selection has acted we carried out further randomizations.
For every hit, each continent, defined as the geographic
regions in Additional file 1: Table S1, was re-analyzed sep-
arately, scrambling data only within that continent
while holding all other data constant (Additional file 1:
Table S3). This yielded separate P-values for each
continent-genic window-climate variable combination.
East Asia and Europe yielded the largest and second
largest number of selection signals respectively (317
signals in East Asia, 141 in Europe), largely reflecting
the fact that these two continents are represented
by large numbers of populations spread over large,
climatically diverse regions. Focusing on these two

continents, it is clear that certain elements of climatic
selection have been stronger in one compared with the
other. Thus, summer and winter precipitation both re-
veal a larger number of hits in East Asia compared
with Europe (East Asia summer precipitation =72,
Europe summer precipitation signals=4; East Asia
winter precipitation signals = 34, Europe winter pre-
cipitation signals = 3), while Europe reveals more hits
for summer relative humidity than East Asia (East Asia
summer relative humidity signals = 25, Europe summer
relative humidity signals = 40) (Figure 3, Additional file 1:
Table S3). By implication, the dominant forces driving
adaptation differ between Europe and Asia.

Discussion
We have implemented a novel approach for detecting sig-
natures of recent natural selection in human populations

Table 3 Numerical overlap between the hits obtained by MAGICS in our study and hits obtained by Hancock et al.

(2011) [21] at several significance thresholds

Climate Hancock and this study P of overlap  Our hits Overlap between our This study Hancock<=10> Overlap<=1073
top 5% overlap (P<=10") hits and Hancock’s P<=103
equivalent rank

Sr Winter 150 1.6E-23 76 2 591 215 29
Sr Summer 61 4.1E-01 6 0 94 230 0
Pr Winter 90 6.8E-03 50 0 631 210 7
Pr Summer 104 1.1E-05 53 1 460 208 10
rH Winter 91 4.7E-03 4 0 65 226 4
rH Summer 85 3.6E-02 49 0 471 226 4
T Winter 119 4.7E-10 62 2 504 198 21
T Summer 109 54E-07 4 0 53 229 0

Significance of overlap is obtained with a simple chi-squared test assuming a null hypothesis of complete independence.
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in relation to climate, based on Mantel tests conducted in
a general linear model framework. We compare our re-
sults with those of Hancock et al. (2011) [21], who use a
Bayesian approach to find correlations between allele fre-
quency and climate. We identify a number of candidate
regions that exhibit significant agreement with Hancock
et al. (2011)’s [21] findings, but our use of absolute rather
than relative significance highlights order of magnitude
differences in the number of hits found for the eight cli-
mate—season combinations. For example, summer and
winter temperatures reveal associations with 0.013% and
0.27% of the genes, respectively. In terms of numbers of
hits, winter solar radiation, winter temperature and sum-
mer precipitation seem to have exerted the greatest select-
ive pressure on the human genome.

A perennial issue in any sort of genome-wide scan has
been the necessity to control and correct for the large
number of statistical tests performed, typically of the order
of 10°. One way to reduce the problem is to analyze the
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genome as a series of usually non-overlapping windows
and, within each, to maximize the signal by combining
multiple, semi-independent measures of selection [38].
Our method offers an alternative way to reduce the mul-
tiple hypothesis testing problem. Through use of pairwise
matrices, we are able to combine data from tens or even
hundreds of SNPs within a genic window to yield a single
relatedness value between any pair of individuals or popu-
lations. This reduces the number of tests conducted,
largely dilutes the impact of occasional extreme outlier
SNPs and, following Grossman et al., the use of related-
ness effectively captures several consequences of selection
that are usually tested separately. Use of similarity matri-
ces further negates the need to fit specific models of inher-
itance, since regardless of how selection operates, virtually
by definition, genetic distance among populations will be
either greater (directional selection) or less (balancing se-
lection) than expected based on the rest of the genome.
Balancing selection in particular is often not tested for by
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Figure 3 Comparison between Europe and East Asia specific signals of selection. At each putative hit, we further explored the origin of the
signal by analyzing each continent in turn while holding all other data constant. Only the two best-represented continents, Europe and East Asia,
yield meaningful signals. Panels depict —log;oP in Europe plotted against —log;oP for East Asia under the CS =0 for each of the four climate
relative humidity, T =temperature, and Sr = solar radiation). The lack of strong correlation suggests a tendency
for climate-based selection to have operated independently and largely on different subsets of genes in the different geographic regions.
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classical approaches. However, balancing selection is
expected to act on small genomic scales; restricting the
50 kb window size used here may improve the ability
of MAGICS to accurately detect signals of balancing
selection.

