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Abstract

Background: Japanese Black cattle are a beef breed whose meat is well known to excel in meat quality, especially
in marbling, and whose effective population size is relatively low in Japan. Unlike dairy cattle, the accuracy of
genomic evaluation (GE) for carcass traits in beef cattle, including this breed, has been poorly studied. For carcass
weight and marbling score in the breed, as well as the extent of whole genome linkage disequilibrium (LD), the
effects of equally-spaced single nucleotide polymorphisms (SNPs) density on genomic relationship matrix (G matrix),
genetic variance explained and GE were investigated using the genotype data of about 40,000 SNPs and two
statistical models.

Results: Using all pairs of two adjacent SNPs in the whole SNP set, the means of LD () at ranges 0-0.1, 0.1-0.2,
0.2-0.5 and 0.5-1 Mb were 0.22, 0.13, 0.10 and 0.08, respectively, and 25.7, 13.9, 104 and 6.4% of the r values
exceeded 0.3, respectively. While about 90% of the genetic variance for carcass weight estimated using all available
SNPs was explained using 4,000-6,000 SNPs, the corresponding percentage for marbling score was consistently
lower. With the conventional linear model incorporating the G matrix, correlation between the genomic estimated
breeding values (GEBVs) obtained using 4,000 SNPs and all available SNPs was 0.99 for carcass weight and 0.98 for
marbling score, with an underestimation of the former GEBVs, especially for marbling score.

Conclusions: The Japanese Black is likely to be in a breed group with a relatively high extent of whole genome LD.
The results indicated that the degree of marbling is controlled by only QTLs with relatively small effects, compared
with carcass weight, and that using at least 4,000 equally-spaced SNPs, there is a possibility of ranking animals
genetically for these carcass traits in this breed.
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Background

Most economically important traits in beef cattle, includ-
ing carcass traits, are controlled by many quantitative trait
loci (QTLs), which usually have relatively small individual
effects. For such traits, genomic evaluation (GE) and selec-
tion (GS), as proposed by Meuwissen et al. [1], is expected
to chase the QTLs simultaneously using single nucleotide
polymorphism (SNP) markers, given that at least one SNP
is in linkage disequilibrium (LD) with each QTL. In con-
cept, successful GS is expected to accelerate genetic
improvement by reducing the generation interval and in-
creasing the accuracy of genetic evaluation [2].

The recent development of various SNP chips has en-
abled high-throughput genotyping and allowed animal
breeders to study and conduct GE and GS. By simulating
50,000 genome-wide high-density biallelic markers like
SNPs, VanRaden [3] showed better performance of best
linear unbiased prediction (BLUP) using a genomic rela-
tionship matrix (G matrix) relative to that using an additive
relationship matrix (A matrix), based on pedigree informa-
tion [4]. In dairy cattle, GS has already been adopted in
some countries and is an effective method for increasing
the rate of genetic improvement. In beef cattle, on the
other hand, its adoption has been slower, because the ac-
curacy of the genomic estimated breeding value (GEBV) is
much lower because of less availability of sires with highly
accurate results in progeny tests.

Habier et al. [5] proposed the use of lower-density and
equally-spaced SNP panels for effective GE, irrespective
of trait. If such SNPs can explain substantial proportions
of genetic variations in carcass traits and be almost as
effective as higher-density panels in evaluating GEBVs,
their lower cost would make them useful, especially in
beef breeding females. Traits that are measured after
slaughter, as well as those that are difficult or expensive
to record, are also traits for which GS could substantially
improve genetic gain. However, for carcass traits, includ-
ing degree of marbling in beef cattle, the effects of differ-
ing densities of SNPs used to estimate genetic variance
and GE have been poorly studied.

Japanese Black cattle are the primary breed of Wagyu,
which are the modern native beef cattle in Japan, and
are well known for meat qualities such as marbling. This
breed has also been distributed for beef production in
North and South America and Australia. In Japan, native
Japanese cattle were crossed with British and Continen-
tal breeds during an approximately 10 year period in the
early 1900s, and then, under a completely closed breed-
ing system, the four breeds of Wagyu, including the
Japanese Black, were fixed through strict selection over
many years [6]. Moreover, since the relaxation of beef
import restrictions in Japan in 1991, beef quality traits
such as marbling have received more emphasis in the
domestic production of the Japanese Black. In the same
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year, genetic evaluation of carcass traits using the mixed
model methodology began [7]. These factors have led to
intensive use of a low number of sires with high predicted
breeding values for meat quality, and consequently a sharp
decline in effective population size [8].

The accuracy of GE depends on the extent of LD be-
tween SNP markers and QTLs, the number of animals
with phenotypes and genotypes in the reference popula-
tion, the heritability, and the distribution of QTL effects
for the trait [9]. The first of these factors is closely related
to effective population size, and the density of SNP
markers used that can be under the control of animal
breeders. In this study, effects of density of equally spaced
genome-wide SNPs on genetic variance explained and GE
were investigated for carcass traits in beef cattle, using
Japanese Black data and assuming two statistical models.

