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Abstract

suboptimal and efforts at genetic association may fail.

superior performance of the proposed approach.

Background: Accurate classification of patients with a complex disease into subtypes has important implications for
medicine and healthcare. Using more homogeneous disease subtypes in genetic association analysis will facilitate the
detection of new genetic variants that are not detectible using the non-differentiated disease phenotype. Subtype
differentiation can also improve diagnostic classification, which can in turn inform clinical decision making and
treatment matching. Currently, the most sophisticated methods for disease subtyping perform cluster analysis using
patients’ clinical features. Without guidance from genetic information, the resultant subtypes are likely to be

Results: We propose a multi-view matrix decomposition approach that integrates clinical features with genetic
markers to detect confirmatory evidence for a disease subtype. This approach groups patients into clusters that are
consistent between the clinical and genetic dimensions of data; it simultaneously identifies the clinical features that
define the subtype and the genotypes associated with the subtype. A simulation study validated the proposed
approach, showing that it identified hypothesized subtypes and associated features. In comparison to the latest
biclustering and multi-view data analytics using real-life disease data, the proposed approach identified clinical
subtypes of a disease that differed from each other more significantly in the genetic markers, thus demonstrating the

Conclusions: The proposed algorithm is an effective and superior alternative to the disease subtyping methods
employed to date. Integration of phenotypic features with genetic markers in the subtyping analysis is a promising
approach to identify concurrently disease subtypes and their genetic associations.

Keywords: Genotype-phenotype association, Multi-view data analysis, Subtyping, Biclustering, Matrix decomposition
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Background

For complex diseases, such as substance dependence or
psychiatric disorders, a variety of clinical features that
collectively indicate or characterize the disease pheno-
type often vary substantially among individuals [1]. Stud-
ies of genetic association or those that aim to match
patients with certain treatments for a complex disease can
be impeded by this phenotypic heterogeneity [2]. Case-
control association studies based on a binary trait, such
as the diagnosis of a disease, which partitions the popula-
tion into cases (subjects with the disease) and non-cases
(subjects without the disease), cannot differentiate the
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heterogeneous manifestations of the disease. Although
many candidate genes or genomic regions have been asso-
ciated with complex diseases [3], the characteristics or
subtypes of the disease for which the association exists
remain to be specified. For instance, the specific addictive
behaviors that underlie the associations with candidate
genetic variants need to be elucidated to clarify the risk
for addiction [4].

Classification of a complex disease into homogeneous
subcategories or subtypes may help to identify the genetic
variants contributing to the effect of the subphenotypes
[5,6]. However, prior studies have been limited to unsu-
pervised cluster analysis or latent class analysis on clinical
features to derive subtypes. Genotypic data have only been
used to evaluate the validity of subtypes, such as in subse-
quent association tests with the derived subtypes, rather
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than to guide the creation of the subtypes. Consequently,
the resultant subtypes may be of limited utility in genetic
association analysis. Integration of data from both clini-
cal and genomic dimensions also offers opportunities to
find confirmatory evidence of a subtype based on both its
genetic and clinical features. A few studies have examined
the joint use of gene expression and genotypic data for
cancer subtyping [7,8], but they did not identify a variable
subspace (or a subset of features) in each data source so as
to group subjects consistently across the two subspaces.
Hence, they could not detect genetic variants associated
with the identified clusters.

There has also been little research on this topic in
the statistics literature. The most relevant area involves
co-clustering [9] or multi-view data analysis [10], where
samples are characterized or viewed in multiple ways,
thus creating multiple sets of input variables. There are
two types of co-clustering methods: (1) biclustering, also
called two-mode clustering [11,12], which simultaneously
clusters the rows and columns of a data matrix and (2)
multi-view co-clustering [9,13], which seeks groupings
that are consistent across different views. Biclustering is
similar to another set of algorithms that search for sub-
spaces and group subjects differently in each subspace
[14].

Biclustering and subspace searching essentially identify
different subgroups of subjects using different features (or
markers), thus helping to identify genetic variants specific
to a particular subgroup. However, this method can only
be applied to one data matrix from a single view rather
than data jointly from multiple views. Multi-view co-
clustering, on the other hand, seeks a grouping of subjects
that is consistent across different views (i.e., different sets
of features), but the resultant clusters are defined using
all of the available features, e.g., all of the studied genetic
markers. Hence, it cannot be used to identify subtype-
specific variants/features. Thus, to address our subtyping
problem, we not only partitioned subjects in such a way
that the subgroups differed in both clinical features and
genetic markers, but also included a subspace search to
identify the specific features or markers that defined the
subgroups.

In this paper, we propose a multi-view matrix decompo-
sition approach based on the sparse singular value decom-
position (SSVD) technique [12] to classify a complex
disease into subtypes using data both from the clinical and
genetic views. The objective of this problem is to identify
subject clusters that agree in the clinical and genetic views,
and simultaneously identify features and markers that are
associated with the clusters. Employing the sparse SVD in
our approach is critical to its success, especially in terms
of successfully detecting associated variants given that the
number of truely associated variants are much fewer than
the number of single nucleotide polymorphisms (SNPs)
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in the whole genome. The proposed approach was vali-
dated on synthetic datasets that were simulated to have
subtype structures and several genetic markers associated
with the subtypes and a real world clinical dataset that
was aggregated from multiple genetic studies of substance
dependence. We compared our approach to a bicluster-
ing approach [12] and the latest multi-view data analytics
methods [9]. The results clearly show that the perfor-
mance of our approach is superior to that of all other
available methods.

