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Abstract

Background: Genetic epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome with extremely
variable expressivity. The aim of our study was to identify the responsible locus for GEFS+ syndrome in a
consanguineous Tunisian family showing three affected members, by carrying out a genome-wide single
nucleotide polymorphisms (SNPs) genotyping followed by a whole-exome sequencing. We hypothesized an
autosomal recessive (AR) mode of inheritance.

Results: Parametric linkage analysis and haplotype reconstruction identified a new unique identical by descent
(IBD) interval of 527 kb, flanking by two microsatellite markers, 18GTchr22 and 15ACchr22b, on human
chromosome 22q13.31 with a maximum multipoint LOD score of 2.51. Our analysis was refined by the use of a set
of microsatellite markers. We showed that one of them was homozygous for the same allele in all affected
individuals and heterozygous in healthy members of this family. This microsatellite marker, we called 17ACchr22,
is located in an intronic region of TBC1D22A gene, which encodes a GTPase activator activity. Whole-exome
sequencing did not reveal any mutation on chromosome 22q13.31 at the genome wide level.

Conclusions: Our findings suggest that TBC1D22A is a new locus for GEFS+.

Keywords: Febrile seizures, GEFS+, Autosomal recessive, Genome wide SNPs, Linkage analysis, Exome sequencing
Background
Epilepsy is one of the most common serious neurological
disorders at worldwide level [1]. Environmental and gen-
etic factors are known to play a role in its pathogenesis.
Segregation studies suggest that most epileptic syndromes
are complex disorders, but several monogenic forms have
also been described. Genetic (formerly named generalized
[2]) epilepsy with febrile seizures plus (GEFS+) is such a
Mendelian inherited epileptic syndrome. This familial
autosomal dominant (AD) epilepsy shows a wide range of
phenotypes such as febrile seizures (FS), FS plus (FS+) –
defined as FS persisting beyond the age of 6 – as well
generalized and partial seizures [2,3]. In some families,
most severe epileptic phenotypes have been described
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such as the severe myoclonic epilepsy of infancy or
Dravet syndrome [4-6].
Up to now, eight GEFS+ loci have been registered on

OMIM database [7-16]. Three genes are known to be
causative for GEFS+ phenotype: SCN1B (MIM#600235;
GEFS+1) [7], SCN1A (MIM#182389; GEFS+2) [10] and
GABRG2 (MIM#137164; GEFS+3) [11]. Familial forms of
pure febrile seizures (FEB) have also been described. Segre-
gation and twin studies of FS suggest a polygenic or multi-
factorial mode of inheritance [17,18]. In most FEB families,
phenotype follows an AD mode of inheritance [19]. To
date, according to OMIM (Online Mendelian Inheritance
in Man – http://www.ncbi.nlm.nih.gov/omim) database,
eleven FEB loci have already been reported [20-30] and
only four genes have been linked to FS related phenotypes:
SCN1A (MIM#182389; FEB3A) [31], MASS1 or GPR98
(MIM# 602851; FEB4) [32], GABRG2 (MIM#137164;
FEB8) [27] and CPA6 (MIM#609562; FEB11) [30].
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Finally, two other genes are considered as “suscepti-
bility” genes to FEB syndrome and epilepsy: GABRD
(MIM#137163; GEFS+5) [15] and SCN9A (MIM#603415;
FEB3B/GEFS+7) [33].
In the present study, we reported the clinical and genetic

studies of a GEFS+ consanguineous Tunisian family with
an autosomal recessive (AR) mode of inheritance. We
used homozygosity mapping, which is a method of choice
for localizing genes responsible for AR diseases in consan-
guineous families [34]. This approach allows identifying
identical by descent (IBD) regions inherited from a
common ancestor. IBD loci are homozygous in all the
affected members but not in other relatives. In the present
study we report a new locus on chromosome 22q13.31 in
which TBC1D22A gene (TBC1 domain family, member
22A, also known as C22orf4) is located.
Results
Clinical description of consanguineous Tunisian family
with GEFS+ patients
The familial pedigree is shown in Figure 1 and main
clinical features of affected individuals are described
in Table 1. The occurrence of generalized tonico
clonic seizures (GTCS), absence seizure and FS+ led
Figure 1 Consanguineous Tunisian GEFS+family pedigree. Legend: A.
which are ordered from centromere to telomere. Markers from the Illumina
shown in solid lines. Recombinaison events are shown by solid drawbar. M
respectively. Each phenotype is describing by different colors. B. List of ma
Markers from the Illumina array are in italic.
us to consider a GEFS+ syndrome in the present
family.
The proband (IV-4) is a 17-year-old boy, born at term