Results and discussion

Extent of linkage disequilibrium

For the extent of LD, summary statistics of the squared
correlation (?) and the distance (d) for all pairs of two
adjacent SNPs in each SNP set are presented in Table 1.
Figure 1 depicts the changes in means of r* and d, to-
gether with all values of /°. With all available SNPs, the
means of * and d were 0.204 and 0.07 Mb, respectively.
When the number of SNPs used was decreased to 20,000,
10,000, 8,000, 6,000 and 4,000, the average r* values be-
came 0.144, 0.096, 0.086, 0.077 and 0.066, respectively,
and the corresponding means of d were 0.13, 0.26, 0.33,
0.44 and 0.65 Mb in turn. With all the SNPs, the means of
¥ at ranges 0-0.1, 0.1-0.2, 0.2-0.5 and 0.5-1 Mb was

Table 1 Extent of linkage disequilibrium and distance
between two adjacent SNPs and correlations for
elements of G matrices

No. of SNPs r d (Mb) Correlation*
selected Mean SD  Mean SD o Iy ra
100 0.008 0.011 25.98 315 061 0.51 0.59
200 0.017 0.027 12.86 195 074 064 072
500 0.032 0.060 5.10 103 082 079 086
1,000 0.048 0.077 255 062 089 088 092
2,000 0.057 0.093 127 039 094 094 09
4,000 0.066 0.108 0.65 065 097 097 098
6,000 0.077 0121 044 103 098 098 099
8,000 0.086 0.136 033 066 099 099 099
10,000 0.096 0.151 0.26 045 099 099 099
20,000 0.144 0.215 013 029 099 099 099
30,000 0.187 0.261 0.09 024 099 099 099
38,502 0.204 0.275 0.07 0.20 - - -

*Correlations between the diagonal (rp), upper triangular (ry) and all the
elements (r,) of two G matrices constructed using a given SNP subset and all
available SNPs.
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Figure 1 Change in mean of r* against mean of d (black circles), together with all values of r* (gray circles).

0.22, 0.13, 0.10 and 0.08, respectively, and 25.7, 13.9, 10.4
and 6.4% of the 7 values exceeded 0.3, respectively.
Investigating the overall average of r* using 2,670 SNPs
for eight breeds, including Japanese Black cattle, McKay
et al. [10] reported that the average for 65 Japanese Black
cattle was approximately 0.58 for all SNP pairs < 1 kb
apart, and 0.07 for all SNP pairs < 2 Mb apart. In the
current analysis, the mean ° for pairs of two adjacent
SNPs, < 1 kb—< 2 Mb apart, was 0.81-0.20, and most of
the average r* values obtained using all the SNPs in each
given distance range were higher than those reported for
the eight breeds (data not shown). Furthermore, in Dutch
and Australian Holstein-Friesian, Australian Angus and
New Zealand Friesian and Jersey cattle, using about
3,000-7,000 SNPs, the average r* of 0.35 for inter-marker
distances of 0-0.01 Mb declined to 0.22 for 0.02—0.04 Mb
and 0.14 for 0.04—0.1 Mb [11]. As shown in Figure 1, a
largely similar pattern of decreasing LD was observed with
the current data for Japanese Black cattle. However, it
should be noted that most samples used in these previous
studies were from a subpopulation, especially in represen-
tative dairy and beef breeds, or many small-scale families
of the breed, including sires in some cases, which would
be a factor responsible for constructed haplotype blocks in
the population. In contrast to this, the samples used in the
current study were collected at two large-scale meat mar-
kets in Japan, to which fattened Japanese Black animals
are sent from all over Japan. Therefore, samples used in
this study are considered to reflect the effective size and
LD extent of the national Japanese Black population.
Using the genotype data from 18,098 SNPs with minor
allele frequencies (MAF) greater than 10% for 25 artifi-
cial insemination (AI) sires of Brazilian Gyr dairy cattle,
Silva et al. [12] found that means of 7* and d for two adja-
cent SNPs ranged from 0.24—0.17 and from 0.12-0.18 Mb,

respectively, at the autosome-wide level. In the current
study of Japanese Black cattle, also with a relatively low ef-
fective population size, the mean 7° was nearly the same,
but the mean d was about half that at the autosome-wide
level (data not shown). Silva et al. [13] also observed that
at ranges 0-0.1, 0-0.2, 0-0.5 and 0—1 Mb, mean * was
0.20, 0.18, 0.14 and 0.11, respectively, and that the propor-
tion of SNP pairs exhibiting 7° higher than 0.3 was 22.9,
19.7, 14.1 and 9.5% for the same ranges, respectively. In
this study, for the same ranges, mean * was 0.22, 0.21,
0.20 and 0.20, respectively, and the proportion of SNP pairs
was 257, 24.1, 23.6 and 23.6%, respectively. From the
current results, it is therefore likely that the extent of LD
between more distant SNPs is relatively higher in Japanese
Black cattle.

