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Abstract

This investigation was undertaken to assess the sensitivity and specificity of the genotyping error
detection function of the computer program SIMWALK?2. We chose to examine chromosome 22,
which had 7 microsatellite markers, from a single simulated replicate (330 pedigrees with a pattern
of missing genotype data similar to the Framingham families). We created genotype errors at five
overall frequencies (0.0, 0.025, 0.050, 0.075, and 0.100) and applied SIMWALK?2 to each of these
five data sets, respectively assuming that the total error rate (specified in the program), was at each
of these same five levels. In this data set, up to an assumed error rate of 10%, only 50% of the
Mendelian-consistent mistypings were found under any level of true errors. And since as many as
70% of the errors detected were false-positives, blanking suspect genotypes (at any error
probability) will result in a reduction of statistical power due to the concomitant blanking of
correctly typed alleles. This work supports the conclusion that allowing for genotyping errors
within likelihood calculations during statistical analysis may be preferable to choosing an arbitrary
cut-off.

Background

Optimal performance of genetic linkage and association
tests relies on accurate and efficient genotyping as data
errors reduce power to detect and map genetic effects.
Even at low rates (<2%), typing errors can have significant
effects on results [1]. They inflate apparent recombination
and can falsely exclude linkage, especially in multipoint
analysis [2]. The most insidious errors, often accounting
for over 25% of all mistypings, are those not violating
rules of Mendelian inheritance [1]. A recent extension to a
widely used computer program, SIMWALK? [3], has been
offered to detect these errors through a Markov-chain
Monte Carlo algorithm using full, extended pedigrees and
multiple markers [4]. However, before application to a

real data set, it is desirable to measure the program's sen-
sitivity and specificity in detecting known genotyping
errors. Low specificity or a high rate of false positives will
result in undesirable loss of statistical power while low
sensitivity will leave many true errors undetected. We
report here a study of SIMWALK2's ability to accurately
and efficiently detect known genotyping errors under a
variety of conditions in a single simulated replicate of 330
pedigrees provided by the Genetic Analysis Workshop 13
organizers.

Methods
We arbitrarily chose replicate 100 for all analysis using the
initial set of simulated genotypes that were provided for
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Table I: Genotyping information

Typing Frequency Number of Average Family
Families Size
0 2 9.0
0.08 - 0.19 18 12.5
0.20-0.29 72 12.7
0.30-0.39 117 15.6
0.40 — 0.49 72 16.3
0.50 - 0.59 40 10.8
0.60 — 0.67 9 1.3
Total (mean 0.359) 330 14.2

those individuals who had genotypes in the Framingham
Heart Study data set. The partially genotyped families, n =
330, contained 1701 genotyped and 2991 ungenotyped
individuals and were chosen to reflect more closely a real
genomic scan data set. We first determined that the
marker heterozygosities (het) in the complete scan ranged
from 0.582 (c17g2) to 0.919 (c2g9). We chose to analyze
chromosome 22 because its seven markers encompassed
this range, het = 0.607 (c22g2), 0.639 (c22g7), 0.707
(c22g3), 0.736 (c22gl), 0.762 (c22g4), 0.780 (c22g5),
and 0.899 (c22g6). Two families, 232 and 309, were not
genotyped for chromosome 22 markers. An average of
35.9% of the individuals were genotyped in each family.
An average 6.81 markers were genotyped for each geno-
typed person. The complete list of typing frequencies (per-
centage of individuals in the family who were genotyped),
numbers of families, and average family sizes are pre-
sented in Table 1.