Approaches requiring extensive randomization are not
usually implemented in genome-wide association (GWA)
studies due to the prohibitive number of randomizations re-
quired to achieve a level of significance that indicates a locus
of interest. Our approach offers two improvements. First, by
combining data across multiple SNPs the total number of
tests is reduced considerably, with a parallel decrease in the
required minimum number of randomizations. Second, and
more importantly, we introduce a data-splitting element,
with the product of the P-values obtained in each half of the
data providing an excellent predictor of overall significance.
Through data-splitting, any given number of randomizations
can estimate P-values that are approximately the square of
the minimum P-value obtainable without splitting. This
makes randomization a viable method for assessing signifi-
cance even for genome-wide analyses.

The association of ADRA2C with cold temperatures
(Figure 2) is supported by studies suggesting that the C
subunit of the Alpha-2 Adrenergic Receptor is involved
in vasoconstriction associated with response to cold
[39]. In addition, polymorphisms in both ADRA2A and
ADRA2C genes have been reported to play a role in
modifications of cold and pain sensibility [40]. ADRA2A
and ADRA2C seem to provide a clear example of climate
driven selection, where independent regions of the gen-
ome have experienced selective pressure in human pop-
ulations due to their role in cold and pain response. We
speculate that, in contrast to the positive selection in-
ferred at most other ‘hits; these loci have experienced
balancing selection. Our argument is based on the rate
at which heterozygosity declines with geographic dis-
tance from Africa in this region of the genome [30]. At
both ADRA2A and ADRA2C the slope is appreciably
shallower than expected, with ADRA2C being among
the top 10% of regions with the most positive slopes,
suggesting that selection has acted to retard the loss of
diversity that occurred ‘out of Africa’ (Additional file 1:
Figure S3).

Previous studies [21] have tended to adopt a pragmatic
approach to the interpretation of their results. Instead of try-
ing to interpret the resulting P-values directly, allowing for
the number of tests conducted, genetic non-independence
between populations with shared ancestry as well as other
confounding factors, P-values are ranked on the reasonable
assumption that lower P-value on average indicate stronger
candidates. Our method differs in that the use of non-
parametric randomization allows reasonably objective ‘abso-
lute’ P-values to be generated. The approach of evaluating
environmental variables separately has also been explored
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by Fumagalli et al, which also uses partial Mantel tests to
examine correlations among genetic and climatic variation
using a window-based approach (2011). That this offers a
clear advantage is suggested by the contrasting results from
the eight climate variables analyzed. Climate variable relative
humidity, for example, yields very little evidence of selection,
while others, most notably winter solar radiation, winter
temperature, and summer precipitation, provide abundant
evidence. This pattern seems biologically realistic, in that
one would not expect selection to act equally on all vari-
ables. In contrast, ranking methods assign equal importance
to all climate variables. The large difference between climate
variables that we report also helps to validate our approach.
One could argue that associations are inevitable given the
high degree of autocorrelation between both genetic and cli-
matic data. That some climate variables generate effectively
no good hits is important because it suggests that our GLMs
successfully control for autocorrelation such that the major-
ity of hits found are genuine.

MAGICS differs in other ways from the method used
to detect climate-specific selection signals in Hancock
et al. (2011) [21]. In addition to differences in the unit of
inference, specifically SNPs versus genic windows, we
are also able to ask directly the source of significant as-
sociations. Fumagalli et al. (2011) [1] develop a similar
strategy, but Hancock et al. (2011) [21] achieve this post-hoc.
Our method has the flexibility to restrict randomization to
subsets of the data. In practice, we start by randomizing
across the entire dataset, then test for whole continent ef-
fects by restricting randomizations to within continents, and
finally test for specific within-continent effects by randomiz-
ing within individual continents while holding all other data
constant. This analysis sheds light on another facet of the
patterns we detected, and may help to distinguish between
associations that are due entirely to differences in climate
between continents, and those that can arise due to selec-
tion in relation to other factors that become spuriously
linked to the tested climate variables simply because two or
more global regions either share or differ in their climate.
Future iterations of our work may incorporate gene expres-
sion data, as it has been suggested to drive environmental
adaptations in humans [41].

A concern of any association study is the possibility of
false positives. Our results suggest that this issue has
been largely mitigated. In isolation, a method prone to
false positives due to aspects of the genetic data alone,
for example linkage disequilibrium, ascertainment bias
or genotyping errors, should generate similar numbers
of ‘hits’ with all climate variables. This is clearly not the
case in our analyses, since relative humidity yields far
fewer extreme values compared with all other variables
and winter and summer seasons often yield very differ-
ent numbers. The other concern is that the climate vari-
ables themselves tend to be distributed in a way that
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promotes spurious associations. For example, if people mi-
grated along or against climatic clines, genetic similarity
and climate could become correlated. That our winter and
summer values usually generate very different numbers of
hits despite being correlated with each other, would again
seem to indicate that the ‘hits’ are largely genuine.

