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Abstract
Background: Earlier methods for detecting major genes responsible for a quantitative trait rely
critically upon a well-structured pedigree in which the segregation pattern of genes exactly follow
Mendelian inheritance laws. However, for many outcrossing species, such pedigrees are not
available and genes also display population properties.

Results: In this paper, a hierarchical statistical model is proposed to monitor the existence of a
major gene based on its segregation and transmission across two successive generations. The
model is implemented with an EM algorithm to provide maximum likelihood estimates for genetic
parameters of the major locus. This new method is successfully applied to identify an additive gene
having a large effect on stem height growth of aspen trees. The estimates of population genetic
parameters for this major gene can be generalized to the original breeding population from which
the parents were sampled. A simulation study is presented to evaluate finite sample properties of
the model.

Conclusions: A hierarchical model was derived for detecting major genes affecting a quantitative
trait based on progeny tests of outcrossing species. The new model takes into account the
population genetic properties of genes and is expected to enhance the accuracy, precision and
power of gene detection.

Background
The identification of individual genes governing pheno-
typic variation is crucial to understand the mechanistic
basis of quantitative inheritance and ultimately provide
information about the design of optimal breeding strate-
gies in both plants and animals. Quantitative genetics
based on new statistical and computational technologies
has advanced to the point at which individual genes can
be detected and mapped on chromosomes [1,2]. The un-

derpinning for the detection and mapping of genes is
founded on their particular segregation pattern. For a ped-
igree derived from inbred lines, the segregation pattern of
a gene can be exactly predicted. In this situation, quantita-
tive genetic theory can lay a sufficient foundation for gene
detection and, thus, the properties of a detected gene can
be adequately described by its effect and genomic loca-
tion. However, for outcrossing populations, such as forest
trees, in which inbred lines are not available, genes also
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display population genetic properties [3]. Hence, the
foundation for gene detection in these populations
should be established on a combination of quantitative
genetics and population genetics. The estimation of the
population genetic properties of genes, such as allele fre-
quencies and the degree of disequilibrium, can not only
enhance the precision and power of gene detection, but
also is fundamentally important to our understanding of
population differentiation and evolution [4,5].

We present a strategy for investigating the existence of
genes in an arbitrarily complex progeny test based on phe-
notype data and estimating the effects of these genes on a
quantitative trait and their population properties under
the maximum likelihood framework. Only a limited
number of statistical studies have been performed to de-
tect genes based on the phenotypic data [6–13], and none
of these studies have considered the population and evo-
lutionary genetic properties of genes. Our study popula-
tion can be derived from a natural population instead of
inbred lines as used for general agronomic crops. A finite
number of unrelated parents are randomly selected from
a natural population and are mated to produce progeny
tests under a mating design such as factorial or diallel. In
a recent paper, we used such progeny tests to derive a
model for detecting major genes affecting a quantitative
trait [14]. This model has power to estimate the effect of
drift errors on genetic variation during hybridization, thus
providing information about dynamic changes of the ge-
netic architecture of a population under artificial hybridi-
zation. However, the estimates of population genetic
parameters from the progeny test using the above model
cannot be generalized to the original population from
which the mating design is derived. In this paper, we de-
veloped a hierarchical model for analyzing the pattern of
gene segregation at both population and family levels,
which thus can provide estimates of genetic parameters in
two successive generations of the population. Estimates of
population genetic parameters using this hierarchical
model can reasonably infer the genetic structure of the
original population. A forest tree example is used to dem-
onstrate the application of the new statistical model for
gene detection.

Model
Population genetic structure
Suppose there is a segregating major gene responsible for
a quantitative trait in a natural or experimental diploid
population. This gene has s different codominant alleles,
A1,...,As, whose frequencies in the population are denoted

by p1,...,ps with pκ = 1. These s alleles randomly

unite to form s(s + 1)/2 distinguishable genotypes includ-
ing s homozygotes and s(s - 1)/2 heterozygotes. The pop-
ulation frequencies of the genotypes are denoted by

pκι (κ, ι = 1,...,s). If the population is at Hardy-Weinberg
disequilibrium (HWD), the genotypic frequency is the
product of the two corresponding allelic frequencies, plus
the coefficient of HWD (dκι), i.e., pκι = pκpι + dκι, where dκι
has the restrictions, max{-pκ (1 - pι), -pι (1 - pκ)} ≤ dκι ≤

pκpι and ∑υ≠κdκυ - ∑v≠κdυυ ≥ - [15].