after an uneventful pregnancy. At the age of 2, he
suffered from a first complex FS. At the age of 6, a
febrile GTCS and absence seizures were observed. Due
to the continuation of FS, since the age of 5, he has been
treated with valproic acid. Neurological examination
revealed a mild mental retardation. Standard EEG tracings
showed generalized spike waves.
His first cousin, patient IV-3, is an 18-year-old boy,

born at term after an uneventful pregnancy, from a con-
sanguineous marriage between first degree cousins. In
addition to FS+ which persisted until the age of 13, he
experienced, at the age of 3, GTCS. Since the age of 8,
absence seizures were also observed. Between the ages
of 8 to 12, he was treated with valproic acid. Neuro-
logical and EEG exams were normal.
Patient IV-2, first cousin of the two previously de-

scribed patients, is a 13-year-old girl, born at term after
an uneventful pregnancy. She showed FS+ until the age
of 10 and she suffered from GTCS since the age of 7.
She has been treated by valproic acid since the age of
5. Neurological examination and EEG tracings were
normal.
Haplotype reconstruction for markers on chromosome 22q13.31,
array are in italic. The IBD haplotype shared by family members is
aternal and paternal chromosomes are designated by M and P,
rkers used for haplotype reconstruction with physical position.



Table 1 Clinical characteristics of affected individuals

Subject
(sex, age) *

FS AFS EEG Neurological
examination

MRI Treatment/
ageOnset age/

remission, age
n Onset age/

remission, age
Type/n

IV-2 (F, 13 y) 4 y/yes, 10 y 4 7 y/8 y GTCS/3 Normal Normal Normal VPA/7
y-until now

IV-3 (M, 18 y) 2 y/yes, 13 y Numerous 3 y/7 y GTCS/1 yearly Normal Normal Normal VPA/8
y-12 y

8 y/9 y A/numerous

IV-4 (M, 17 y) 2 y/no Numerous 6 y/11 y GTCS/5 3 Hz generalized SW Mild mental
retardation

Normal VPA/5
y-until now

A/numerous
*All individuals were agree to publish clinical details.
M: Male, F: Female, y: years, FS: Febrile Seizures, AFS: Afebrile Seizures, n: Seizures number, EEG: Electroencephalogram, GTC: Generalized Tonico Clonic Seizures, A:
Absence, SW: Spike Wave, MRI: Magnetic Resonance Imaging, VPA: Valproic Acid.
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MRI scans were normal in all affected family members.

Genetic linkage and haplotype analysis
We assessed microsatellite markers (Additional file 1:
Table S1) of four GEFS+ loci and seven FEB loci, that
were known at that time. Haplotype reconstructions and
analysis of recombination events allowed excluding all
the GEFS+ and FEB loci analyzed in the present family.
A genome wide genotyping was then performed and

parametric linkage using the AR mode of inheritance
identified a linked region of 10.6 Mb on chromosome
22q13.31 (Additional file 2: Figure FS1) flanked by the
two SNPs rs3203726 and rs728592 with a maximum
multipoint LOD score of 2.51 (Additional file 1: Table
S5). On the same chromosome, positive LOD scores
were also observed at six other loci (Additional file 1:
Table S6). However, haplotype analysis showed that all
these loci exhibited only one or two consecutive homo-
zygous SNPs in every affected individual. Consequently,
they are less likely to represent the disease locus. More-
over, due to the number of obligate carriers of the
disease (8) compared to affected ones (3), the AD model
is not likely.
The 10.6 Mb candidate region was further confirmed by

