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Abstract

The highly invasive agricultural insect pest Ceratitis capitata (Diptera: Tephritidae) is the most thoroughly studied
tephritid fruit fly at the genetic and molecular levels. It has become a model for the analysis of fruit fly invasions
and for the development of area-wide integrated pest management (AW-IPM) programmes based on the
environmentally-friendly Sterile Insect Technique (SIT). Extensive transcriptome resources and the recently released
genome sequence are making it possible to unravel several aspects of the medfly reproductive biology and
behaviour, opening new opportunities for comparative genomics and barcoding for species identification. New
genes, promotors and regulatory sequences are becoming available for the development/improvement of highly
competitive sexing strains, for the monitoring of sterile males released in the field and for determining the mating
status of wild females. The tools developed in this species have been transferred to other tephritids that are also
the subject of SIT programmes.

Background
The Mediterranean fruit fly (medfly), Ceratitis capitata
Wiedemann, is one of the world’s most destructive agri-
cultural insect pests [1-3]. Due to its global distribution
and history of rapid and devastating outbreaks [4-6], the
medfly is the most thoroughly studied “true” fruit fly
(Diptera: Tephritidae) [7] at the genetic and molecular
levels. It has thus become a model species for the analysis
of fruit fly invasions [8] and for the development of con-
trol strategies [9]. Medfly outbreaks have been success-
fully controlled through area-wide integrated pest
management (AW-IPM) programmes based on the envir-
onmentally-friendly Sterile Insect Technique (SIT) [10].
In the SIT, the reduction of pest population size is
achieved through mass release of reproductively sterile
male insects into a wild-type population [11]. Males ren-
dered sterile through ionizing radiation compete with
wild-type males for matings and deplete female repro-
ductive success. Preventative sterile male releases have
been and are currently applied in areas where the cli-
matic conditions and the availability of suitable hosts for

oviposition are particularly favourable for medfly estab-
lishment, such as California, Southern Australia and Flor-
ida [12-16]. To be most successful, this approach requires
i) knowledge of the genetic background of the released
males and the genetic structure of the target population,
ii) a sexing strain for male-only production, iii) a steriliza-
tion system that inflicts the least possible fitness load,
and iv) effective procedures to monitor the efficiency of
the programmes.
In the last 20 years, enormous progress has been made

in understanding medfly biology, with the goal of develop-
ing and optimizing a wide range of molecular tools for the
implementation of population control strategies (Figure 1).
Population genetics provided useful approaches for recon-
structing the routes of medfly invasion, highlighting the
complexity of the process [4,5,17-25]. Ceratitis capitata
was the first non-drosophilid species in which the germ-
line was transformed [26], enabling studies on its biology
in ways that were previously impossible [27-34].
The application of functional genomics tools, together
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allows a more detailed analysis of the complex biological
traits that underpin the adaptive potential of this fly at
all developmental stages (Figure 2)[8,35]. Indeed, func-
tional genomics provides powerful evolutionary tools to
interpret how medfly (either wild or transgenic) develop
and respond to the environment. Different aspects of
development, behaviour, sexual maturation, and repro-
duction can now be examined both in terms of gene
expression profiles and protein analyses [36-43]. New
genes, promotors and regulatory sequences are conse-
quently becoming available for i) the development/
improvement of competitive sexing strains, ii) the moni-
toring of released males in the field, and iii) for deter-
mining the mating status of wild females.

Medfly embryogenesis
A reservoir of early male/female differentially expressed
genes and sex regulatory sequences is now available for
unravelling the first steps of medfly embryogenesis, i.e.
when the maternal-to-zygotic transition (MTZ) occurs
and when the sexual fate is established at the molecular

level [36,38]. As a practical consequence, promotor and
enhancer sequences that are active in early stages of
development are becoming available as tools for the
future generation and/or improvement of the existing
conditional embryonic and female-specific lethality sys-
tems developed using conventional techniques. Female-
specific lethality systems were developed based on alter-
native splicing of the Cctransformer gene (Cctra) [31].
Moreover, cellularisation-specific promotors/enhancers
allowed the development of a transgenic embryo-specific
lethality system [33]. More recently, the combination of
the Cctra-based female-specific lethality [31] with the
embryonic lethality system [33], yielded a female-specific
embryonic lethality (FSEL) system in this species [44].
In this context, the medfly genes with vital functions in

early embryonic development, such as those involved in
sex determination and cellular blastoderm formation, are
of direct use [38]. Their zygotic transcriptional activation
follows two waves. The first wave starts within four
hours after oviposition and includes the zygotic genes
Ccsisterless A (CcsisA), Ccdeadpan (Ccdpn) and Ccslow-
as-molasses (Ccslam). The second major burst of expres-
sion activation begins five hours after oviposition and
includes the maternal-zygotic genes Ccgroucho (Ccgro),
CcSex-lethal (CcSxl), Cctransformer (Cctra), Ccfemale-
lethal d (Ccfl(2)d), CcRho1 and Ccserendipity-a (Ccsry-a)
[38]. During this transition, sexual identity is established
at the molecular level, before cellularisation of the
embryo occurs. Unlike Drosophila [46,47], Cctra is the
key-gene of the sex-determination cascade: it generates
mRNAs encoding full-length active proteins only in
females and displays an autocatalytic function, that

Figure 1 Molecular timeline of medfly research.