Methods

We start with a presentation of the notations that are
used throughout the paper. A vector is denoted by a bold
lower case letter as in v and ||v||, represents its £,-norm,
which is defined by [[vll, = (va)l? + -+ + v P17,
where v(; is the j-th component of v and 4 is the length
of v, i.e., the total number of components in v. We use
Iv]lo to represent the so-called 0-norm of v that equals the
number of non-zero components in v. Denote u © v the
component-wise (Hadamard) products of u and v. The set
B, contains all binary vectors of length d. A binary vec-
tor is a vector whose components equal either 0 or 1. A
matrix is denoted by a bold upper case letter, e.g., M, is
a n-by-d matrix, and | M||r is its Frobenius norm defined
by (tr(MTM))1/2 where tr(-) is the trace of a matrix.
Rows and columns in M are denoted by M(; .y and M.,
respectively.

Review of single-view biclustering

We briefly review the biclustering method with a single
view of data based on the sparse singular value decom-
position [12]. For a single data matrix M of size n-by-d, a
subgroup of its rows and a subgroup of its columns can be
simultaneously obtained by the SSVD. The SSVD requires
both the left and right singular vectors to be sparse. Let
u of size # and v of size d be a pair of singular vectors
resulting from the SSVD. Their outer product forms a
sparse low-rank approximation of the original matrix, i.e.,
M = ouv’ where o is the corresponding singular value.
Then, the rows in M that correspond to non-zero compo-
nents in u form a row subgroup. The columns in M that
correspond to non-zero components in v form a column
subgroup. The resultant row and column clusters help to
define one another. The SSVD finds all singular vectors
sequentially by repeatedly solving the following problem
with a data matrix M:

min  [M = ouv'[|E + Aylloullo + Avllovio
subjectto lulla =1, (vl = 1.

(1)

The regularization terms ||ocul|p and ||ov||p are used to
enforce the sparsity of u and v. Note that the scalar o
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will not affect the value of the regularization terms. The
parameters A, and A, are two hyper-parameters to balance
the approximation performance and the regularization
terms. If both A, and A, equal 0, the optimal solution to
this problem is the left and right singular vectors of M that
correspond to its largest singular value. An alternating
algorithm has been proposed in [12] to solve this problem
effectively when A, and A, are not 0. This algorithm first
initiates u and v by the first left and right singular vectors
of M, then alternates between solving two sub-problems
until it converges. The two sub-problems are: (a), fix u and
find v that optimizes the objective of Eq.(1); (b), fix v and
find u that optimizes the objective of Eq.(1).

Assume that each row of M represents a subject and
each column corresponds to a feature. Once a pair of
vectors u and v is obtained, a subject (row) cluster as indi-
cated by the non-zero components of u is obtained. At
the same time, the features on which the subjects in the
cluster show high similarity are also identified in a col-
umn cluster as indicated by the non-zero components of
v. More clusters can be obtained by repeating the opti-
mization process with modified data matrices. To obtain
subsequent clusters that are disjoint from any identified
cluster in terms of subjects, the SSVD solves Eq.(1) using
a new matrix M that excludes subjects (rows) already
included in a row cluster. To obtain subsequent clusters
that allow overlapping of subjects with identified clus-
ters, the SSVD can solve Eq.(1) with the deflated M =
M — cuv’ that removes the identified SVD components
as used in the standard SVD.

The proposed formula for two-view joint biclustering

In this section, we extend the single-view SSVD to find a
consistent grouping of subjects across two data matrices.
In a later section, the resulting method will be extended to
incorporate more than two data matrices.

Assume that two data matrices denoted by M of size
n-by-d; and M of size n-by-dy characterize the same set
of n subjects from two different views. We can obtain u;,
v1, and uy, v3 by a separate SSVD of M; and My, respec-
tively. However, it will not guarantee that the row clusters
specified by u; and uy agree. To make them consistent,
u; and uy must have non-zero components at the same
position. Note that the two u vectors are not necessarily
the same, because they may be derived from very different
features in the views, such as real-valued clinical features
but discrete values in genetic markers.

We propose to use a binary vector z of size n that
serves as a common factor to link the two views. Each
component of u is then multiplied by the corresponding
component of z, i.e., u; = u;z;. In other words, we rep-
resent each u vector by z © u in the objective function
of SSVD to construct the sparse, rank one approximation
matrices of M; and My, simultaneously. When z is sparse,
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both z ® u; and z © uy will be sparse. Thus, we enforce
the sparsity of z rather than individual u and solve the
following optimization problem:

min IM; — 01(z © u)vi |2+ [[M2— 02(z © w)v} ||%

Z,04,0;,Vj,i=1,2

+ Azllzllo + Ay, llo1villo + Ay, llo2v2llo,

subjectto |wll2 =1, (vile =1, i=12,

z € B,.