using a set of microsatellite markers (Additional file 1:
Table S2). For haplotype reconstructions, we used homo-
zygosity mapping method, which allow localizing homozy-
gous IBD genomic region(s) responsible for AR diseases in
consanguineous families. We confirmed the existence of a
common homozygous IBD haplotype shared by all the
three patients. Therefore, the candidate region was re-
duced to an interval of 527 kb, flanked by two microsatel-
lite markers, 18GTchr22 and 15ACchr22b. This locus was
homozygous in all three affected relatives and heterozy-
gous in other family members (Figure 1A). Within this
homozygous IBD locus lie the 9 last exons and the 3’UTR
of TBC1D22A which encodes the member 22A of Rab
GTPase activator with a TBC1 domain family (Figure 2).
Two polymorphic markers, 17ACchr22 and rs2017931,
are also displayed within the IBD interval (Figure 1A). The
most interesting one is the 17ACchr22 microsatellite
marker due to its high variability. Its allele 4, correspond-
ing to 16 AC repeats, was found homozygous in all af-
fected relatives and heterozygous in all other unaffected
family members. We estimated allele frequencies of
17ACchr22 in a sample of 70 Tunisian controls. Ten
alleles (corresponding to 13 to 22 AC repeats) were
observed, and the most common alleles were allele 7 (19
repeats) 25%, allele 8 (20 repeats) 22.1%, allele 5 (17
repeats) 17.9%, and allele 6 (18 repeats) 10.7%. Finally, the
IBD allele 4, had a frequency of 7.14% and was never
found homozygous in the present Tunisian population
(Additional file 1: Table S7).
Array CGH analysis did not reveal any CNV at the

genome-wide level in affected individual IV-3.

Mutational analysis
Mutation analysis was performed by whole-exome sequen-
cing in patient IV-3 where 94.5% of the coding part of the
RefSeq genes was covered at least 8×, which was sufficient
to detect homozygous substitutions. This experiment
revealed only three homozygous non-synonymous putative
deleterious variations over the entire genome. Two of them
were found on chromosome 22q13.31, within the 10.6 Mb
linked region: c.5159C > T (S1720L) in the TNRC6B (trinu-
cleotide repeat containing 6B) gene and c.4433C > T
(T1478M) (rs8141262) in the CACNA1I (alpha 1I subunit
of calcium voltage-dependant channel) gene. Genotyping
these two missense variations, in all Tunisian family mem-
bers, was done by HRM assay and confirmed by Sanger
sequencing. These analyses showed that they are not linked
to the disease phenotype, since the two other affected cous-
ins (IV-2 and IV-4) were heterozygous for both variations.
The third variation, found homozygous in patient IV-3, is
located on chromosome 1p36.11: c.604T > C (S202P)
(rs6687605) in the LDLRAP1 (low density lipoprotein
receptor adaptor protein 1) gene. This polymorphism,
genotyped by Sanger sequencing (Additional file 1: Table
S3), was also found homozygous in his unaffected cousin
IV-1. Therefore, rs6687605 is not linked to GEFS+
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Figure 2 Structure of the TBC1D22A gene according to Ensembl (http://www.ensembl.org/index.html) with localization of markers
within and flanking the 527 Kb IBD linked locus.
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phenotype in this family, according to the IBD assump-
tion. Finally, we also performed Sanger sequencing for
KCNJ4, since this gene codes for a ion channel protein.
This family of genes are often found mutated in several
epilepsies. Moreover, this gene is located within one of the
6 chromosome 22 short homozygous regions (Additional
file 1: Table S6), which are considered as not linked to
the disease (see Genetic linkage and haplotype analysis
section). No mutation was observed in this gene.