In addition, calculating the #* of all possible SNP pairs
by chromosome, from more than 30,000 SNPs distrib-
uted genome-wide, the extent of LD and the structure of
haplotype blocks were examined for 19 breeds, including
Indicus, African and the composite cattle, in addition to
some dairy and beef breeds [13], and for Angus, Charolais
and crossbred beef cattle [14]. Also, for Nellore cattle,
whole genome LD was investigated using about 450,000
SNPs [15]. Yan et al. [16], using 632 maize lines genotyped
for 1,229 SNP markers, demonstrated an increase in 7°
values between the markers, especially between closer
SNP pairs, with an increasing MAF threshold and an in-
crease, particularly between more distant pairs, with de-
creasing sample size. The MAF threshold we used was
smaller than those in previous studies [10-15], and sample
size in the current study was larger than those for most of
used in these studies. In this study, we only calculated the
7 of all pairs of two adjacent SNPs, avoiding a heavy com-
putational burden. When our limited results were com-
pared with the results of the previous studies, we found
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that, while the extent of whole genome LD in Zebu cattle,
such as the Nellore, was relatively low, whole genome LD
in the Japanese Black was likely to be higher than, or equal
to, the whole genome LD in Angus, which was higher
than in Charolais.

Change in the genomic relationship matrix

Table 1 also shows correlations between the diagonal
(rp), upper triangular () and all the elements (r4) of a
given G matrix, and the corresponding elements of the
G matrix constructed using all available SNPs. The rx
was 0.51, 0.79, 0.88, 0.94, 0.97 and 0.99 using 100, 500,
1,000, 2,000, 4,000 and 8,000 SNPs, respectively. The
changes in rp, ry and r4 with increasing SNP density are
depicted in Figure 2. A correlation of 0.73 was observed
between 7y and mean 7%, showing a very high linear rela-
tionship especially for SNP sets with smaller numbers.
Analysing data from the 50K chip for 1,707 AI sires,
along with the records of 698 steers of the Angus breed,
Rolf et al. [17] showed that the average correlation of
upper triangular elements between G matrices constructed
from all available SNPs, and from its subset of SNPs se-
lected randomly, reached nearly 0.8 using 1,000 SNPs, and
exceeded 0.9 using 2,500 SNPs, suggesting that 2,500—
10,000 SNPs distributed throughout the genome are re-
quired to robustly estimate a G matrix for feed efficiency
traits with heritability ranging from 0.09-0.14. The chan-
ging patterns in Figure 2 are similar to those of [18], al-
though we used a scheme of equally-spaced selection in
the number of SNPs. Compared with [17], however, the
correlation (ra) in the current study reached 0.9 using a
lower number of SNPs and 0.99 using 8,000 SNPs, which
would, at least in part, be due to a smaller effective size of
the Japanese Black population.
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Genetic variance explained

Results of variance component estimation for carcass
weight and marbling score, using all available SNPs or sub-
sets, by the conventional linear model (model 1) are pre-
sented in Tables 2 and 3, respectively. Figure 3 depicts the
changes in proportions of estimated genetic variances for

both traits. Genetic and residual variances, or aﬁ and 03,

estimated with the G matrix using all available SNPs, were
1096.3 and 928.1 kg for carcass weight and 8.30 and 3.81
score? for marbling score, respectively, which resulted in
heritability estimates of 0.54 and 0.68, respectively. These
estimates of heritability were similar to those previously es-
timated in the Japanese Black population using pedigree in-
formation [18], although we note that our estimate for
marbling score might be somewhat overestimated because
of the distribution of the records used. Heritability of hu-
man height was estimated to be 0.45 using 565,040 auto-
somal SNPs from over 10,000 unrelated individuals [19],
which is lower than the estimates of 0.8—-0.9 reported in
previous family and twin studies [20]. The effective popula-
tion size of humans was estimated to be 10,000 [21], and
therefore, for human polygenic traits like height, many
more SNPs for a much higher LD level with causative vari-
ations would be needed to capture the total genetic vari-
ation. In contrast, the effective population sizes of cattle
breeds would be much smaller, usually 100 or lower. In the
case of Japanese Black cattle, where the effective size is
only about 30 [8], it is likely that a large part of the genetic
variance for the carcass traits studied here could be cap-
tured by using all available SNPs within the 50K chip.

As expected, as the number of SNPs used became
higher, estimated residual and genetic variances gradually
decreased and increased, respectively. This is mainly be-
cause the higher the SNP marker density, the higher the
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Figure 2 Changes in rp, ry and r, with increasing density of SNPs used to construct G matrix. Circles: rp; triangles: ry; squares: ry.
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Table 2 Variance components estimated with model 1 for carcass weight
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No. of SNPs selected 02(kg?)" a_f,(kgz)*1 a2 (kg 2)"! ol/a2