Figure 2 Medfly functional genomics resources and their impact on the improvement of the SIT.
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guarantees the female-specific development of cell mem-
ory [47]. Cctra, in cooperation with Cctra2, determines
the sex-specific splicing of Ccdsx, the transcription factor
that is the regulator of the sex-differentiation processes.
The mother supplies the embryos with Cctra and Ccdsx
female-specific splicing variants. Subsequently, the
maternal information for female-specific development is
reset in embryos through the reprogramming of Cctra
mRNA splicing and the degradation of the maternal
Ccdsx mRNAs [38]. The precise timing of sex-specific
splicing [38], as well as the proof of evidence that trans-
genic dsRNA for tra is effective in the conditional pro-
duction of male-only progeny [48], can be exploited for
the development of novel sexing strains.

Metabolic regulation of sexual maturation and
mating
The production of highly competitive males is an essential
requisite for effective SIT. Transcriptome and microarray-
based functional analyses performed on whole flies and
specific tissues are providing basic information on the
pathways involved in primary metabolism, hormone synth-
esis, neurological-related processes, gametogenesis, signal-
ling, and sensory perception [36,37,39,42]. The regulation
of these specific pathways and biological processes can be
affected by long-term artificial rearing, that may translate
into reduced quality of individuals released for SIT [42]. In
particular, down-regulation of signaling and neurological
processes, especially those related to light and chemical sti-
muli, muscle development, muscle differentiation and loco-
motion, have been reported as a consequence of mass
rearing in artificial conditions [42]. In this context, nutrige-
nomics can provide valuable information on how nutrition
affects gene expression patterns, offering the means to
measure male and female medfly responses to changes in
the food stream, but also providing information on diet
limitations [49]. This is a priority for operational SIT.
Transcriptional baseline profiles of key biological pathways
involved in sexual maturation of both sexes, and also in
response to mating, are available for medflies reared on the
standard diet used in mass rearing facilities [37]. Indeed,
we know that medfly female maturation requires the acti-
vation of fatty acid metabolism as a reflection of the high
energy requirements for female reproductive success, such
as foraging, nutrient storage and egg development [50]. In
addition, Gene Ontology (GO) enrichment analyses
revealed that, in mature females, transcript categories
related to memory/learning behaviours and visual and
olfactory functions are significantly overrepresented [37].
By contrast, male sexual maturation requires the activation
of carbohydrate and protein metabolism for energy pro-
duction and muscle activities, memory formation, smell
recognition and pheromone production [37]. All these
activities suggest an investment required for lek formation

and courtship [51]. Despite extensive post-mating tran-
scriptional changes in the male, changes in the female were
surprisingly modest. Indeed, in the male, mating does not
down-regulate the transcriptional activities of genes impli-
cated in lek formation/courtship, whereas it increases the
activities of genes related to fitness (i.e. double time and
Basigin) [37].
Some of these pathways are down-regulated by irradia-

tion [42]. This is the case of processes related to visual and
chemical responses, and those associated with muscle
development and locomotion. These irradiation-related
changes may have an impact on the competitiveness of
mass reared flies.
Studies on improved diets or chemical manipulation of

the adult environment offer promising options for the
improvement of sterile male competitiveness. Approaches
aimed at the improvement of the sexual performance of
sterile males include i) altering the olfactory environment
experienced by freshly eclosed individuals, providing high-
quality post-teneral nutrition [52] and ii) inoculating
males with probiotic bacteria [53,54].

Male reproduction
A better understanding of the reproductive biology of the
medfly should permit the development of novel or
improved approaches to impact male reproductive success
and/or regulate female mating behaviour and fertility. In
this respect, transcriptomics and proteomics of reproduc-
tive tissues will help to identify genes and promotors.
Testes and male accessory glands (MAGs) participate in
the maintenance of complementary reproductive func-
tions. In the testes, the key regulatory genes of spermato-
genesis tend to be conserved to guarantee the male-
specific processes required for sperm production [55,56].
By contrast, the accessory gland secretions act as key fac-
tors in male insect reproductive success, and the genes
expressed in the MAGs are subject to rapid evolution as a
result of sexual conflict and competition [57]. A transcrip-
tome-based analysis performed on medfly testes and male
accessory gland tissues resulted in a database of 3344
unique sequences [39]. Transcripts related to spermato-
genesis, fertility, sperm-egg binding, as well as those
involved in the production of seminal fluid proteins
(SFPs), were identified. Some of the SFP transcripts dis-
played a mating-responsive profile [39]. These will be ideal
targets for the development of novel and more specific
environmentally-friendly chemosterilants [58,59] that
mimic the behaviour-modulating effects of MAG proteins,
i.e. by impeding correct sperm storage, or interfering with
female remating.
Over a third of the transcripts from these two tissues