Discussion
The present study described clinical and molecular inves-
tigations on GEFS+ syndrome in a Tunisian consanguin-
eous family. The occurrence of both GTCS and absence in
addition to FS+, and in absence of other types of seizures
(e.g. myoclonic jerks), led us to consider that GEFS+
phenotype is likely within this family [2]. To our know-
ledge, it would be the first description of a consanguineous
GEFS+ Tunisian family with a putative AR mode of inher-
itance, a transmission previously described in a Moroccan
consanguineous family, showing FS and temporal lobe
epilepsy phenotypes [30]. Moreover, all GEFS+ families,
described in OMIM database, exclusively show an AD
mode of inheritance [7-16]. Using homozygous linkage
and whole-exome sequencing method, we mapped the
pathogenic locus responsible for the disease within a short
interval of chromosome 22q13.31 in the present Tunisian
consanguineous family.
We first excluded by linkage analysis all known GEFS+

loci at that time, as well as those associated to FS pheno-
types. Epileptic syndromes have also been observed in
patients with structural variants [35,36], such as CNVs
on chromosome 15q13.3 are known to play an import-
ant role in the genetic etiology of idiopathic generalized
epilepsy [37]. We also excluded such genomic event in
this family.
The 22q13.31 region, where we mapped the disease

locus, has been implicated in a complex phenotype with
epilepsy in 5-year-old boy with a 7.9 Mb de novo dele-
tion of chromosome 22q13.2-qter [38].
Based on the homozygosity of an IBD locus in patients

only, refined mapping allowed reducing the disease locus
to the 9 last exons and 3’UTR of TBC1D22A, and even to
a shorter interval around the exon 12. However no muta-
tion has been observed by whole-exome sequencing in
any of these last exons of TBC1D22A. Homozygous alleles
of the two polymorphic markers (17ACchr22 microsatel-
lite and rs2017931), found in all patients, are likely to be
non-functional and probably in linkage disequilibrium
with the disease mutation in one of the TBC1D22A in-
trons or in 3’UTR. The disease mutation could affect the
splicing of TBC1D22A. Unfortunately, we were unable to
test this hypothesis in absence of available RNA samples
from the affected members of the family.
The first crystal structure of TBC1D22A was done in

2008 showing the diversity of human TBC domain fam-
ily members [39]. Very recently, Shapshak et al. found
that TBC1D22A gene had a differing gene expression
profile across patients showing HIV associated dementia
[40]. TBC1D22A gene is expressed in brain tissues with
a percentage of 2.14% (http://smd.princeton.edu/cgi-bin/
source/sourceSearch). Moreover, GWAS suggested
an association with human longevity and a SNP
(rs5766691) located in TBC1D22A [41], within the
527 kb IBD homozygous interval.

Conclusions
In conclusion, we reported a new locus on chromosome
22q13.31 in a consanguineous Tunisian family with a
GEFS+ phenotype with an original AR mode of inherit-
ance. We were not able to identify the disease mutation
but restricted the linked interval to a part of TBC1D22A,
which is expanded from exon 5 to the 3’UTR of the
gene. Further studies will confirm whether this gene is
also mutated in other families with GEFS+.
This study was approved by the Research and Ethics

Review Board of the Department of Neurology, University
Hospital of Geneva and by the Ministry of Higher Educa-
tion and Scientific and Technological Research of Tunisia.

Methods
Family ascertainment and phenotyping
We recruited a consanguineous Tunisian family extended
over four generations, comprising 3 affected and 19 non-
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Table 2 Tested and excluded known FS and GEFS+ loci

Locus Candidate
gene

Marker Genetic
position
(cM)

Physical
position
(Mb)