A computer program was written to simulate genotyping
errors according to the empirical error model presented by
Sobel et al. [4]. For each genotype, five random numbers
ranging from 0 to 1 were generated and if their values were
less than or equal to a pre-set limit then a new, incorrect
genotype replaced the original, correct genotype for that
marker. Five data sets were created, each containing a dif-
ferent overall generated error rate (GER), using 0x (i.e.,
simulating no errors), 1x, 2%, 3x, and 4x as the pre-set
(default) error rates used by SIMWALK2. SIMWALK?2's five
default error rates are (¢;) 0.0125 for false homozygosity;
(g,) 0.0075 for misreading one heterozygotic allele; (&5)
0.005 for misreading both heterozygotic alleles; (g,) 0.01
for misreading homozygote as heterozygote; and (e5)
0.0025 for random mistyping (sample switch, etc.), and
sum to an overall error rate of 0.0175 (&5 + &, + &5) in true
homozygotes and to 0.0275 (g;+ €, + &5 + &) in true het-
erozygotes [4]. If more than one error type was probable
for any genotype the one with the highest pre-set rate limit
was simulated. This happened quite rarely and was not
thought to bias the results. For each error the original and
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simulated genotypes were recorded as well as the error
type (1 through 5). In these five data sets 0, 285, 564, 822,
and 1108 genotyping errors, respectively, were generated
out of a total of 11,586 chromosome 22 genotypes con-
tained in the 330 families. Thus, the overall generated
error rates were 0, 0.025, 0.049, 0.071, and 0.096. These
data sets will be referred to as ge000, ge025, ge050, ge075,
and gel00, respectively.

PEDCHECK [5] was used to identify all Mendelian errors
in the five data sets. PEDCHECK levels 1 and 2 detect
Mendelian inconsistencies between parents and children.
PEDCHECK levels 3 and 4 detect occurrences of more
than four alleles in full sibships and lists the relative like-
lihood of possible corrective measures. Errors found using
PEDCHECK were untyped (reset to missing values) and
the program rerun on the updated file until no more
errors were found. (See Results for description of PED-
CHECK-detected errors.)

MEGA2 [6] was used to prepare input files and
SIMWALK? was used to analyze the remaining genotypes
in each of the five data sets, which excluded all Mendelian
errors. All SIMWALK? analyses were performed under the
empiric error model. For each of the five generated data
sets, five analysis error rates (AERs) were tested, 0.00001,
0.025, 0.050, 0.075, and 0.100, and are respectively
referred to as ae000, ae025, ae050, ae075, and ael00.
SIMWALK2's output consists of a list of identification
numbers, the marker name and genotype purported to be
erroneous, and the probability of mistyping of the first,
second, both, and either allele(s) when any probability is
greater than 0.25. The present study uses the probability
that either allele was mistyped as the probability that the
genotype is in error; the p-values given in the Results sec-
tion refers to this probability.

Results

Overall, PEDCHECK found 1104 Mendelian errors or
40% (range 38-42%) of the generated errors in the four
data sets containing errors. In all but one case of 57 level
4 errors, the true misgenotyped person was listed as a
possible error. Thirty-eight of these individuals were indi-
cated as being the most likely misgenotyped person when
several closely related individuals were suggested. In two
cases, the individuals for whom errors were simulated
were not listed in the level 4 output but others in their
nuclear family were listed. Except for these latter two
cases, the simulated error was untyped (even when PED-
CHECK didn't indicate it was the most probable).

When no errors were present, SIMWALK?2 reported 9, 58,
124, 190, and 238 errors (p > 0.25) and 6, 2, 7, 7, and 5
errors (p > 0.95) using, respectively, AER values of 0, 0.25,
0.50,0.75, and 0.1. Figure 1 plots "true-positive" rates and
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indicates that both the AER and the GER affect the proba-
bility that a purported error (p > 0.25) is a true (i.e., gen-
erated) error. The "false-positive" rate equals 1 minus the
plotted value for any GER-AER combination. Assuming
no errors (ae000) in the data sets containing errors, ratios
of errors found/true errors were 7/10 (70%), 6/11 (54%),
19/26 (73%), and 12/18 (67%), respectively. At ael00,
these ratios dropped to 88/337 (61%), 155/413 (37%),
260/524 (50%), and 287/604 (48%). Other than for 0.0
error rates, when the AER was equal to the GER about 50%
of the purported errors were true (generated) errors.

Expanding the ae050 results from Figure 1, Figure 2
reports the effect of increasing stringency in accepting
"true-positives”". Only ge100 shows a constant decline in
the cumulative "true-positive" rate as more errors are
accepted, from p = 1 (100%) to p > 0.25 (60%) whereas
the others show at least some increase in their overall
decline. Generally, however, the overall decline in the
"true-positive" rate is less severe for higher GER. As the
AER increases, the entire plot in Figure 2 shifts downward
(data not shown).