)

where Az A,, and 1,, are tuning parameters that bal-
ance the approximation errors and regularization terms.
Although the values of u’s are constrained to be unit vec-
tors, the values of z © u’s are not necessarily unit vectors.
However, a careful examination reveals that for any opti-
mal solution @, we can find another optimal solution u
that has non-zero values only at the entries indicated by
the binary vector z, which ensures that z © u is also a unit
vector. We first set u;) = @), if z;) # 0, or u) = 0 other-
wise, forj = 1---,n. We then update the corresponding
singular value 0 = olull2 and rescale u = u/|u]2.
This new vector u satisfies the constraints of Eq.(2), and
together with the new o will produce the same objective
value as the original solution a, thus corresponding to an
optimal solution as well. We design a fast algorithm in a
later section to find such a sparse u for Eq.(2).

We discuss two alternatives to the proposed formula (2).
A restricted version of Eq.(2) may require u; = uy = u
and then replace z © u; and z © uy by the same u in the
objective function of Eq.(2), which leads to the following
problem

min

T2 T2
I M1 — o1uvy [z + [M2 — o2uv; ||
o;,w,v;,i=1,2

+ Aullallo + Ay, llorvillo + Ay, lloavallo,

subject to ||ll||2 =1, ||Vi||2 =1, i=1,2.

®3)

By requiring u to be sparse, it can also identify consistent
row clusters between two views. The resultant optimiza-
tion problem is easier to solve without integer variables
in z. However, it is an unnecessarily stringent constraint
to limit the search space to u; = uy, which rules out a
number of potential solutions that may include the opti-
mal row clusters. Another alternative is to minimize the
difference between u; and uy, which suffers from the same
over-constrained problem because the exact values of the
difference are not involved. Our problem only seeks to
identify the indicators of whether or not a component of
u is zero.

It is also useful to discuss the relation between Eq.(3)
and the feature concatenation method, which simply
merges the features from the two views in a cluster anal-
ysis. The feature concatenation method finds a single set
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of u and v for the data matrix [ M; M3] by solving the
following problem

min  ||[M; Ma] —ouv? |2+ Ay lloullo + Avllovilo

o,u,v

subjectto [luf2 =1,[lvl2 = 1.

(4)

where the v vector is of size d + dy. In comparison with
Eq.(3), Eq.(4) uses a single o for the two views, and the
concatenated v is constrained to be a unit vector rather
than individual v; and v». It is easy to show that any opti-
mal solution to Problem (3) can become a feasible solution
to Problem (4) by properly rescaling v; and v, and absorb-
ing the scaling factors by 01 and oy to make o7 = o9, but
is not necessarily an optimal solution to Problem (4). An
optimal v to Problem (4) may have either v; or vy be zero,
which is however not allowed in Eq.(3). When one of the
v vectors is zero, the resultant clusters differ only on one
view of the features. As an example, we concatenated 64
clinical features to 1248 SNPs in a disease subtyping anal-
ysis. Because the genetic markers outweighed the clinical
features, the resultant clusters differed significantly only
on the SNPs, leading to disease subtypes that could not be
clinically recognized.

A fast algorithm for two-view joint biclustering

The proposed formulation (2), although is a mixed-integer
program, can be effectively solved after proper relax-
ations. We design an alternating optimization algorithm
to solve it by splitting the variables into three working sets:
one set consists of the u vectors; one set consists of the v
vectors; and the last set consists of the binary variables in
z. We optimize the variables in one working set at a time
in alternative steps.

(1) Find the optimal uj, vi, uy, and v, with fixed z
When z is fixed, Problem (2) can be decomposed into
two sub-problems that optimize with respect to each
individual view. Without loss of generality, we show
how to optimize u; and v; by solving the following
sub-problem with a fixed z.

min  [|[M; — 01z © up)vi |2 + Ay, lo1villo
o1,u1,V1
subjectto  [luy]l2 = 1, [Ivilla =1,

(5)

which can be solved by alternating between
optimizing for u and for v.

(a) Solve for vi when u; is fixed
We solve the following equivalent problem
for the optimal v by relaxing the unit length

Page 4 of 12

constraint on vy, and then setting o1 = ||V |2
and V] = {’1/0'1.

. ~T 2 od
min M1 —(zO ul)V1 ”F + An IVillo.
Vi

(6)

Similar to the single-view SSVD, we relax the
0-norm to have the £; vector norm, and solve
for v by minimizing | My — (z ©® u)¥7 |2+
Ay IV1]l1. Each component v ;) in ¥ can be
computed independently from the others by
solving
min Vi, — 2a)¥1) + 2816,

V()
where ) = u?Ml(,,j), and B = Ay, /2. This
problem can be solved analytically by
soft-thresholding [12]:

ag — B, ifay > B,
Vi) = 0, iflapl=<p, j=1,---,d.
ag + B, ifoaj < —p,
(7)

(b) Solve for uy when vy is fixed
After v, is obtained and fixed, we optimize
Problem (5) with respect to o1 and u;. We let
t; = o1uy, and solve the following problem

to obtain ;. By setting o7 = ||u; |2 and
u; = u; /01, we obtain a solution to Problem
(5).

min  [M; = (z© an)v{ |7 (8)

Each component uy; in an optimal u; can
be independently and analytically computed

as follows:
M)V
i T i £ 0
ul(i) = z(l) L= ly e, N
0, if Z) = 0.