LOD
Scores

FEB1 D8S553 81.50 67.10 -9.31

D8S1058 90.10 73.09 -10.43

D8S279 90.20 73.15 -15.94

FEB2 D19S424 10.97 3.18 -16.30

D19S177 20.75 5.47 -12.04

D19S1034 20.75 6.06 -8.99

D19S406 25.17 7.33 -13.27

D19S76 25.17 7.56 -9.23

FEB4 MASS1 MASS1Int85 99.30 90.20 -12.83

D5S644 104.76 95.84 -12.95

FEB5 D6S1620 129.10 129.99 -5.31

D6S472 132.70 132.58 -9.52

FEB6 IMPA2 D18S1153 34.70 10.12 -10.08

IMPA2Int5 42.00 12.01 -16.96

D18S71 42.80 12.59 -9.78

GEFS+1 SCN1B D19S425 58.70 40.19 -11.14

SCN1BInt1 59.00 40.21 -11.52

D19S893 61.40 40.26 -11.43

GEFS+2/
FEB3

SCN1A/
SCN2A

D2S2330 175.50 166.41 -10.71

D2S2345 177.20 168.43 -6.59

D2S2314 188.90 176.57 -5.54

GEFS+3 GABRG2 D5S1465 162.00 161.35 -12.02

GABRG2Int1 162.50 161.44 -17.29

GABRG2Int5 162.60 161.48 -17.29

D5S2576 162.63 161.51 -16.17

D17S2131 162.75 161.88 -15.99

D5S422 163.90 162.09 -14.19

GEFS+4 D2S1360 38.33 17.36 -3.68

D2S305 38.87 19.28 -3.69

D2S2342 40.47 20.19 -3.81

FEB11/
ETL5

CPA6 D8S507 75.00 59.30 -5.18

D8S1812 78.30 60.85 -5.47

D8S1843 78.80 62.42 -9.12

D8S544 81.00 65.75 -11.07

D8S533 81.50 67.16 -11.37

D8S1775 85.80 68.99 -11.99
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affected members, who all originated from Tunis (Tunisia)
(Figure 1). The segregation of the trait suggests an AR
mode of inheritance: all the affected relatives are on the
last generation and one of them (IV-3) is born from first
cousins (III-3 and III-4). The two other affected relatives
were born from one parent with the same common ances-
tors as III-3 and III-4. The two other parents (III-1 and
III-6) could descend from a putative common ancestor
with their spouses because they all originated from a small
village located in the North of Tunisia.
All family members were agree to publish clinical details

and they were clinically assessed at Charles Nicolle
University Hospital (Tunis) by experienced epileptologists
(Hela Khiari-Mrabet and Amel Mrabet). Information on
FS and afebrile seizures, age at onset, duration, type and
number of seizures, intellectual outcome, antiepileptic
drug therapy, and seizures outcome were obtained from
their parents and case notes when available. Electroen-
cephalographic (EEG) and magnetic resonance imaging
(MRI) scans were done for all affected family members.
FS+ phenotype was defined as FS persisting beyond
the age of 6 years [2]. Generalized tonic clonic seizures
(GTCS) and absence seizures were defined according to
the criteria established by the “International League
against Epilepsy” [42-44].

Tunisian control group
Seventy unrelated healthy Tunisian controls (mean age
48.5 ± 16.5) were recruited at Charles Nicolle University
Hospital (Tunis). These individuals did not have any per-
sonal and familial history of seizures.

Genomic DNA
Oral and written informed consent was obtained from
all participants or their legal representatives. Blood sam-
ples were collected and genomic DNA was extracted
from peripheral blood leucocytes by phenol/chloroform
procedure [45].

Exclusion mapping
Linkage analysis with a panel of 36 microsatellite
markers spanning the FEB loci (FEB1, FEB2, FEB3,
FEB4, FEB5, FEB6 and FEB11/ETL5) and GEFS+ loci
(GEFS+1, GEFS+2, GEFS+3 and GEFS+4) known at that
time were firstly explored (Table 2). Primer sequences
are listed on Additional file 1: Table S1 and PCR condi-
tions are available as Additional file 1. We excluded all
these previously linked loci by linkage analysis.

Genetic linkage and haplotype analysis
A genome-wide linkage study was performed by using the
Illumina Gene Chip Linkage Infinium II HumanLinkage-
24 Panel Breadchip® (Illumina, San Diego, CA), which
allowed us to genotype 5913 SNPs.
Two-point and multipoint logarithm of odds (LOD)
scores were calculated with MERLIN 1.1 program, assum-
ing an AR inheritance with complete penetrance, a disease
allele frequency of 0.00001 and a phenocopy rate of 0. The
haplotype reconstruction for family members was done
manually, regardless of the individual affection status.
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To confirm the region with a LOD score of 2.51 found
by linkage analysis and in order to refine the mapping, we
chose a set of 8 microsatellite markers located at the
chromosome 22q13.31 and distributed at average intervals
of 0.2 Mb (Figure 1B). According to the linked region
defined by positive LOD score, we chose some microsatel-
lite repeats using UCSC database (http://genome.ucsc.
edu) by specifying “microsatellite” in “variations and
repeats” part. Primer sequences (Additional file 1: Table
S2) and PCR conditions are available on Additional file 1.