shared no significant similarities to known genes from
other organisms. Considering that they may represent
novel and/or fast-evolving sequences, they represent
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ideal targets for the development of species-specific
diagnostic markers.

Improved SIT monitoring strategies
A major issue in the monitoring activities for evaluating
SIT effectiveness is the difficulty in assessing the capacity
of released sterile males to inseminate wild-type females
[60-62]. The availability of the testes- and sperm-specific
Ccb2-tubulin gene has allowed the use of its promotor for
fluorescent protein marking of the spermatozoa, and
hence to detect females that have mated with released
males [32]. Using this marking system, strains have been
generated and evaluated for their ability to transfer green
or red fluorescent sperm to the female spermathecae. It
has been proven that these sperm remain viable and fluor-
escent for a long time within the spermathecae, also after
female death [32] (Figure 3). The transgene previously
inserted in one of these lines, namely 1260_F-3_m-1, was
then efficiently modified by the use of the site-specific
integration system from phage phiC31 [34]. Post-integra-
tional excision of one of the piggyBac inverted terminal
repeats resulted in stably integrated transgene insertions
that, being inert to the piggyBac transposase, could not be
remobilized. This allowed the development of an opti-
mized strain for pest control that minimizes environmen-
tal concerns (stab_1260_F-3_m-1)[34]. Once integrated
into the medfly GSS Vienna-8 strain, this sperm marking
system may offer valuable alternatives to the currently
used fluorescent powders [63] that are detected in trapped
flies using UV light. Moreover, this sperm marking system
can also be integrated into strains carrying diverse trans-
genes in tandem, for example with conditional embryonic
lethality [33] and sexing systems [31].
For monitoring activities, one of the priorities is

the development of powerful species- and sex-specific

attractants. In this context, it is essential to identify the
components of the molecular machinery that recognizes
and binds external ligands (odours and pheromone
components) and translates this interaction into electri-
cal signals to the central nervous system. Three main
groups of molecules are involved: odorant-binding pro-
teins (OBPs), chemosensory proteins (CSPs), and the
chemoreceptor superfamily formed by the olfactory
(OR), gustatory (GR) and ionotropic (IR) receptor
families [64,65]. The chemosensory gene repertoire of
the medfly is currently being characterized at the func-
tional genomics and structural level [40,41]. So far, one
antennal-enriched OBP appears to be particularly pro-
mising for practical applications. Indeed, it displayed
highest binding specificity for (E,E)-a-farnesene, a major
component of male pheromone blend, and also for Tri-
medlure, a strong synthetic medfly attractant [41]. The
resolution of the three-dimensional structure of this
medfly OBP will be the premise for the design of syn-
thetic molecules able to act as antagonists of the natural
ligand/s. Such optimized molecules need to be further
evaluated and tested for side-effects before they can be
used in AW-IPM approaches.

Conclusions
The extensive transcriptome resources now available for
the medfly (Table 1) will greatly improve the on-going
annotation of the genome. They will also facilitate the
generation of genomic data from other tephritid species
of agricultural importance [66-71], opening new ways for
comparative genomics and barcoding for species identifi-
cation. In addition, the structural and functional geno-
mics (transcriptomics, proteomics, RNA interference etc)
tools that are being developed in the medfly can be
extended to other tephritids that are also the subject of

Figure 3 Transgenic sperm can be easily traced in the reproductive tract of laboratory wild-type females. Mechanically opened spermatheca
isolated from a laboratory wild-type female mated with a transgenic male with green fluorescent sperm [32], three days after death (A). Spermathecal
duct dissected from a laboratory wild-type female mated to a transgenic male with green fluorescent sperm [32] 24 hours after mating (B). Images
were captured using an epifluorescence Zeiss Axioplan microscope at 400x magnification with the Zeiss filters set 13.
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SIT programmes, such as Anastrepha and Bactrocera
species (A. ludens, A. suspensa, A. obliqua, A. fraterculus,
B. cucurbitae, B. tryoni, B. dorsalis, B. correcta)[10].
The increased knowledge of the biology of the medfly

acquired through genomic approaches will also facilitate
the further development of regulations for the transfer
and potential field release of genetically modified fruit
flies.
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