)

(2) Find the optimal z with fixed uy, vi, uy, and v,
When all values of w’s and v’s are fixed in Problem
(2), the optimization problem becomes:

min M —o01(z © up)v! |2 + [ My
z€B,,01,02

— 02(2 O w)v; I + Azllzlo.
(10)
Denote the values of o;’s from the previous iteration

by 61 and 9. We temporarily relax the binary z
variables to be real-valued and then let Z = 67 z.



Sun et al. BMC Genetics 2014, 15:73
http://www.biomedcentral.com/1471-2156/15/73

Again, we use the £1-norm of Z to approximate its
0-norm and solve the following problem for z:

min [|Mi — (Z© w)v{ |} + M
z

— (62/61) @ © w)V2 |2 + A1zl
(11)

The normalization step for z by o7 is used to contrast
the different singular values for the different views so
re-scaling z will not cause an issue. Note that
Problem (11) can be rewritten as follows:

min [|M — diag@El|% + A1 Zl1
VA

where M =[ M; M;] is obtained by concatenating
the data matrices in columns, E =[ ulvfw (62/061)
u2v2T ], and diag(z) converts Z into a diagonal matrix.
Then, each component of an optimal z can be
analytically computed as follows:

Yo — 0, vi >0
i) = 0, lypl<6 i=1,,n
Yo +6, v <—0
(12)
EG)M{, ) A ,
where y(;) = IEa 12 and 6 = e 2 Eq.(12) is

derived based on the same calculation in [12] which
was used to derive Eq.(7).

After obtaining z, the solution z to Problem (10) can
be calculated as follows:

L
D=1,

To preserve the same objective value of Problem (2)
after updating z, we update u; and uy as follows:

if 7y # 0

13
if i(,‘) =0. (13)

i=1---,n

ui/Zp, ifze #0, .
u;) = o i=1,---,n.
0, if z; =0,
(14)
and o1, 0y are recalculated as: o7 = ||uy]|2,

02 = (02/61)||uz||2; then we normalize u; and uy by
u; = u/|luifl2, and uy = wy/|uz 2.

The proposed algorithm alternates between solving
the three sub-problems (6), (8) and (10) until a local
minimizer is reached. The overall objective is
monotonically non-increasing when minimizing
each sub-problem, so the convergence of this
iterative process is guaranteed. When applied to both
synthetic and real world datasets, this process
reached a convergent point in about 10 iterations. To
derive another row subgroup, we repeat the
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algorithm using new matrices M; and My that either
exclude the rows corresponding to the subjects in the
identified subgroup or are deflated by subtracting the
identified singular value components ocuv’. By
repeating this procedure, the desired number of
subject groups can be achieved.

Extension to more than two views

In some applications, more than two views of data can
be available. For example, besides data on clinical features
and genetic markers, gene expression data may also be
used in the analysis. The optimization problem (2) can be
readily extended to incorporate m separate data matrices,
e.g,M;, i =1,-,m,as follows:

m
> IMi — 03z © w)v/ 7 + 22 l1zllo
i=1

min
Z,07,4;,Vj,i=1,....m

m
+ Y dllowilo,
i=1

subjectto |uilla=1,|vile=1, i=1,...,m,

z € B,.

This problem can be solved similarly by decomposing it
into several sub-problems and solving each sub-problem
in turn. We obtain the singular vectors of the data matrix
in the view j, i.e., u; and v; while fixing z and other w’s and
Vs by optimizing:

. T2
min  ||[M; — 0i(z © w)v; lIF + Ay;llovillo,
0L,V

subjectto  [luilla =1, [Ivill2 = 1.

Note that when z is fixed, the optimization of u; and v;
is independent from one another among different views.
Thus, these singular vectors can be computed in paral-
lel, which can reduce the computation time significantly
when more computational resources are available. When
u; and v; are fixed for all views, we solve the following
problem to obtain z and rescale z to obtain z:

m
min Y " [M; — (6:/61)@ O uv{ 7+ Al|Z]h.
£oim

Algorithm 1 summarizes all of the related steps to solve a
multi-view SVD. Again, this algorithm can be repeated to
obtain subsequent clusters in iterations. Although a good
initialization can be problem-specific, we chose to initial-
ize z with a vector of all ones, which assumes that all
subjects have the potential to be in the cluster if no prior
is given.
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Algorithm 1 Multi-view Singular Value Decomposition
Input: M;, A5, Ay, i=1,--- ,m
Output: z, 04, u;, v, i=1,--- ,m
1. Initialize z with a vector of all ones.
2. Initialize u;’s by the corresponding left singular
vectorsof M, i =1,---,m.
3.Fori=1,---,m,
Compute v; by Eq.(7).
Compute v; from v; and update o;.
Compute u; by Eq.(9).
Compute u; from w; and update o;.
4. Compute z by Eq.(12).
5. Compute z from z by Eq.(13).
6. Update o;, u;, i = 1, - - - , m by Eq.(14) accordingly.
Repeat Steps 3 to 6 until z reaches a fixed point.