100 17989 (193.8) + 90.7 2899 (264) + 781 20888 (103.2) + 1129 0.14 + 003
200 1737.7 (187.2) £ 91.1 3224 (294) + 76.1 2060.0 (101.8) + 107.7 0.16 + 0.03
500 1447.0 (1559) + 86.0 586.8 (53.5) + 102.5 2033.7 (100.5) + 1093 029 + 004
1,000 1290.3 (139.0) + 90.1 7451 (68.0) + 1219 20354 (100.5) + 1113 036 + 005
2,000 11685 (1259) + 96.6 8449 (77.1) + 1358 20134 (99.5) + 1106 042 + 0.05
4,000 10252 (1105) + 107.7 10086 (92.0) = 160.7 20338 (100.5) + 114.7 049 + 006
6,000 10289 (1109) + 1075 9800 (894) + 1555 20090 (99.2) + 11122 049 + 006
8,000 992.1 (106.9) + 113.0 10321 (94.1) + 1655 2024.2 (100.0) 1133 051 + 0.06
10,000 9564 (103.1) + 1125 1065.1 (97.2) + 166.7 20215 (99.9) + 1135 053 + 006
20,000 8956 (96.5) + 117.1 1137.0 (1037) + 1767 20326 (1004) + 1155 056 + 007
30,000 9158 (98.7) + 117.2 11126 (1015) + 1742 20285 (100.2) + 1143 055 + 007
38,502 9281 (100) + 117.6 1096.3 (100) + 173.5 20244 (100) +113.7 054 + 007
Imp1"2 867.2 (934) + 1197 11666 (106.4) + 180.3 20338 (100.5) + 1156 057 + 007
Imp2" 931.1 (100.3) + 1180 1093.9 (99.8) + 1735 20250 (100.0) + 113.7 054 + 007

*alues in parentheses represent the percentage relative to the estimate obtained with model 1 incorporating the G matrix constructed using all available SNPs.
*2mp1 and imp2: 38,502 SNP genotypes imputed from 4,000 and 10,000 SNPs, respectively.

LD levels between SNP markers and true QTL regions.
For instance, in the case of carcass weight, correlations be-
tween mean r* and the estimates of o7 and o7 in model 1

were —0.79 and 0.80, respectively. For both carcass traits,
considering standard errors, a largely constant value of

phenotypic variance (O‘Z) was obtained, even with the dif-

ferent numbers of SNPs used. It was also observed that
the value of genetic variance per SNP became larger when
fewer SNPs were used (data not shown), which would be
partly due to the additional variance explained by the cor-
related effect of SNPs around those used to construct the

G matrix. However, the proportion of genetic variance ex-
plained by SNPs decreased slightly with an increase from
4,000 to 6,000 and from 6,000 to 8,000 SNPs, for carcass
weight and marbling score, respectively (Figure 3). This
could be interpreted partly as a reflection of the genetic
background and architecture, or the distribution of real
QTL regions and their effects relevant to each trait, in Jap-
anese Black cattle.

For carcass weight, approximately 90 and 97% of the
genetic variance estimated with the G matrix using all
available SNPs was obtained using 4,000—6,000 and 10,000
SNPs, respectively. For marbling score, the proportion of

Table 3 Variance components estimated with model 1 for marbling score

No. of SNPs selected 02(score?)”! a;(scorez)*1 (scorez)*1 o2/o2

100 10.68 (280.4) + 0.55 093 (11.3) £ 0.38 62 (959) + 112.9 0.08 £ 0.03
200 10.81 (283.9) £ 0.57 0.72 (87) £ 035 4 (95.3) + 107.7 0.06 £ 0.03
500 9.27 (2434) £ 0.55 2.35(283) £ 0.55 63 (96.0) = 109.3 029 + 0.04
1,000 1(2104) + 0.57 3.80 (45.7) £ 0.73 1(975 +1113 032 £ 005
2,000 6.64 (174.2) + 0.57 518 (624) + 0.82 2 (976) £ 1106 044 + 0.05
4,000 540 (141.8) + 0.59 649 (78.2) £ 0.92 9 (98.2) + 1147 0.54 + 0.06
6,000 4.85 (127.2) £ 060 7.07 (85.2) + 0.97 92 (984) £ 1112 0.59 + 0.06
8,000 4.86 (127.7) + 0.62 7.07 (85.1) £ 0.98 3(985) £ 1133 059 + 0.06
10,000 436 (114.5) £ 063 765 (922) £1.03 12.01 (99.2) £ 1135 0.63 + 0.06
20,000 374 (98.1) + 064 836 (100.7) + 1.08 12.10 (99.9) £ 1155 069 + 0.06
30,000 3.77 (98.8) + 0.66 837 (100.8) = 1.10 1213 (100.2) £ 114.3 0.69 £+ 0.06
38,502 3.81 (100) £ 0.66 8.30 (100) + 1.09 12.11 (100) + 113.7 0.69 + 0.06
Imp1° 1(107.9) £ 068 801 (96.6) £ 1.09 12,12 (100.1) £ 1156 066 + 0.06
|mp2*2 391 (102.7) £ 0.66 8.19 (98.7) + 1.09 1210 (99.9) + 113.7 0.67 £ 0.06