Conclusions

We demonstrate here that MAGICS is a powerful and
flexible approach that can be used to identify regions of
the genome involved in adaptations to specific environ-
mental variables, isolating them from highly related
confounding factors such as geographic distance, and
also being able to localize the signals to particular re-
gions of the world. The increasing availability of whole
genome sequences of individuals from multiple global
populations will provide additional opportunities to care-
fully study the specific influences of the environment on
genomic variation.

Methods

Genetic data

We combined published data for 862 individuals belong-
ing to 45 distinct global populations drawn from five
published sources [42-46] (Additional file 1: Table S1).
Only populations represented by a minimum of nine un-
related samples were included in the analysis, with the
exception of the HGDP Colombian population, repre-
sented by 7 individuals, to increase the presence of pop-
ulations from the Americas. We also merged North
Italians and Tuscans from the data of Li et al. (2008), to
provide a larger sample size for Italians. Several popula-
tions from India were merged to form a “South Indian”
population.

Gene positions for the implementation of MAGICS
were determined using NCBI Build 36.1, University of
California Santa Cruz version Hgl8. Ensembl gene pre-
diction models recognize a total of 34,156 protein cod-
ing genes, RNA genes and pseudogenes in this build of
the human genome. Among these, 28,784 were covered
by at least one SNP and were used in our analyses. We
constructed ‘genic windows” around these genes by tak-
ing the midpoint of each gene, calculated as (transcrip-
tion start + end positions)/2, and the region 25 kb either
side of this point. We chose to keep the windows of con-
stant size to minimize bias in favor of larger genes, but
acknowledge that cases can be made for a number of
other strategies. All comparisons between our data set
and that of Hancock et al. (2011) [21] were limited to
the subset of 27,096 genes found in both studies.

Geographic and climate data
Geographic coordinates of populations were taken from
published data, where available, or else taken from the
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midpoint or capital of the country or region of origin.
Land-only geographic separation in kilometers were pro-
vided by A. Manica [25]. To investigate the role of specific
environmental variables on human genetic variation we fo-
cused on four climate variables and their variation across
two seasons: (1) T, air temperature (measured in °C), (2) Pr,
precipitation rate (l(g/mz/s), (3) rH, relative humidity (%),
and (4) Sr, solar radiation (W/m?). The data source we use
reports data in terms of monthly averages across ~40 years
of the collection, from the NCEP/NCAR database [47]. To
account for seasonal variation, we took the summer
and winter seasonal averages. Data extraction from the
NCEP/NCAR website (ftp://ftp.cdc.noaa.gov/Datasets/
ncep.reanalysis/) was conducted using an in house Perl
script (Climate Manager), available upon request.

Statistical analyses

MAGICS was implemented using a custom R script
(http://cran.r-project.org). To maximize algorithm speed
in order to conduct large numbers of randomizations,
we exploited the R package Rcpp which facilitates easy
incorporation of C++ code snippets. C++ subroutines
were written to calculate linearized pairwise dissimilarity
matrices from genetic/climate data. Pairwise Fgr values
between all populations were pre-calculated using Weir
and Cockerham’s 1984 estimator [48].

Significance was tested by extensive randomization.
We chose to randomize the climate variable, in each
case scrambling (sampling without replacement) the cli-
mate variable values among populations, recalculating
the dissimilarity matrix and refitting the original model.
Randomized fits that yielded lower Akaike Information
Criterion (AIC) values than the original model were tal-
lied. To maximize algorithm speed and to avoid spend-
ing large amounts of time on non-significant genomic
regions, randomization number was increased initially
up to a maximum of 100,000 until either 10 more ex-
treme AIC values had been obtained from a minimum
of 100 randomizations, whichever came first. Note that
unless the randomization process ends without finding
10 more extreme AIC values, P-values tend to be slightly
conservative due to the fact that they end on a success.

The simplest form of randomization involves scram-
bling the climate variable evenly across all populations.
However, this strategy could increase the chance of weak
associations appearing disproportionately strong if a cli-
mate value that appears to be found globally is actually
unique to a single continent. For a more conservative
strategy, we therefore repeated our analysis but this time
restricted scrambling to within each of six pre-defined
continents: Europe, East Asia, Central and South Asia,
Middle East, Americas, and Oceania. Finally, we can also
use our approach to ask which continents contribute
most to any particular putative association. To do this,
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once a ‘hit’ is found, the analysis is repeated for each
continent in turn, scrambling data only for the current
continent while holding all other data constant.