Results and discussion

We first validated the proposed method using synthetic
data that were simulated with known cluster and associa-
tion structures. We then evaluated our approach on a real
world disease dataset aggregated from multiple genetic
studies of cocaine dependence (CD).

Normalized mutual information (NMI) was used to
measure the agreement between any two cluster solutions.
Denote two clusterings by C and C® where each clus-
tering contains a number of clusters as a partition of a
given sample, and C; is a set containing indexes of the
subjects in the i-th cluster. NMI computes the mutual
information between the two clusterings normalized by
the cluster entropies. In other words,

I(C(l), C(2))

NMICY,C?) = 15
CHED= wemyrmeopp M
lcPne®| nicPne®
where 1(C,C?) = " |7 log |c.<1)||c<]2’\ HO
i 1y

=->; ‘Cni‘ log ‘Cni‘, and |C;| denotes the number of sub-
jects in the cluster C;. Because the true clusters are
known in synthetic data, we computed NMI to measure
the agreement between the true cluster assignments and
the cluster assignments resulting from cluster analysis. A
higher NMI value indicates better performance.

In addition to NM]I, for each clustering, classifiers were
constructed based on genetic markers to separate subjects
in different clusters. We used the Area Under the receiver
operating characteristic Curve (AUC) [15] in a 10-fold
cross-validation setting to measure the genetic separa-
bility or homogeneity of the clusters in a clustering and
compared it between different clusterings. We used a reg-
ularized logistic regression [16] as the classification model
in these experiments.
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We compared the proposed approach extensively
against biclustering and multi-view analytics. We cal-
culated NMI for different methods on synthetic data
and AUC values on both synthetic and real world data.
Our comparison study included the following existing
methods:

¢ Single-view SSVD: Clusters were included in the
comparison by running the method of SSVD-based
biclustering in the clinical view, as the biclustering
method does not handle multiple views. Applying this
method to genetic data created completely different
clusters from those obtained in the clinical view.

e Co-regularized spectral: This method was proposed
previously [9] to find consistent row clusters across
multiple views by applying spectral clustering to each
view in turn together with a co-regularization factor
applied to the cluster indicator vector.

e Kernel addition: Radial basis function (RBF) kernels
were calculated for each view and combined by
summing them. Then spectral clustering was applied
to the combined kernel to obtain row clusters.

e Kernel product: This is the same procedure as in the
kernel addition described above except that kernel
matrices were combined by multiplying their
components in the same position.

e Feature concatenation: Data from the two views
were combined by feature concatenation and a kernel
matrix was computed based on the combined
features. It was then used in spectral clustering to
obtain row clusters.

A simulation study

Two disease subtypes, subtype 1 and subtype 2, were sim-
ulated. Each of the subtypes was both defined by a set
of phenotypic/clinical features and associated with a set
of genetic markers. However, the clinical features and
genetic markers differed for the two subtypes. Thus, each
subtype corresponded to a cluster of subjects with the
specific clinical features and the associated SNP markers
(here we assumed that minor alleles at each locus were risk
variants). The goal of the simulation was to create a ref-
erence partitioning of subjects in both views (i.e., genetic
markers and clinical features).

Genetic data were obtained from the 1000 Genome
Project [17], in which 1092 subjects were genotyped for
several million genetic markers. We randomly selected
1000 markers from chromosome 5 that had a minor allele
frequency of at least 5% as genetic inputs in our experi-
ments. Ten markers (different for each subtype) were ran-
domly chosen to be associated with each subtype. Thus,
a cluster of subjects was formed for each subtype, and we
assigned subjects to a cluster if they had > 8 risk variants
out of the 10 SNPs chosen for that subtype. This amounts
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to an additive genetic model for each subtype (i.e., derived
by adding the risk variants). Subjects who did not belong
to either of the subtypes were treated as controls, forming
the third subject cluster. We removed from the analysis
subjects who belonged to both subtypes to ensure clarity
in the partition. A total of 1013 subjects were retained. Of
these, 247 and 167 were assigned to subtype I and subtype
2, respectively, and 599 were controls. We named these
clusters the genotypic clusters.

We then created clusters of the same subjects in the
clinical view to be consistent to a certain degree with
the genotypic clusters. Note that many diseases, although
highly heritable, are multifactorial genetically and envi-
ronmentally. To reflect the environmental effects on the
clinical features, we introduced random noise to the syn-
thesized clinical data so that the clinical clusters were not
exactly the same as the genotypic clusters, so as to test the
robustness of the proposed approach. We used a param-
eter e to indicate the relative effect that genetic variation
contributed to the phenotypic variation. Denote r/L the
number of risk variants of subtype j shared by subject i,
s0 0 < 7, < 10 according to our definition of genotypic

clusters. Ifrf x e+ N(0,1) > 7.5 x e, we assigned subject i
to subtype j. This process created clusters of subjects that
were different but similar to the genotypic clusters (with
the parameter e reflecting the level of similarity).