*Walues in parentheses represent the percentage relative to the estimate obtained with model 1 incorporating the G matrix constructed using all available SNPs.
*2mp1 and imp2: 38,502 SNP genotypes imputed from 4,000 and 10,000 SNPs, respectively.
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Figure 3 Changes in proportions of estimated genetic variances in model 1, with increasing density of SNPs used to construct G

the genetic variance accounted for by a given number of
SNPs was consistently low when compared with carcass
weight, particularly when a relatively small number of
SNPs were used. This finding may indicate that the degree
of marbling is controlled by only QTLs with relatively
small effects, compared with the carcass weight. In fact,
three QTLs for carcass weight, called CW-1, -2 and -3,
have been identified in genome-wide association studies
(GWAS), in which their allele substitution effects were
relatively large [22-25], whereas no such QTLs have been
detected for the degree of marbling until now. Using
10,000 SNPs, however, as much as 92% of genetic variance
in marbling score was accounted for in this study.

Accuracy of genomic estimated breeding value

Correlations and linear regressions on GEBVs obtained
with the different densities of SNPs used are shown in
Table 4. When 4,000 and 10,000 SNPs were used in
model 1, the correlations between the GEBVs and those
obtained using all available SNPs were both 0.99 for
carcass weight and 0.98 and 0.99 for marbling score, re-
spectively, with the corresponding linear regression coef-
ficients of 0.94 and 0.98 for the former trait and 0.82
and 0.94 for the latter trait. This showed a trend of
underestimation of GEBVs with a lower number of SNPs
used, particularly for the latter trait. The different levels
of underestimation of GEBVs could be because of differ-
ent genetic architectures of the two traits. As stated pre-
viously, while three QTLs with relatively large effects on
carcass weight in Japanese Black cattle have been found
[22-25], no such QTLs have been found for degree of
marbling. Thus, considering the results of the estimated
genetic variances, the lower underestimation of GEBVs
observed for carcass weight relative to marbling score

might reflect the observation that relatively larger effects
of SNPs linked to the carcass weight QTLs could be bet-
ter captured, even with a lower number of SNPs.

Use of imputed genotype information

Accuracy of imputation, expressed as the percentage of
correctly predicted genotypes, was 93.4 + 2.5 and 97.4 +
1.2% (average + standard deviation) for 38,502 genotypes
imputed from 4,000 and 10,000 SNPs, respectively. Vari-
ance components estimated using the imputed genotype

Table 4 Correlation between and linear regression of
GEBVs obtained with model 1 using a given SNP set and
all available SNPs

Correlation coefficient

Regression coefficient

No. of SNPs
selected Carcass Marbling Carcass Marbling
weight score weight score

100 0.64 048 0.34 0.12
200 0.71 053 040 0.10
500 0.86 0.75 0.64 032
1,000 0.92 087 0.75 048
2,000 0.96 0.94 0.84 0.66
4,000 0.99 0.98 094 0.82
6,000 0.99 0.99 0.94 0.88
8,000 0.99 0.99 0.96 0.88
10,000 0.99 0.99 0.98 0.94
20,000 0.99 0.99 1.02 1.01
30,000 0.99 0.99 1.01 1.00
Imp1” 0.99 099 1.03 096
Imp2* 0.99 0.99 1.00 0.99

*Imp1 and imp2: 38,502 SNP genotypes imputed from 4,000 and 10,000

SNPs, respectively.
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data are shown in Tables 2 and 3. Scatter plots of the
GEBVs obtained for carcass weight and marbling score
against those obtained using all the available SNPs
without imputation are shown in Figure 4. Use of the
imputed data resulted in a similar level of estimated var-
iances as the level obtained using all the SNPs without
imputation. Correlations between the GEBVs obtained
with imputation and those obtained from all the SNPs
without imputation were higher than 0.99 for both the
traits. Imputation of SNP genotypes from low density to
high density is now a standard procedure for using low-
density marker panels in GS schemes [5,26]. Our results
using the imputed SNP information support the use of
the imputation from low-density marker panels.

Estimation using a threshold model

The proportions of genetic variances to phenotypic vari-
ances in the underlying scale estimated for marbling
score using the threshold model (model 2) are presented
in Table 5. For both the binary and more categorical treat-
ments, the estimations were successful only when rela-
tively small numbers of SNPs were used. The changes in
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the estimated proportions, relative to the proportions
estimated using model 1, are depicted in Figure 5. The
values of some correlations between GEBVs obtained with
models 1 and 2 are listed in Table 6. It has been noted that
generalized linear animal models are plagued by extremely
slow mixing in implementations of Markov chain Monte
Carlo methods [27]. For both the successful and unsuc-
cessful estimations, a single chain of 10,000,000 samples
was run with the first 3,000,000 samples being discarded.
The results showed that the estimates presented in Table 5
were not substantially different from those obtained, while
there was still no convergence for any of the unsuccessful
cases. The failures of the estimations using the larger
numbers of SNPs may be attributed largely to the limited
number of animals used in this study.

