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Abstract

A standard multivariate principal components (PCs) method was utilized to identify clusters of
variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates
were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high
and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood
pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the
simulated data from Genetic Analysis Workshop 13 (Cohort | and 2 data for year |I), the
quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted
variables were standardized and PCs calculated followed by orthogonal transformation (varimax
rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage
analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates
were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the
individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard
PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits
examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with
over 0.60 heritability estimates could not be identified in this simulated data set using traditional
quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in
some cases may reflect their low contribution to the traits/PCs examined or more importantly,
characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.

Background

Principal component analyses often provide valuable
information that allows data reduction and reveals rela-
tionships between variables that were not previously sus-
pected. As we begin to better understand the scope of gene
effects, we find that single genes often contribute to mul-

tiple phenotypes (pleiotropy). Therefore, when mapping
genes for complex disorders, it can be helpful to identify
groups of variables or phenotypes (principal compo-
nents) that may be controlled by a single gene. Arya et al.
[1] demonstrated the practical application of principal
component analysis by evaluating eight insulin resistance
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syndrome-related phenotypes in 27 nondiabetic Mexican-
American extended families [1]. In their analyses, they
identified three principal components factors and follow-
ing multipoint variance components linkage analyses,
their adiposity-insulin factor showed linkage at two differ-
ent regions on chromosome 6q with LOD scores > 4.1.
This observation was consistent with their previous find-
ing of a major susceptibility locus for insulin resistance on
chromosome 6q, which has been shown to have strong
pleiotropic effects on other insulin resistance syndrome-
related phenotypes such as body mass index (BMI) and
leptin levels [1,2]. To examine this type of pleiotropic
gene effect seen in the Arya study, we chose to evaluate the
use of standard principal components (PC) methods to
capture this effect in the Genetic Analysis Workshop
(GAW13) simulated data set. Our first objective was to
assess whether the traits grouped together in one of the
PCs in our data analysis actually correspond to traits that
share common gene effects in the underlying GAW13 sim-
ulated genetic model, our second objective was to identify
the heritability of these PCs, and our third objective was
to identify major pleiotropic genes through linkage
analysis.

Methods

All analyses were performed on the simulated data with-
out missing observations. Replicate data set 57 was ran-
domly selected and analysis was limited to the year 11
time point. Year 11 was selected because this was the first
year in which Cohorts 1 and 2 both had data collected.
Observations with triglyceride values greater than 400 (n
= 27) were excluded in order to obtain valid low density
lipoprotein (LDL) calculations. In addition, several (n =8
> 4 SD) observations were excluded because they were
judged to be highly influential in the PC analysis.

PC analysis was conducted on six quantitative traits
(QTs): total cholesterol (Chol), triglycerides (TG), high
density lipoprotein (HDL), LDL, systolic blood pressure
(SBP), and body mass index (BMI). LDL was calculated
using the Friedewald's equation [3]: (Total Chol - HDL) -
TG/5, where TG = 400. BMI was calculated as (weight (Ib)
/ (height (in))?] * 703. Three of the QTs (Chol, TG, and
SBP) were log-transformed in order to better conform to a
normal distribution. Each QT was then regressed on sex,
age, and cigarettes per day using linear regression mode-
ling, and residuals were obtained. The residuals for each
QT were then standardized. PCs were calculated from the
correlation matrix of the standardized residuals corre-
sponding to the six QTs using standard methods, in which
all individuals are assumed to be independent. PC analy-
sis was performed using PROC FACTOR in the SAS statis-
tical software package (version 8.2, Cary, NC), with PC
extraction and varimax rotation (Table 1). Results from
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this analysis were used to create PCs consisting of linear
combinations of individual QT residuals.

Heritability estimation and quantitative multipoint link-
age analysis were performed on the PCs and on the resid-
uals for individual QTs using variance-component
methodology, as implemented in the Sequential Oligo-
genic Linkage Analysis Routines (SOLAR) [4]. Genotype
data provided from all individuals were used to generate
multipoint identity-by-descent (IBD) estimates through-
out the genome. Phenotypic traits examined included the
PCs and the raw QTs. No additional covariate adjustment
was made at this stage. All analyses were performed a sec-
ond time, with additional adjustment for cohort effect
(using an indicator variable) when residuals were
obtained. This was done in order to examine whether
cohort had an effect after adjusting for age.

We did not consult the GAW13 simulated data set answers
prior to either the interpretation of the PCs or performing
linkage analysis. Verification of genes modeled in the sim-
ulated data set at baseline (not those influencing longitu-
dinal data) were considered verified if linkage analysis
identified a marker with a peak LOD score (LOD > 1.0)
within 20 cM of the gender-averaged chromosomal loca-
tion for a simulated trait gene. While there is little consen-
sus regarding the most appropriate LOD score threshold
for complex disease, similar to other studies of complex
disease reporting LODs less than 2.0, we considered LOD
scores greater than 1.0 as suggestive evidence of linkage
[5,6].