We named these clusters the phenotypic clusters
because they were used to synthesize clinical features such
that the clinical data represented these clusters. Similarly,
we removed from the analysis subjects that overlapped in
the two phenotypic clusters. Fewer than 15 subjects were
excluded in any simulated dataset in the experiments.
In addition to these two phenotypic clusters, two addi-
tional phenotypic clusters, independent of any genetic
variant and based on clinical features only, were created
to make the simulated data more difficult but more real-
istic. Each of the two additional clusters included 200
subjects that were randomly selected among the controls.
This design aimed to reflect the observation that multiple
clinical clusters may exist in a sample, but only some clus-
ters (two in our simulations) are associated with genetic
factors.

We simulated 10 binary phenotypic/clinical features
that exhibited the phenotypic clusters. A subject was
assigned a value of 0 or 1 for each of the features according
to a pre-defined probability. Subtype 1 and subtype 2 each
were associated with three features. Subjects in each sim-
ulated phenotypic cluster were assigned a value of 1 with
probabilities of 0.6, 0.5, and 0.4, respectively, for the three
designated features. Each of the two additional phenotypic
clusters was associated with two features, and subjects in
each of the two subtypes were assigned a value of 1 in the
two features, with probabilities of 0.6 and 0.5, respectively.
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A subject was assigned a value of 1 with a probability of
0.1 on any other features.

To evaluate how the proposed method performed when
the genetic effect varied, four phenotypic datasets with
e = 1, 0.8, 0.6, and 0.4 were generated and analysed.
The genetic effect on phenotypic variation decreases with
decreasing e, which leads to a lower level of agreement
between genotypic and phenotypic clusters.

All of the available methods were used to obtain
three subject clusters. Table 1 provides the NMI calcu-
lated by comparing subject clusters obtained from each
approach to the simulated phenotypic clusters. The pro-
posed method has the highest NMI on all four of the
datasets. With decreasing e, the NMI obtained by the pro-
posed method decreases gradually, as expected, but the
subject clusters consistent between the two views can still
be discerned.

For each cluster solution, two classification models were
built to separate subjects in each of the two subtypes
from controls. The subject cluster from each method
containing the largest number of controls was consid-
ered the control group. The average AUC values and their
interquantiles obtained by all compared approaches on
each dataset are plotted in Figure 1. The proposed method
achieved the second best performance on this mea-
surement. Although the feature concatenation method
obtained the clusters that were most separable genetically
(i.e., with the best AUC), the clusters were not clinically
recognizable. As shown in Table 1, they were the most
disparate from the simulated true phenotypic clusters.

A significant advantage of the proposed method is that
it can simultaneously identify the features that specify the
subject clusters. We calculated the number of features
that were correctly and incorrectly identified by the pro-
posed method to measure its performance in this regard.
The results are summarized in Table 2, which shows that

Table 1 Comparison of different methods on their cluster
validity in the simulation

e=1 e=0.8 e=0.6 e=0.4
Single-view SSVD 0.0821 0.1798 0.2432 0.2286
Co-regularized Spectral 0.2306 0.2477 0.2338 0.2549
Kernel addition 0.2587 0.2295 0.2350 0.2566
Kernel product 0.1917 0.2432 0.2302 0.2310
Feature concatenation 0.1569 0.1576 0.1532 0.1211
Proposed method 0.7949 0.7693 0.6815 0.6329

The normalized mutual information (NMI) values are shown, measuring the
agreement between the clusters resulting from an approach and the simulated
phenotypic clusters. The genetic contribution to the phenotypic variation varied
according to different e values. A greater e value indicates a higher agreement
between the simulated phenotypic clusters and genotypic clusters, making it
easier for a clustering approach to recover the simulated phenotypic clusters.
Italic fonts indicate the best performance in the experiments with each of the e
values.



Sun et al. BMC Genetics 2014, 15:73
http://www.biomedcentral.com/1471-2156/15/73

Page 8 of 12

e=1 e=0.8
1= 1 = m
Y 08 . 0.8 T &
< E g ] — =
— £ i 4
0.6 g oL 0.6
L 1
At—A2 A3 A4 A5 A6 At—A2—A3—A4—A5 A6
e=0.6 e=04
1 = - 1 Q
v 08} + 0.8 T
= = -\ T s O ‘
s Bk =l =
0.6 L 0.6 - -
T
AT—A2—A3 A4 A5 A6 AT—A2—AS—A4—AS A6
Figure 1 Comparison of different methods on AUC values in the simulation. The box plot of AUC values obtained from all approaches in the
comparison is shown for the simulated data. The methods were: A1 - the proposed method, A2 - single-view SSVD, A3 - co-regularized spectral
clustering, A4 - kernel addition, A5 - kernel product, and A6 - feature concatenation. The parameter e reflects the level of genotypic effect to the
phenotypic variation in the simulated data. The AUC values characterize the genetic separability of the clusters resulting from each method.

our approach correctly identified all true associated fea-
tures in both views with a very low false discovery rate
(~ 15/1000) when taking into account the total number
of features used in the analysis.