Figure 3 examines effects of marker heterozygosity, het =
0.607 vs. 0.899, on the probability that a purported error
(p > 0.25) was a true error that was generated under low
(0.025) and high (0.100) GER. The role of GER appears to
have profound effects on this probability, while marker
heterozygosity does not.

As a measure of success in identifying generated errors in
terms of all errors present in the data set, Figure 4 indicates
that increasing the AER results in an increased overall
error detection rate and that the GER has less impact than
AER on the overall error detection probability. It is unclear
whether the lower curve for ge100 is real or due to sam-
pling error. Over this AER range, the maximum error
detection frequency was 50% (at ae100). At this highest
overall rate of assumed errors, 52 % (88/170), 47% (155/
328), 51% (260/509), and 43% (287/668) of the gener-
ated errors were correctly identified. However, because the
relationship between AER and detection was nearly linear
for AER > 0 this frequency may increase with AERs >
0.100.

Since the proportion of individuals typed in a family is
also potentially a factor in identifying errors, Figure 5
presents the frequency of errors detected (p > 0.25) in each
of six family groups defined by typing frequency. In these
six groups, 35, 226, 638, 509, 230, and 63 genotyped indi-
viduals were respectively "at-risk" for a genotype error.
The probability of reporting an error is generally higher in
families that have a lower proportion of members geno-
typed. However, this trend does not appear to apply for
the set of families (n = 9) with the highest frequency of
genotyping. The small number of families and/or geno-
typed individuals (n = 63) included in this group may par-
tially explain this apparently anomalous result.
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Purported error detection (p > 0.25) per person in ge050 according to proportion of family genotyped

Conclusion
We have examined factors that potentially affect detection
of Mendelian-consistent genotyping errors and

SIMWALK2's ability to detect these errors under varying
GERs and program-specified AERs. In this data set, up to
an assumed error rate of 10% (specified in the program),
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only 50% of the Mendelian-consistent mistypings were
found under any level of true errors. In fact, the true error
rate appeared to have little impact on the proportion of
errors detected. Although the chance of identifying a true
error increased as the assumed error rate increased, the
ratio of true positive to false-positive errors detected
decreased. As many as 70% of the errors detected were
false-positives. This decrease in specificity was dependent
on the overall level of errors in the data and was not asso-
ciated with marker heterozygosity.

Many genotyping errors will necessarily go undetected
under current techniques. Under the highest assumed
error rate, ael00, at least 50% of the generated errors
remain undetected. These errors are consistent with Men-
delian inheritance but no further examination of them
was performed. Characterizing these undetected errors
may provide clues leading to their identification. At
present there appears to be no means by which "true-pos-
itives" can be differentiated from "false-positives" and the
cost of false-positives can be quite severe. To detect true
errors the investigator has no choice but to accept that this
trade-off will result in loss of power in identifying genetic
effects. However, our research has suggested that avenues
to lower the 'overhead' costs, such as increasing the pro-
portion of genotyped individuals per family, could be of
value. Several potentially important parameters were not
examined here. For instance, it is possible that allele fre-
quency may have a significant impact on error detection
rate. If a more common allele was misread as a less
common one, it may be more likely to be detected as an
error than otherwise. Additionally, no attempt was made
to re-generate errors multiple times at a constant GER.
However, the results presented here are likely robust to
sampling error because most trends were smooth and
consistent over varying conditions. However, any sam-
pling variation present would be seen as differences
between GER levels. Except for ae000 in Figure 1 and p =
1.0 in Figure 2, the plotted values were generally in pro-
portion to GER value.

We do not attempt here to evaluate the theoretical foun-
dation of SIMWALK2's genotyping error detection proce-
dure but only offer a brief analysis of its function and set
its results into a contextual framework. Further work in
detecting true genotyping errors will no doubt be done
due to its importance in linkage and association studies.
Retyping suspect genotypes may help, but factors such as
reproducible errors and mutations may limit its utility.
Overall, we conclude that progress has been made in
detecting Mendelian-consistent errors. However, blanking
suspect genotypes (at any error probability) will result in
a reduction of statistical power due to the concomitant
blanking of correctly typed alleles. Several authors [2,7]
have suggested allowing for genotyping errors within like-
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lihood calculations during linkage analysis and this
approach may be preferable to choosing an arbitrary cut-
off.
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