The proportions of the genetic to the phenotypic vari-
ances estimated with model 2 were observed to be con-
sistently larger than the corresponding estimates with
model 1. The estimates of heritability for marbling score
of Japanese Black cattle reported in the literature [18] in-
dicate that the genetic variances in the underlying scale
obtained with model 2 in this study may be somewhat
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Table 5 Proportion of genetic to phenotypic variances
estimated with model 2 for marbling score

No. of SNPs selected Binary* Categorical*
100 0.15 £ 0.04 0.14 £ 003
200 0.15 = 0.04 013 £0.03
500 033 +£0.06 022 £ 0.04
1,000 051+ 0.08 0.34 £ 0.06
2,000 0.66 = 0.08 050 = 0.06
4,000 - 0.65 £ 0.07
6,000 - 0.75 £ 0.08
8,000 - 0.70 £ 0.07
10,000 - 0.82 £ 0.07

“Binary: treated as a binary trait; Categorical: treated as a categorical trait with
11 categories.

inflated; for instance, 0.66 with 2,000 SNPs for the bin-
ary case and 0.82 with 10,000 SNPs for the case of 11
categories . However, for a given set of selected SNPs,
the correlations between GEBVs obtained with model 2
and GEBVs obtained with model 1 using all the SNPs
were found to be similar to the corresponding values in
the analyses with model 1. The correlations between the
GEBVs obtained with both the models using a given set
of SNPs were very high overall. These correlations be-
tween the GEBVs would generally support the validity of
the results for marbling score obtained with model 1.

Overall discussion

Equally-spaced panels with various densities are already
used in many situations. Such panels have the advantage of
being applicable irrespective of trait and population, for
which the density of SNPs plays an important role in GE
and GS according to the extent of LD between SNP
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markers and real QTLs. At this stage, the 50K chip is most
commonly used. Using higher density-panels, such as the
50K and 770K, may account for a high to very high propor-
tion of genetic variation. In addition, as shown also in this
study, use of genotypes imputed from low-density to high-
density can take account of genetic variance largely. How-
ever, while increasing density of SNPs used could increase
the extent of the LD, it could also increase the number of
uninformative and collinear SNPs [28]. Thus, for robust
prediction it is important to exclude collinear nuisance
SNPs, since their inclusion in the analyses may increase
error and sampling variances in estimation of SNP effects
on the training population or allow a single QTL to be
attributed to a number of highly correlated SNPs, which
would be likely to reduce the predictability of GEBVs and
its persistence across generations. Schulz-Streeck et al. [29]
confirmed this by simulation, finding that excluding the
markers with negligible or inconsistent effects by pre-
selection increases the accuracy of GE.

From this perspective, even the 3K chip has been sug-
gested to be a useful tool in dairy GE [30]. Also, evaluat-
ing the predictive ability of subsets of SNPs, Moser et al.
[31] concluded that accurate GE of Holstein bulls and
cows can be accomplished with 3,000-5,000 equally
spaced SNPs. From the viewpoint of the relationship of
7 to the accuracy of GEBV, a simulation study showed
that while the accuracy of GEBVs for unphenotyped ani-
mals ranged from about 0.65, for the mean ° of 0.1 be-
tween adjacent markers, to more than 0.80, for the mean
rof 0.2, the accuracy for phenotyped animals exceeded
0.8, with a mean 7 of 0.1, with heritability of 0.5 [32].
The mean of #* was almost 0.1 when 10,000 SNPs were
used in the current study (Table 1), and the level of her-
itability estimated using all available SNPs was more

Proportion of phenotypic variance explained
[=]
o
B
a

100 200 500 1000 2000 4000 6000 8000 10000 20000 30000 38502
No. of SNPs used

Figure 5 Changes in proportions of phenotypic variances explained with model 1 and 2 for marbling score, with increasing density of
SNPs used to construct G matrix. Circles: model 1; triangle: model 2 (binary); square: model 2 (categorical with 11 categories).
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Table 6 Correlations between GEBVs obtained with models 1 and 2 using a given SNP set and all available SNPs for

marbling score

No. of SNPs Model 1 with all 38,502 SNPs Model 1 with each SNP set Between binary
selected Binary" Categorical’ Binary Categorical and categorical
100 046 047 0.96 0.96 0.87

200 052 053 0.95 0.95 0.84

500 0.72 0.74 0.97 097 0.89

1,000 0.83 0.84 0.96 097 0.88

2,000 0.90 092 0.96 097 0.88

4,000 - 0.95 - 097 -

6,000 - 0.96 - 0.96 -

8,000 - 0.96 - 0.96 -

10,000 - 0.96 - 0.96 -

“Binary: treated as a binary trait; Categorical: treated as a categorical trait with 11 categories.

than 0.5 for both the traits (Tables 2 and 3). Therefore,
using 10,000 equally-spaced SNPs, which is relatively
few compared with all available SNPs in the 50K chip,
might be sufficient to cover both of the carcass traits,
even in validation and application populations. More-
over, as far as genetic evaluation for ranking animals is
concerned, the current results might suggest a possibility
of using 4,000-6,000 equally-spaced SNPs for these
carcass traits in the Japanese Black population in Japan,
since the downward bias in GEBV values observed in
this study with lower densities of SNPs would not sub-
stantially influence the ranking of animals. Such lower
density panels could be used practically in pre-selection,
especially of young breeding females whose number in
the population is definitely high. This could be beneficial,
even with the current degree of accuracy, in dramatically
reducing the total cost of the genetic evaluation, since
carcass traits are usually measured only on their relatives.
If necessary, the imputation of SNP genotypes from the
lower density panels to higher density panels, as indicated
in [33], could help to achieve an additional increase in the
accuracy of GE. On the other hand, young breeding bulls
to be selected as future elite Al sires should be genotyped
with a high-density panel for more reliable GE and GS,
since the contribution of elite Al sires to genetic improve-
ment is significant.