Mating design
A finite number of unrelated individuals are randomly se-
lected from the population as female and male parents to
generate a I × J factorial mating design. Based on sampling
theory, these selected individuals have genotypes at the
major locus whose counts follow the same multinomial
distribution as those in the original population, with
probability vector p = (pκι, κ, ι = 1,...,n). The segregation of
progeny genotypes in the mating design depends on how
the major-locus genotypes segregate (1) among the select-
ed female or male parents and (2) within each of the full-
sib families (Table 1). The segregation among the I female
or J male parents having the same pattern as in the origi-
nal population is viewed as the population-level segrega-
tion. The segregation within a full-sib family of size nij
derived from the ith female and jth male parent follows
the Mendelian segregation ratio, viewed as the family-lev-
el segregation. To understand the genetic structure of the
original population, different genetic information derived
from this two-level segregation will not be mixed, but
rather combined within a maximum likelihood frame-
work.

Estimation method
Let yijk denote the phenotypic measurement for the kth
offspring from ith female parent and jth male parent and
gijk denote its genotype at the major gene, i = 1,2, ..., I, j =
1, 2, ..., J, k = 1,2, ..., nij. The statistical model describing
the phenotype-genotype relationship can be expressed as

where µκι is the genotypic value of genotype AκAι; and eijk
is the error term with the normal distribution N(0,σ2).

Let  be the genotype for the ith female parent and 

for the jth male parent. We denote by y the collection of
the observed data and by z = (g,gf,gm) the collection of the
major-locus genotypes for offspring, female parents and
male parents. We assume the following hierarchical mod-
el:

κ=∑ 1
s

pk
2

y I eijk g A A ijk
ijk

= +={ }µκι
κ ι

g fi gmi
Page 2 of 7
(page number not for citation purposes)



BMC Genetics 2002, 3 http://www.biomedcentral.com/1471-2156/3/10
where f denotes the normal distribution of the phenotype
N(µκι, σ2), h is distributed according to the Mendelian
segregation pattern and ψ is multinomially distributed
with probability vector p. Note that genotypes for siblings
are dependent and, given genotypes, the traits are inde-
pendent of each other. Under the above model (y, z) has
a joint distribution as follows:

Statistically, equation (2) is a mixture model in which
each component is represented by a genotype within a
full-sib family [16–18]. The maximum likelihood esti-
mates for θ = (µ, σ2, p) can be obtained using the EM al-
gorithm [19,20]. At the tth step of the EM sequence, the
expected log-likelihood

 is proportional to

where ΣG sums over all possible genotypes,

 are the posterior distribu-

tions of offspring genotypes and iG, jG are the posteri-
or distributions of parent genotypes. Conditional on

, these posterior probabilities can be evaluated as
follows:

The EM sequence is defined by

Table 1: Factorial mating design using female and male parents sampled from a natural population.

Male
A1A1 A1A2 — AsAs

(2p1p2) —

A1A1 A1A1 A1A1 : A1A2 — A1As

(1) (1/2:1/2) — (1)

A1A2 A1A1 : A1A2 A1A1 : A1A2 : A2A2 — A1As : A2As
(2p1p2) (1/2 : 1/2) (1/4:1/2:1/4) — (1/2 : 1/2)

Female | | | | |
AκAι AκA1 : AιA1 Aκ,A1 : AκA2 : AιA1 : AιA2 — AκAs : AιAs

(2pκpι) (1/2 : 1/2) (1/4 : 1/4 : 1/4 : 1/4) — (1/2 : 1/2)
| | | | |

AsAs A1As A1As : A2As — AsAs

(1) (1/2:1/2) — (1)

The segregation patterns of genotypes are indicated at the parental and progeny generation levels. Genotype frequencies in each generation are 
given in parentheses.
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Suppose the major gene has two different codominant al-
leles, the posterior probablities in equation (4) can be ex-
actly calculated for a usual mating design. However, for
large designs with many parents or for the case where the
major gene has many different alleles, we have to rely on
a Monte Carlo version of the EM algorithm. For example,
we can sample from the conditional distribution of z =

(g,gf, gm) given  using the following Gibbs sam-
pler [20]:

Example
We use data from aspen trees to illustrate the appication
of our statistical model for detecting a major gene. The ex-
ample is derived from a 6 × 6 factorial mating design of
Populus tremuloides and P. tremula. The parents for the
crosses were randomly selected from a mixed breeding
population of two different species established at the Uni-
versity of Minnesota. Originally, the P. tremuloides trees
used as the female parents from the Upper Peninsula of
Michigan and northern Wisconsin, and the P. tremula
male parents came from northeastern Poland and Germa-
ny [21]. The seedlings from the progeny population were
planted in two different locations, one on a cutover forest
site near Grand Rapids, Minnesota, and the other on farm-
land near Rhinelander, Wisconsin. Both trials were laid
out in a randomized complete block design with 10 repli-
cates and six seedlings per family in each replicate at 2.5 ×
2.5 spacing. At the end of the second year in the field, all
trees were measured for stem height.

Figure 1 presents density estimates of the second year
height from each family pooled over the two locations.
Trees from eight families did not have growth data due to
mortality. The phenotypic distributions suggest the exist-
ence of a major gene in the progeny test. For example, in

the family derived from Clone-5 × TA-1-68, the phenotyp-
ic distribution is a mixture of at least two components,
showing the existence of a segregating gene. Figure 1 also
indicates different segregation patterns among the fami-
lies, with some more smooth and others more waved,
thus suggesting that some parents are heterozygous with
their alleles segregating in the progeny.

The effect and genotypic frequencies of the major gene are
estimated using the hierarchical model assuming two alle-
les. Since no significant difference is detected between two
locations, we only report the result based on pooled data.
With probability of almost one, parents TA-1-91, TA-2-68,
TA-4-91, XTA-3-6 have genotype A1A1, parents TA-1-68,
TA-1-75, CLONE-5, TA-5-61 have genotype A1A2 and the
rest parents have genotype A2A2. The estimates of the gen-

otypic values of A1A1, A1A2 and A2A2 are 11 = 56.7 ±

0.80, 12 = 40.6 ± 0.32 and 22 = 30.0 ± 1.02, respective-

ly. The estimate of residual variance is  = 218.676 ±
6.09. Here, the estimates of standard errors for the param-
eter estimators are obtained based on the Fisher informa-
tion matrix [22]. We also fitted the model under the null
hypothesis that there is no major gene with a single nor-

mal distribution. The likelihood ratio test has 
(p < 0.0001), suggesting the existence of a major gene for
height growth. The ratio of the dominant to additive effect
for this major gene is less than 0.2, which implies that it
affects the stem height growth in an additive manner.
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Figure 1
Density estimates of second year stem height (in cm) for all
families. The measurement is the stem height at the end of
second year. The randomly selected parents are labelled at
the top (male) and on the right of plots (female). Trees from
eight families did not have growth data due to mortality.
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The population genetic parameters of this major gene are
estimated based on the genotypes of the parents detected.
The genotype frequencies estimated are identical for the

three genotypes, i.e. 11 = 12 = 22 = 1/3. In conse-

quence, the allele frequencies are also same ( 1 = 2 = 1/
2). Thus, the mixed breeding population of P. tremulodes
and P. tremula is not at Hardy-Weinberg equilibrium, be-
cause the genotype frequencies are not products of the
corresponding allele frequencies. The coefficient of Har-

dy-Weinberg disequilibrium is estimated as . The
estimate of allele frequencies and Hardy-Weinberg dise-
quilibrium using our hierarchical model can be well gen-
eralized to the original breeding population from which
the parents were sampled. However, one should be cau-
tious about the accuracy of the estimator due to the small
sample size.

Simulation
The behavior of the EM estimators is evaluated by two
simulation experiments. In the first simulation, a 6 by 6
mating design same as our real example is assumed. The
major gene is assumed to have two codominant alleles A1
and A2 whose frequencies in the population are p1 = 0.6
and p2 = 0.4. The genotypic values are set to be 65, 40 and
25 with standard deviation 15. Based on the hierarchical
model defined in equation (1), we first simulated a set of
the parental genotypes (A1A1,A1A1, A1A2, A1A1, A1A2,
A1A1 for females and A1A2,A2A2, A2A2, A1A1, A1A2, A1A2
for males). Then we randomly generated 50 offspring gen-
otypes and observations for each family.