A disease study: cocaine use and related behaviors

A total of 1,474 African Americans were phenotyped
and genotyped for genetic studies of cocaine depen-
dence (CD) [18]. Subjects were recruited from the Yale
University School of Medicine, University of Connecti-
cut Health Center, University of Pennsylvania School of

Table 2 The features identified by the proposed method in
both views in the simulation

Phenotypic view Genotypic view

TF TPF FPF TF TPF FPF
e=1 3 1 10 4
e=08 3 1 10 5
Subtype 1 3 10
e=06 3 2 10 15
e=04 3 0 10 10
e=1 3 0 10 4
e=08 3 0 10
Subtype 2 3 10
e=06 3 0 10 2
e=04 3 0 10 5

The parameter e reflects the level of genotypic effect to the phenotypic variation
in the simulated data. TF is the number of True Features used in the simulation
to specify a subject cluster. TPF (True Positive Features) is the number of features
correctly identified. FPF (False Positive Features) is the number of features
incorrectly identified.

Medicine, McLean Hospital and Medical University of
South Carolina. All subjects gave written, informed con-
sent to participate, using procedures approved by the
institutional review board at each participating site. Sub-
jects were phenotyped using a computer-assisted inter-
view, called the Semi-Structured Assessment for Drug
Dependence and Alcoholism (SSADDA) [19], a polydi-
agnostic instrument that was used to generate diagnoses
of dependence on cocaine and other substances. Sixty-
four yes-or-no variables were generated by this survey,
which were also used in previous genetic association stud-
ies [1,20,21]. These variables were used as the phenotypic
features. Of the 1,474 subjects, 1,287 were diagnosed with
cocaine dependence. Subjects were genotyped for 1,350
SNPs selected from 130 candidate genes [4] and 186
ancestry informative markers (AIMs) using the [llumina
GoldenGate Assay platform (Illumina, Inc., San Diego,
CA).

The original dataset aggregated from two studies was
preprocessed with a sequence of steps for data cleaning
and to address population stratification. Race was clas-
sified using STRUCTURE v2.3 [22] and AIMs, which
stratified the study subjects into two population groups:
African Americans (AAs) and European Americans (EAs).
The AA group was used in the present analysis. Of the
1,474 AAs, 93.78% had AA as their self-reported race. We
excluded other population groups from the analysis. Prin-
cipal components analysis (PCA) was performed on the
186 AIMs for the stratified AA population. The first PCA
dimension was used in the subsequent association tests as
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Figure 2 Comparison of different methods on AUC values in the
CD study. The box plot of AUC values were obtained from all
methods on the data of cocaine use and related behaviors. A1 - the
proposed method, A2 - single-view SSVD, A3 - co-regularized spectral
clustering, A4 - kernel addition, A5 - kernel product.

a covariate to correct for the residual population structure.
SNPs for which data were available for less than 95% of
the subjects, or for which the P value for Hardy-Weinberg
equilibrium was less than 10~7, were excluded from our
analysis. The minor allele frequency (MAF) of each SNP
was calculated within this AA population group. SNPs
with a MAF < 1% were removed. The remaining 1,248
SNPs were used as the genetic markers in the multi-view
biclustering experiment. The SNPs selected by the pro-
posed Algorithm 1 were then used in the association test
that was based on the logistic regression model.
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The feature concatenation method overlooked the infor-
mation in the clinical or phenotypic view as observed in
both the simulation study and the case study. Thus, we
excluded the feature concatenation method from further
comparisons. Three subject clusters were obtained from
each of the methods in the comparison. Logistic regres-
sion models were built with sex, age and the first PCA
dimension as covariates and tested in a manner similar to
that used for synthetic data. Figure 2 shows the box plot
of the AUC values. As shown there, our approach signifi-
cantly outperformed all other methods with respect to the
genetic separability of the resultant clusters. A paired ¢-
test to compare the AUC values from our method with
each of the other methods yielded a p-values < 0.05 for all
comparisons.

For the proposed method, the three identified subject
clusters contained 795 (Group 1), 295 (Group 2) and 384
(Group 3) subjects. Group 1 and Group 2 were identi-
fied consecutively, and Group 3 contained the remaining
subjects. Group 3 contained more than 80% of the con-
trol subjects; thus, we used this group as a control group
in our association analysis. The number of clinical fea-
tures identified as associated with Group I and Group 2
were 18 and 17, respectively. Figures 3 and 4 compare
the three subject clusters on the percentage of positive
responses to the identified clinical features. A few identi-
fied features are not shown in the figures, because they are
highly correlated (r > 0.7) with the features shown.