There are several reports on ways of choosing unequally-
spaced SNPs, as well as equally-spaced SNPs as a subset,
particularly in a relatively low-density panel, and on the
utility of low-density marker panels (e.g., [34-36]). Of these
ways, choosing SNPs ranked highly in the magnitude of
the absolute value of estimated effect is typical. In most
cases, prediction of GEBVs with high-ranking SNPs is
somewhat more accurate and reliable than with equally-
spaced SNPs, when the same number of SNPs is used in
the prediction (e.g., [35,36]). For Japanese Black cattle, only
one previous study, conducted from the viewpoint of GE,

performed the estimation of variance for carcass traits [37].
This study used 50K SNP genotype data from 673 steers to
simply perform linear regression analysis of each SNP for
each trait, and subsets of SNPs with various significance
levels for the association with each trait were used to ac-
count for variances. Including this study, however, use of
SNPs ranked highly based on certain criteria would gener-
ally be applicable only to a particular trait and population.
One approach is to integrate the optimal subset of the
SNPs for each of several important traits into one set,
which is as cheap as possible to use in the target popula-
tion, as ordinary selection is often implemented for certain
multiple traits, although this strategy still requires the re-
selection of SNPs with process of generation. While use of
an equally-spaced SNP panel deals with all the genome
regions, according to density, a trait-specific panel would
frequently deal with only parts of the genome. Thus, a
compromise plan, as suggested by [34], might be practical,
in which a large part of the whole SNP set is composed of
equally-spaced SNPs, and SNPs that are in high LD with
the causative variants are also included. An example of the
latter SNPs for carcass weight in Japanese Black cattle is
those linked tightly with CW-1, -2 and -3, found by
[22-25]. In addition, since pedigree data are important in-
formation irrespective of traits [35], if deep and wide pedi-
gree data can be combined with a SNP set, as mentioned
above, more effective GE and GS might be possible. More
studies of sophisticated approaches to construct an optimal
SNP set for valid and cost-effective GE of carcass traits in
beef cattle are required.

In this study, we employed a scheme of equally-spaced
selection of SNPs to investigate carcass weight and marb-
ling score, which are representative traits for carcass quan-
tity and meat quality, respectively. We have provided
important basic information on the relationships between
SNP marker density and genetic variance explained and
accuracy and bias of GEBVs obtained. However, as the size
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of the dataset available in this study was limited, all of the
available animals were used in the estimation analyses. In
the analyses, the number of animals available (about 900)
was well exceeded by the number of SNPs in most settings
of SNP selection and use. Thus, we note that the genetic
variance explained and the accuracy of GEBVs obtained in
the current study may be somewhat inflated, relative to
those values obtained using many independent validation
animals. Therefore, further research is needed to confirm
the current findings, especially from the perspective of
prediction, and accumulating a much larger volume of
relevant data.

Conclusions

To our knowledge, this is the first study reporting the
level of whole genome LD in Japanese Black cattle, using
about 40,000 genome-wide SNPs, as well as the effects
of their equally-spaced subsets on the elements of the G
matrix, the degree of genetic variance explained and ac-
curacy of GEBVs for carcass weight and marbling score,
which are representative traits for carcass quantity and
meat quality, respectively. Our study revealed that the
Japanese Black is likely to be in a breed group with a
relatively high extent of whole genome LD, and that the
degree of marbling is controlled by only QTLs with rela-
tively small effects, compared with carcass weight. The
possibility of effective GE with at least 4,000 equally-
spaced SNPs was suggested for these traits.

Methods

Ethics statement

Animal care and use was according to the protocol
approved by the Shirakawa Institute of Animal Genetics
Animal Care and Use Committee, Nishigo, Japan
(ACUCH21-1).