Our EM estimating procedure converged to the correct pa-
rental genotypes after only a few iterations (normally 2 or
3). A loglikelihood test is highly significant with log-like-
lihood ratio equals 125 (df = 4). The estimates of genotyp-
ic values from a single simulation replicate are 64.1 ± 0.74
for A1A1, 39.5 ± 0.59 for A1A2 and and 26.8 ± 1.64 for
A2A2. The estimate of residual variance is 241.6 ± 10.30.

In our second simulation we studied a 5 by 5 mating de-
sign. We used 25 replications to investigate the empirical
accuracy of the estimators. We assume the major gene has
2 alleles and randomly generated parental genotypes. The
parental genotypes were randomly generated based on al-
lele frequence p1 = 0.5. That resulted in female genotypes
(A1A1, A1A2, A2A2, A1A2, A2A2) and male genotypes
(A1A2, A1A1, A2A2, A1A1, A1A2). For each family we simu-
lated the 50 genotypes for its offsprings and then simulat-
ed its trait measurement using a normal and log-normal
distribution.

The results from the second simulation study are summa-
rized in Figure 2. The top panel of the plots is for the sim-
ulation where trait measurements are simulated from a
normal distribution. The bottom panel corresponds to
lognormal data. In each plot we graphed the ideal esti-
mates of the parameter (assuming that we know the gen-
otypes of each offspring) versus our estimates based on
the EM algorithm. Mean squared errors are also indicated
in the plots. It is seen from Figure 2 that all four parame-
ters can be estimated quite accurately in the normal case
while they are slightly biased for the lognormal data.

Discussion
We have derived a hierarchical model for detecting major
genes affecting a quantitative trait based on progeny tests
of outcrossing species. The new model takes into account
the population genetic properties of genes and is expected
to enhance the accuracy, precision and power of gene de-
tection. The information about the population behavior
of genes estimated from this model is fundamentally im-
portant to our understanding of the genetic architecture of
a natural or experimental population and is also useful for
the design of sound breeding strategies for agricultural
crops and forest trees.

We used an example from interspecific aspen hybrids to il-
lustrate the application of our gene-detecting model. The
model has successfully identified a major gene with addi-
tive effects on second year stem growth in the hybrid as-
pens. The additive effect of genes on height growth in
young poplars was also observed in a molecular marker
experiment [23]. In this marker experiment, an additive
quantitative trait locus was found to explain almost a
quarter of the total phenotypic variation in second year
height growth. The result from the aspen hybrids was con-
sistent with that from a simulation experiment based on a
mating scheme analogous to that used in our real exam-
ple. The consistency of the results from the simulation
study suggests that the model proposed here can be ade-
quately used to detect genes of large effect on the pheno-
types.

The model will have immediate applications for many
species in which progeny tests have been established for a
number of years [24]. Most of these tests are maintained
in different locations and measured annually, thus offer-
ing desirable opportunities to address two important
questions: (1) How does the genes interact with environ-
ment? (2) What is the developmental plasticity of gene ex-
pression? In our real example, no evidence has been
obtained for the change of gene expression at the major
locus detected over the two field trials, despite their dra-
matic differences in climate, soil properties and silvicul-
tural measures [21]. If the stability of the expression of
this gene over a range of environments is confirmed by

p" p" p"

p" p"

d" = 0 06.
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more accurate genotype determination methods, e.g.
based on genetic markers. It will have a tremendous appli-
cation in breeding for stable cultivars of forest tree species.

Our analysis and simulation is based on diallelic inherit-
ance. But multiallelic inheritance can be similarly consid-
ered, although more parameters should be introduced.
Also, our model assumes the segregation of a single gene
in progeny tests. The principle behind the model can be
extended to consider two or more genes. Modelling mul-
tiple genes may be closer to biological reality, because the
linkage, epistatic interaction and genetic association
among genes are considered. However, the consideration
of these relationships needs to estimate an increased
number of unknown genetic parameters. Finally, our
model is based on a balanced factorial design. For some
populations, like mammals, mating designs are frequent-
ly unbalanced because of limited resources or reproduc-
tive difficulties. It is very important to extend our analysis
and model to an unbalanced mating design of any com-
plexity. For all of these extensions mentioned above, max-
imum likelihood approaches may not be sufficient owing
to an increasing dimension of parameter space. A more
powerful computational tool, e.g., Markov chain Monte

Carol methods, may be needed [20] to make our model
more tractable in real applications.
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