Data-splitting methods

Randomization approaches benefit from being non-
parametric but an importance disadvantage is that they
are computer-intensive. This problem is particularly
acute in GWA studies, where the determination of
experiment-wide significance requires literally billions
of iterations. We therefore explored methods of ex-
trapolation. Trials based on the distribution of AIC
values or the proportion of null deviance explained
were unsuccessful due to long, poorly defined tails in
the distribution of the randomized statistics. A more
promising approach is based on data-splitting. If data
for a significant regression are divided into two ran-
dom halves, the P-value of the whole should approxi-
mate the product of the P-value of the two halves
analyzed separately, an assertion that we verified by
simulation. We therefore explored an algorithm in
which, for each randomization, the dataset was divided
into two random halves, each of which was then ana-
lyzed as a separate set of pairwise matrices. Specific-
ally, two random halves are defined afresh at each
randomization, used to analyze both the unscrambled
and scrambled data, and counts tallied for each half
when the AIC of the scrambled data yielded a lower
AIC value than the unscrambled data. This approach was
then applied to all highly significant ‘hits’ (P =0 in 10°
randomizations) but with the maximum randomization
number extended to 2,000,000 and with full-dataset
randomizations conducted in parallel for calibration.

Data availability

The results from the MAGICS analyses for all the 28,784
genic windows are available online (http://www.zoo.cam.
ac.uk/zoostaff/meg/MAGICSresults.xlsx). Information on
the results table are provided in: The link http://www.zoo.
cam.ac.uk/zoostaff/meg/README_Raj_et_al_2013.txt.
Balancing versus positive selection

In MAGICS the coefficients of the GLM should be in-
formative about the nature of the selection acting locally.
If populations experiencing contrasting climates also ex-
hibit greater than expected differentiation this would
suggest directional selection. However, there is appre-
ciable ambiguity. Where populations in similar climates
are more genetically similar than expected this might ei-
ther indicate directional selection fixing a similar variant
or balancing selection reducing divergence through drift.
For a clearer picture we therefore turned to a method
based on variation in the extent to which variability was
lost as humans migrated out of Africa.
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Overall, heterozygosity declines with distance from Af-
rica. However, the exact amount of variability lost should
be modulated by natural selection, with balancing selec-
tion tending to reduce loss and directional selection
tending to accelerate loss of heterozygosity. This concept
has been used successfully to show that genomic regions
that show signatures of selection are enriched for im-
mune genes [30]. Inference of the mode of selection act-
ing on a given genomic location was conducted exactly
following Amos and Bryant (2011) [30], using their data.
Briefly, Amos and Bryant (2011) reported the Pearson
correlation coefficients of average SNP hetereozygosity
and distant from Africa. Data comprise Phase II and III
SNP data from HapMap, representing seven different
populations and the analysis was conducted with a win-
dow size of 50 Kb. An argument could be made to cal-
culate slopes using our data from 45 global populations.
However, we elected not to do this for several reasons,
including non-independent from other analyses and the
fact that Phase I data may be subject to ascertainment
bias. By using the data from Amos and Bryant (2011)
[30] we achieve statistical independence from our data
with a dataset that has proven ability to detect contrast-
ing patterns of selection at immune-related genes. We
therefore applied the same algorithm to derive the cor-
relation coefficient and slope for the relationship be-
tween heterozygosity and distance from Africa for each
of our genic windows, allowing us to define the mean
and standard deviation, and hence to ask whether our
putative ‘hits’ show independent evidence of selection,
and if so, whether the selection is likely to be balancing
or directional.

Supplemental data
The Supplemental Data section includes three figures
and three tables.

Web resources

Results for all the genic windows are available at: http://www.
zoo.cam.ac.uk/zoostaff/meg/MAGICSresults.xlsx. Information
on the results table are provided in: The link http://www.zoo.
cam.ac.uk/zoostaff/meg/README_Raj_et_al_2013.txt.

Additional file

Additional file 1: Figure S1. The number of genic windows showing
P <= 10 (blue) or <= 107 (red) in more than 1,2 3 or 4 climate
combinations 2. Figure S2: Regression line between the —log;oP
obtained using the full dataset run on 2*¥10° randomizations (Pyc)
and the same run masking half of the dataset each time (Ppajes) 2.
Figure S3: Inference of directional and balancing selection associated
with climate 3. Table S1. Climate variables assigned to the 45
populations used in this study 4. Table S2: Correlation of MAGIC hits
by climate variables 5. Table S3: All the genic windows yielding a
hit ( —logoP >=5) in the present study 7.
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