Phenotype data

Cold carcass weights and marbling scores of 872
Japanese Black fattened steers, whose ages ranged be-
tween 15.3-43.0 months, were used for the current ana-
lyses. These records were collected from 2000-2009 at
two large meat markets in Japan, namely Tokyo Metro-
politan Central Wholesale Market and Osaka Municipal
South Port Wholesale Market. Marbling score is the de-
gree of marbling, ranging from null (1) to very abundant
(12), assessed on the ribeye of the carcass dissected at
the sixth and the seventh rib section, according to the
Japan carcass grading standards [38]. The distributions
of carcass weight and marbling score are shown in
Figure 6. The mean (+ standard deviation) was 496.6
(+ 48.0) kg for carcass weight and 6.8 (+ 3.5) for marb-
ling score.
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Genotype data

DNA samples were extracted from perirenal adipose tis-
sues. Sample DNA was quantified and genotyped using
the BovineSNP50 BeadChip (hereafter referred to as the
50K chip). The 50K assay contains 54,001 SNPs with an
average probe spacing of 51.5 kb and a median spacing
of 37.3 kb. A total of 38,502 SNPs were included in the
statistical analyses, based on the following criteria: MAF
and genotype call rates were larger than 0.01 and 0.95,
respectively, were in Hardy-Weinberg equilibrium (p >
0.001) and had position information. As a few percent of
genotype data was missing, missing genotype filling was
conducted using “Beagle 3.3.2” package [39].

Statistical analyses
Data were analysed using a following linear model (de-
noted as model 1):

y=Xb+g+e

where y is the vector of records, b is the vector of fixed
discrete effects of market and year at slaughter and the
continuous effects of the linear and quadratic covariates
of month of age at slaughter, g is the vector of additive
genetic effects being assumed to follow N (0, G0§
with the genetic (polygenic) variance and the genomic
relationship matrix represented by o*é and G, respect-
ively, e is the vector of residuals assumed to follow N
(0, Io?) with the residual variance and the identity
matrix denoted by aé and I, respectively, and X is inci-
dence matrix.

Using the SNP genotype data, the G matrix was con-
structed according to [3] by:

G- (M—2P><M—2P>'/{zfjpxl—p»}

where M is the matrix whose row elements include the
number of minor alleles in each animal at each SNP
locus, P is the matrix whose row elements contain the
MAF at each SNP locus, p; is the MAF at the ith SNP
locus, and # is the number of SNPs used.

In this study, 12 different G matrices were constructed
and employed by selecting from 100 to 30,000 equally-
spaced SNPs in number or using all available SNPs. To
make the G matrices always positive definite, 10* I was
added to G in construction. We note that pedigree infor-
mation for the animals, consequently the A matrix, was
not available in this study.

For each of the 12 sets of SNPs, including the set of all
available SNPs, the extent of LD was measured by the
squared correlation () of the alleles at two loci for all
pairs of two adjacent SNPs on all chromosomes [40]. The
mean and standard deviation of the distance (d) between
two adjacent SNPs were also calculated. In addition,



Ogawa et al. BMC Genetics 2014, 15:15
http://www.biomedcentral.com/1471-2156/15/15

Page 11 of 13

180 a
160
140
120
100

80

No. of records

60

40

20

300
b

250

200

150

No. of records

100

50

2 4 6

360 400 440 480
Carcass weight (kg)

0

Marbling score

Figure 6 Distribution of carcass weights (a) and marbling scores (b).

520 560 600 640

-

8 10 12

correlations between the diagonal, upper triangular, and
all the elements of a given G matrix, and the corre-
sponding elements of the matrix constructed using all
available SNPs, were examined (denoted as rp, ry and
r4, respectively).

To assess the relationships between GEBVs (g) in each
model, correlations were computed between GEBVs in-
corporating the G matrix constructed using all available
SNPs, and those incorporating the G matrix using a
given number of SNPs. Also, linear regressions were fit,
where the dependent variables were GEBVs incorporat-
ing the G matrix constructed using a given number of
SNPs, and the independent variable was GEBVs obtained
using all available SNPs.

Additionally, choosing the two lower-density subsets,
or those of 4,000 and 10,000 SNPs, we attempted to
carry out the genotype imputation with “Beagle 3.3.2”
from those to all the 38,502 SNPs, in which as a refer-
ence, phased haplotype data of 494 animals not having

records of both the traits whose data were collected at
the same two markets as the 872 animals. Then, using
the imputed data, the analyses with model 1 were also
conducted.

Furthermore, the distribution of marbling score was
obviously far from a normal distribution, as shown in
Figure 6. Then, for this trait, a threshold model (model 2)
was also fit, as follows:

n=Xb+g+e

where 1 is the vector of unobserved variables in the
underlying scale, assuming that ¢2 =1. Two sorts of
analysis were conducted regarding the outward pheno-
type as either a binary trait in which the observed scores
2-6 and 7-12 were each classified into one class, or an
ordered categorical trait using actually observed scores.
All the parameters in model 1 were estimated via the
Bayesian framework using Gibbs sampling in “BLR”
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package under R environment [41,42]. A flat prior dis-
tribution was used for the nuisance parameters (b), and
multivariate normal distributions were employed as
priors for the additive genetic effects. As prior distribu-

tions for o7 and o, independent scaled inverted chi-

square distributions were used with degree of belief and
scale parameters of -2 and 0, respectively, assuming
that there was no prior information. The “BGLR” pack-
age, or an improved version of the BLR software [43],
was used to estimate the parameters in model 2. A sin-
gle chain of 110,000 samples was run, and the first
10,000 samples were discarded as burn-in. Posterior
summaries, or mean and standard deviation here, were
computed using a thinning rate of 10.
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