From these two figures, we can see that Group 1 is dis-
tinctively associated with several withdrawal symptoms,

1 \
- Felt depressed1
- - Had trouble concentrating1
Y o8l = I Felt depressed? |
c : [ Felt restless?
8 [ relt tired?
$ — [ 1 Had trouble sleeping®
E 06 [ pesire for cocaine?
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:;n‘ - Daily functioning was interfered’
o
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o 04r b
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©
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0
1 2 3

Patient clusters

Figure 3 Comparison among the three cocaine user groups on the features identified for Group 1. Cocaine use symptoms are identified by
the superscript !, and the symptoms due to stopping, cutting down or going without cocaine are identified by the superscript 2. The percentage of

individuals endorsing any of the features are reported for each user group.
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Figure 4 Comparison among the three cocaine user groups on the features identified for Group 2. The percentage of individuals endorsing

any of the features are reported for each user group.

such as feeling depressed, restless, or tired when the
subject stopped, cut down or went without cocaine. When
Group 2, the second row cluster, was identified, the cor-
responding column cluster contained 17 clinical features.
We plotted the percentage of positive responses to eight of
these features for all three cocaine user groups in Figure 4.
Subjects in both Group 2 and Group 1 showed high val-
ues on these features. Note that subjects in Group 1 were
excluded when the second cluster was derived. From these
observations, we can conclude that Group 1 is a heavy user
group with many negative consequences of cocaine use,
Group 2 is a moderate cocaine user group, and Group 3 is
a low cocaine user group.

There were 114 and 237 genetic markers identified for
Group 1 and Group 2, respectively, by Algorithm 1. Based
on these markers, two logistic regression models were
built to identify the markers that had the highest pre-
dictive power in distinguishing subjects in Group I or in
Group 2, from those in the control group. Table 3 gives the
5 SNPs that received the largest magnitude of weights in
the models. It is interesting to note that the HTR2C gene
was significantly associated with Group 1 in our study (p-
value < 107°), having previously been identified with a
heavy use, early-onset and high comorbidity subtype of
cocaine dependence [20].

Conclusion

It is challenging to identify the genetic causes of com-
plex disorders such as substance dependence, due to
their heterogeneous clinical manifestations and complex
genetic etiologies, which include gene x environment

interactions. Phenotype refinement that leads to homo-
geneous subtypes is a promising approach to solve
this problem [1,5,23-25]. However, most of the meth-
ods used to refine phenotypes take into consideration
only the phenotypic information, despite the availability
of genotypic information in genetic studies of a com-
plex disorder. Thus, existing approaches have had lim-
ited success in finding a phenotypic subtype that is
genetically homogeneous. In this paper, we propose a

Table 3 Top five SNPs associated with each of the two CD
subtypes

SNP Chr MAF HWE Gene

rs6318 chrX 0.3643 1.00 HTR2C

Group 1 152427400 chr20 0.1280 0.22 NTSR1

VS, rs460401 chr21 0.3500 0.18 GRIK1
Group 3 rs10485058 chr06 0.0585 0.38 OPRM1
152279423 chr15 0.0237 0.81 CHRMS5

1897692 chr11 0.3972 0.86 HTR3A

Group 2 1s9996854 chro4 0.5436 0.61 GABRBI1
VS. rs481036 chr01 0.5582 0.21 CHRM3
Group 3 rs6092933 chr20 0.2070 0.17 SLC32A1
rs9371781 chroé 0.3687 0.49 OPRM1

The five SNP markers that received the largest magnitude of weights in the two
classification models that separate the subtype cases, in Group 1 and Group 2,
respectively, from the controls in Group 3. The SNP name, the SNP location
(chromosome i.e., Chr), the name of the gene (Gene), the minor allele frequency
(MAF) and the P-value for Hardy Weinberg equilibrium (HWE) are provided for
each SNP.
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multi-view biclustering approach to refine the phenotype
by jointly taking into account genetic and phenotypic
information.

The proposed method is distinct from existing multi-
view data analytics in that the relevant features can
be identified at the same time that a subtype is deter-
mined, which is critical to its success. This increases the
likelihood of finding genetic associations. The proposed
method is distinct from existing biclustering methods
in that it harmonizes the subject groupings in two or
more views. The developed algorithm is highly scalable
with large datasets because at each iteration it calcu-
lates closed-form solutions for different groups of working
variables. The results from extensive experimental com-
parisons on both synthetic data and real world datasets
demonstrate the effectiveness and superior performance
of the proposed approach.

This study has a number of limitations. The proposed
multi-view biclustering method, in its current form, does
not simultaneously handle population stratification and
phenotype-genotype association. It may spuriously iden-
tify markers that are relevant to a disease subtype due
to population structure rather than being truly associ-
ated with the specific disease. Thus, population groups
need to be stratified in additional steps such as those per-
formed in our experiments. It is desirable to extend our
method to address the three-way relationship among pop-
ulation subgroups, genotypes and phentoypes to ensure
the validity of the identified phenotype-genotype asso-
ciations. Further, the proposed method was used in our
empirical study to identify the first two major sub-
groups of subjects, for which no invalid clusters caused
by random noise were identified. When larger numbers
of clusters are to be identified, the two methods we
designed to find subsequent clusters (by either exclud-
ing subjects in the identified subgroups or deflating sin-
gular value components from the data matrix) become
susceptible to the detection of invalid clusters because
singular values will decrease in subsequent decomposi-
tion. Empirical studies may be needed to examine more
thoroughly the signal-to-noise pattern of the proposed
method.
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