Results

Atyear 11 we had complete data on 989 individuals (316
families) from Cohort 1, mean age 59.9 years, and 1511
individuals (330 families) in Cohort 2, mean age 53.4.
Variable means for the QTs and confounders were compa-
rable between cohorts, except for SBP, TGs, and cigarettes
per day, where mean SBP and TG were higher in Cohort 1
than 2 (SBP: 137 vs. 130 and TG: 146 vs. 136, respec-
tively) and mean cigarettes per day were lower in Cohort
1 than 2 (4 vs. 6, respectively). After adjustment for age,
sex, and cigarettes per day, cohort was a statistically signif-
icant predictor of only one of the QTs: SBP. The additional
adjustment for cohort produced results (PCs and linkage)
that were similar to those reported and did not change any
of our conclusions.

The first three principal components identified in this
analysis contributed to 73% of the overall phenotypic var-
iance among the six QTs (Table 2). Heritability estimates
(polygenic) for individual QTs and the three primary
principal components were all statistically significant (p <
0.0001), ranging from 0.60 for LDL to 0.79 for BMI (Table
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Table I: Principal component trait loading values (rotated values).
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Trait PCI PC2 PC3
Log Chol 0.96 0.03 0.08
HDL -0.17 -0.73 0.21
LDL 0.99 0.01 -0.03
Log TG -0.11 0.79 0.16
BMI -0.04 0.44 0.54
Log SBP 0.07 -0.15 0.83
Major determinants of the PC were considered traits with loading values = 0.30.
Table 2: Variance and heritability estimates for individual traits and principal components.
Trait Mean (SD) H2rA (SE)
| Log Chol 5.32 (0.17) 0.63 (0.04)
2 HDL 50.22 (11.64) 0.71 (0.03)
3 LDL 128.89 (37.90) 0.60 (0.04)
4 Log TG 4.83 (0.48) 0.62 (0.04)
5 BMI 26.74 (4.79) 0.79 (0.03)
6 Log SBP 4.88 (0.12) 0.75 (0.03)
PC I 1/2 (Log Chol + LDL) 0.62 (0.04)
PC2 1/2 BMI + (Log TG - HDL) 0.80 (0.03)
PC3 Log SBP + 2/3 BMI 0.74 (0.03)
AH2r represents the polygenic contribution and H2ql the contribution of major gene (H2r + H2ql = overall heritability).
Table 3: Genome-wide linkage results for principal components.
Component Peak Maximum LOD Chromosome Position (cM) Marker
PC I --- No LOD > 1.0
PC2 --- No LOD > 1.0
PC3 Peak | 1.18 3 132 False +
Peak 2 1.07 7 137 bl10 @ 124 (height)
Peak 3 1.16 15 20 False +

2). Standard errors for the heritabilities for all QTs and
PCs were typically between 0.03 and 0.04

For PCs, linkage analysis only yielded LOD scores greater
than 1.0 but less than 2.0 for PC3 (SBP + 2/3 BMI). Two
of the three LODs in this range were false-positive results
according to our criteria, while the third LOD identified a
minor gene (b10) contributing 1% of trait variation for
height (Table 3).

For individual traits, no LOD scores > 1.0 were observed
for log Chol, HDL, LDL, or log SBP (Table 4). Log TG
yielded two LOD scores between 1.0 and 2.0, both of
which were false-positive findings, while BMI produced

31 LOD scores > 1.0, with 4 scores > 2.0. When consider-
ing the LODs between 1.0 and 2.0 for BMI, 26 of 27
(96%) were false-positive results, while 1 LOD score iden-
tified a gene for height, a component of the BMI quantita-
tive trait. Of the 4 LOD scores greater than 2 for BMI, 2
were false positive, 1 was essentially unrelated to the BMI
trait identifying genes for cholesterol and HDL, while only
the highest LOD (5.4) identified a gene contributing 40%
to trait variance for weight.

Table 5 indicates the linkage results within 20 cM of the
two pleiotropic genes, b12 and b13, that contribute the
largest proportion to the phenotypic variance of both
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Table 4: Genome-wide linkage results for individual traits.
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Trait Peak Maximum LOD Chromosome Position (cM) Marker

Log Chol --- No LOD > 1.0

HDL --- No LOD > 1.0

LDL --- No LOD > 1.0

Log TG Peak | 1.55 12 166 False +
Peak 2 1.02 19 68 False +

Log SBP No LOD > 1.0

BMI Peak 8 3.1 4 35 False +
Peak 19 2.74 I 50 b30 @66 (Chol) b2l

@45 (HDL)

Peak 23 5.40 13 55 bl @70 (Weight)
Peak 26 2.21 15 15 False +

TG = triglycerides, Chol = Cholesterol, SBP = systemic blood pressure, BMI = body mass index

Table 5: Unblinded major pleiotropic genes influencing TG and HDL-linkage results.