Genome wide CNVs analysis
We have also performed a copy number variations (CNVs)
analysis by using the Agilent Human Genome compara-
tive genomic hybridization (CGH) Microarray Kit 244 K
(Agilent, Santa Clara, CA). The slide was scanned on an
Agilent DNA microarray scanner. Data were obtained by
Agilent Feature extraction software 9 and analyzed with
Agilent CGH analytics 3.4 software, using the statistical
algorithms zscores and ADM-2 with a sensitivity threshold
of 2.5 and 6.0, respectively, and a moving average window
of 0.2 Mb. Mapping data were analyzed on the human
genome sequence using the NCBI database Build 35,
Hg17 (http://www.ncbi.nlm.nih.gov).

Candidate gene mutational analysis
Linkage results showed six other loci with positive LOD
scores in the vicinity of the 527 kb IBD region. In one of
them lies KCNJ4, which encodes a potassium inwardly-
rectifying channel (subfamily J and member 4). According
to its physical position and its functional role, this putative
candidate gene for epilepsy, was sequenced in the present
consanguineous family. We performed PCR for the two
exons and splice junctions. We designed flanking exon
primers from published sequences with the Primer3
(version.0.4.0) online program (http://bioinfo.ut.ee/pri-
mer3-0.4.0/primer3/input.htm). Primer sequences are listed
on Additional file 1: Table S3 and PCR conditions are avail-
able on Additional file 1.

Exome sequencing
Paired-end sequencing was performed using Illumina
GAIIx/HiSeq 2000 instruments (Illumina, San Diego, CA)
available at the Department of Genetic Medecine of the
School of Medicine from Geneva. Sequence capture was
performed using Agilent Sure Select Technology (Agilent,
Santa Clara, CA) using either the All Exome kits or
custom design corresponding to the linkage intervals and
IBD regions. We typically obtain in excess of 30 million
read pairs (60 million reads) of 76 nucleotides per GAIIx
lane and 100 million reads pairs of 100 bp per HiSeq2000
lane allowing multiplexing of 2–3 exomes per lane.
Alignment of reads and call of single nucleotide variants

and small indels were done using the latest version of
MAQ/BWA [46] and PinDel [47] softwares. Only genetic
variants with high-quality score were further investigated.
Variant annotation was performed using the ANNOVAR
package [48]. Generation of high-quality data necessary
for reliable SNP detection across the targeted regions
required 30-fold genomic coverage (equivalent to 15-fold
coverage per haplotype).
Each DNA variant was subsequently compared to Single

Nucleotide Polymorphism database (dbSNP132, NCBI) and
1000genome project dataset. Only the unique and novel
DNA variants were selected for additional filtering based
on the nature of the mutation (gene structure location, nu-
cleotide conservation, codon change, de novo occurrence)
and familial segregation. Polyphen2 [49] and Sift [50] pro-
grams were used to assess the pathogenecity of the filtered
variants. If necessary, the final list of potential pathogenic
variants were further refined by selecting genes func-
tionally relevant to epilepsy. T1478M of CACNA1I,
S1720L of TNRC6B and S202P of LDLRAP1 were further
explored by classic Sanger sequencing and high resolution
melt (HRM) assay using a Rotor-Gene 6000 instrument
(Corbett Life Science, Australia). More details are given in
Additional file 1 and in Additional file 1: Table S3 and
Additional file 1: Table S4.

Additional files

Additional file 1: Table S1. Primer Sequences of Microsatellite Markers
for Exclusion Mapping. Table S2 Primers Sequences of Microsatellite
Markers for Haplotype Analysis on 22q13.31. Table S3 Primers Sequences
for Sanger Sequencing. Table S4 Primers Sequences for HRM assay.
Table S5 Lod Scores of linked locus on chromosome 22q13.31. Table S6
Loci on Chromosome 22q13.31 with Positive LOD Score. Table S7
17ACchr22 Microsatellite Genotype and Allele Distributions in the
Tunisian Control Population.

Additional file 2: Figure FS1. LOD scores were calculated using Merlin
program. A new region was linked on the chromosome 22q with a
maximum of LOD score of 2.51.
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