PC I
112 (Log Chol + LDL)

PC 2 1/2 BMI + (Log TG - HDL)

PC2 PC3

PC 3 Log SBP + 2/3 BMI

Gene Max LODA H2rB H2qlB Max LODA
G(bl2)c 0.00 0.62 0.00 0.00
G(b13)P 0.00 0.62 0.00 0.00

H2rB H2ql®B Max LODA H2rB H2qlB
0.80 0.00 0.42 0.71 0.05
0.80 0.00 0.24 0.72 0.03

AMaxLOD, the maximum LOD score within approximately 20 cM of the gene.

BH2r represents the polygenic contribution and H2ql the contribution of major gene (H2r + H2ql = overall heritability).
CG(b12) is located on chromosome 9 at | | cM (MaxLOD range: 0 cM-35 cM).

DG(b13) is located on chromosome 9 at 83 cM (MaxLOD range: 65 cM-105 cM).

HDL and TG. No elevated LOD score > 1.0 was identified
for either PC1, PC2, or PC3.

Discussion

Pleiotropic effects are a common phenomenon in
reported studies of complex disease. Methods are needed
to identify pleiotropic genes that may contribute differing
amounts to the variances of multiple phenotypes. To this
end, we chose to evaluate our ability to identify such
genes by PC analysis, followed by heritability estimates
and linkage analysis.

While our analysis was somewhat limited in terms of the
number of variables available in the complete data set, PC
analysis of the six variables identified three primary PCs
explaining 79% of the phenotypic variance. Covariates
(age, gender, and smoking) were adjusted prior to PC anal-
ysis, consistent with the strategy used by Moser et al.,
although concerns about the effect of these adjustments
on PC and heritability estimates arose [7]. We therefore
performed covariate adjustments before and after PC
analysis [data not shown| and found no significant differ-

ences in PCs, loading, or heritability. Overall, the PC anal-
ysis, in particular PC2, reflected the pleiotropic genes
(HDL and TG) modeled in the simulated data.

Heritability estimates were statistically significant for each
of the three major PCs, as were those for the traits evalu-
ated individually. Each PC heritability estimate was
consistent in magnitude with the trait heritabilities com-
prising the PC. PC2, which reflected the simulated model
best with respect to shared gene effects, had a heritability
estimate slightly higher than the two individual variables
(HDL and TG) in the PC and closer to that for BMI alone.
This higher heritability estimate for PC2 may reflect the
accuracy with which PC identifies/groups variables with
common genetic influence or it may reflect the significant
influence of BMI on this PC.

Several factors that may have contributed to limited
power in both our individual trait and PC linkage analyses
include sample size and composition (single replicate),
pedigree structure, and the number and size of genetic
effects. One of the challenges facing linkage mapping for
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complex disease traits is adequate sample size. Risch and
Merikangas state that the power of linkage for complex
disease is limited to the detection of only the strongest
loci unless thousands of small families are utilized [8]. In
this report a total of 646 families were analyzed and thus
may not have provided ample power for the detection of
genes contributing modestly to trait variance. The analysis
of a single replicate in the GAW13 simulated data set may
also have hindered our ability to detect meaningful
linkage.

Studies have shown the PC approach may improve the
power to identify genes with pleiotropic effects involved
in complex disease [1,9,10]. While PC heritability esti-
mates were encouraging, we were unable to identify plei-
otropic genes. One very plausible explanation may be that
rather than a single gene with a major effect, the high her-
itability reflected many genes with small effects. While it
has been shown that the PC approach has greater power
to detect major pleiotropic genes [10], the power to detect
genes with small effects is likely to be limited. In addition,
our investigation was highly dependent on the extent of
pleiotropy modeled in the simulated data set as well as
our selection of variables for analysis. HDL, TG, and glu-
cose were modeled as pleiotropic traits; however our
investigation only considered HDL and TG (major com-
ponents of our PC2). Ideally, PC2 would have identified
at least the b12 gene contributing 20% and 10% to the
variance of HDL and TG, respectively. Several investiga-
tors have demonstrated increased power and precision in
identifying genetic effects when using multivariate
approaches for correlated traits [11,12]. However, in a
recent commentary, Meigs points out that the results of
such analyses can be influenced by both the number and
nature of variables included in the model [13]. The lack of
our ability to identify the b12 gene in this simulated data
set may have been due to the omission of glucose from
our model or may reflect the difficulty our method has in
identifying complex trait genes. Finally, while we utilized
the standard PC method and adjusted for covariates prior
to linkage analysis to maximize power, we may have
missed potentially important genetic effects by focusing
first on the PCs that explained the majority of phenotypic
variation.

In summary, PC analysis has been demonstrated in
reported studies of complex disease to localize regions of
the human genome likely to contain pleiotropic genes [1],
but may be influenced by factors such as the number and
effect size of pleiotropic genes involved as well as complex
trait variables available for inclusion in the PC analysis.
Further studies are needed to assess the utility of the PC
approach in complex disease.
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