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Abstract
Using the simulated data set from Genetic Analysis Workshop 13, we explored the advantages of
using longitudinal data in genetic analyses. The weighted average of the longitudinal data for each
of seven quantitative phenotypes were computed and analyzed. Genome screen results were then
compared for these longitudinal phenotypes and the results obtained using two cross-sectional
designs: data collected near a single age (45 years) and data collected at a single time point.
Significant linkage was obtained for nine regions (LOD scores ranging from 5.5 to 34.6) for six of
the phenotypes. Using cross-sectional data, LOD scores were slightly lower for the same
chromosomal regions, with two regions becoming nonsignificant and one additional region being
identified. The magnitude of the LOD score was highly correlated with the heritability of each
phenotype as well as the proportion of phenotypic variance due to that locus. There were no false-
positive linkage results using the longitudinal data and three false-positive findings using the cross-
sectional data. The three false positive results appear to be due to the kurtosis in the trait
distribution, even after removing extreme outliers. Our analyses demonstrated that the use of
simple longitudinal phenotypes was a powerful means to detect genes of major to moderate effect
on trait variability. In only one instance was the power and heritability of the trait increased by using
data from one examination. Power to detect linkage can be improved by identifying the most
heritable phenotype, ensuring normality of the trait distribution and maximizing the information
utilized through novel longitudinal designs for genetic analysis.

Background
Studies designed to identify genes contributing to com-
plex disease have been ongoing for many years, utilizing
assorted study designs and analysis methods with varied
success. The Genetic Analysis Workshop 13 (GAW13)
simulated data set provides an opportunity to explore the
advantages of longitudinal as compared with cross-sec-
tional study designs. For each univariate phenotype, we

compared linkage results generated from a weighted aver-
age of the longitudinal data with results from two differ-
ent cross sectional designs: data gathered at a single
examination and data obtained from one examination
collected during the age range (mid-40s) when the pheno-
types were most heritable.
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Methods
All analyses were performed using the simulated data set
without knowledge of the underlying model, including
number of genes or their location. Analyses were per-
formed with complete genotypic and phenotypic data
from Replicate 1. The true model was obtained only at
GAW13, and was used in this manuscript to identify true
and false positives.

Phenotype development
The simulated data set included a number of cardiovascu-
lar phenotypes, blood pressure, lipid, and glucose meas-
urements, which were collected longitudinally in the
study subjects. Unfortunately, data were gathered at differ-
ent intervals in the first and second cohort. In addition,
the subjects in the two cohorts participated in the study at
variable ages. To extract maximal informativeness for link-
age studies, we developed phenotypes that were both her-
itable and capitalized on the longitudinal phenotypic
information.

A univariate phenotype was calculated for each of the
measures: body mass index (BMI), total cholesterol
(CHOL), fasting glucose (GLUC), high-density lipopro-
tein (HDL), height (HEIGHT), systolic blood pressure
(SBP), and triglycerides (TG). Longitudinal data was pro-
vided for these traits at different time points and with dif-
fering amounts of time between consecutive
measurements. The area under the curve obtained by join-
ing consecutive measurements over the time scale capital-
ized on the longitudinal nature of the data, yet accounted
for the non-uniform amount of time between consecutive
measurements [1]. This area, divided by the duration of
observation, is simply a weighted average of the pheno-
type measurements with weights proportional to the time
difference between the previous measurement and the
current measurement. This derived univariate measure is
referred to as AUC in this paper.

Data points were also selected to simulate a cross-sec-
tional study design (single exam; SE). Exam 12 was
selected for Cohort 1, since it was the only patient visit
where all phenotypes were collected (except height, which
was taken from exam 10). Exam 1 was selected for Cohort
2. Another cross-sectional design selected data points to
simulate a study design that collected people in their mid-
40s (AGE = 45). The patient visit closest to age 45, and
within 5 years, was selected for each individual for each
phenotype. The age of 45 was chosen because data were
available for the largest number of individuals (2674;
other ages ranges only had 763 to 2160 individuals) and
the phenotypes tended to be highly heritable at that age
(0.71–0.81 versus 0.56–0.85). For these cross-sectional
study designs, the number of individuals with available
data was smaller than that for the longitudinal design. So,

to make a valid comparison between the two methods, an
additional set of longitudinal phenotypes were calculated
for each of the cross-sectional designs that utilized the
same individuals. (These additional sets were only used as
a comparison in Tables 2 and 3; all 2860 individuals were
used in the analyses summarized in Table 1 and Figure 1.)

Since deviation from normality is known to increase the
false-positive rate of certain genetic analyses, careful atten-
tion was paid to the trait distribution of each phenotype.
GLUC and TG were particularly kurtotic, and so we
systematically removed trait values from all analyses that
were in excess of three standard deviations from the mean.
Since these outliers might represent true extremes caused
by genetic effects, we considered truncating the data
instead of removing them. However, this would not
address the kurtosis that is known to cause false-positive
results using Sequential Oligogenic Linkage Analysis Rou-
tines (SOLAR) [2], and so we decided to err on the side of
specificity.

Genetic Analysis
Heritability estimates were calculated for each of the phe-
notypes using SOLAR. Multipoint linkage analysis was
performed for all seven phenotypes (AUC of BMI, CHOL,
GLUC, HDL, HEIGHT, SBP, and TG) for each of the three
study designs (AUC, SE, AGE = 45) using the pedigree-
based variance component method implemented in the
program SOLAR with simultaneous correction for [aver-
age] age in study, body mass index, cigarettes per day,
alcohol consumption (drinks) and gender when they
were significant covariates (p < 0.10). Traditionally, a non-
parametric lod score of 3.6 has been used as a genome-
wide significance level. However, given our use of seven
phenotypes, we adjusted our significance level based on a
Bonferroni correction. A LOD score of 3.6 corresponds to
a p-value of 2.33 × 10-5. After correcting for seven tests, the
new alpha would be 3.33 × 10-6, and so all chromosomal
locations with LOD scores greater than 4.4 were identified
and prioritized for further evaluation.

Results
The heritability of the phenotypes were quite high, with
estimates greater than 0.60 for the weighted average of all
phenotypes except TG. Heritabilities for the phenotypes
from a single exam tended to be lower, again except for
TG. Results from the genome screen are summarized in
Figure 1.

For the longitudinal data (AUC), nine chromosomal
regions produced LOD scores greater than 4.4. Linkage
(LOD = 28.7) was identified between BMI and chromo-
some 13, 6 cM from gene Gb11. The cholesterol phenotype
linked to within 2 cM of Gb30 on chromosome 11 (LOD =
5.5). The highest level of linkage evidence (LOD = 34.6)
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was found for the fasting glucose phenotype, directly at
the Gs3 gene on chromosome 5. The HDL phenotype
linked within 4 cM of Gb12 on chromosome 9 (LOD = 9.6)

and between Gb19 and Gb20 on chromosome 17 (LOD =
7.4). Height linked to both Gb1 on chromosome 5 (LOD
= 16.8) and Gb2 on chromosome 7 (LOD = 6.7). SBP

Genome screen results for longitudinal data (AUC)Figure 1
Genome screen results for longitudinal data (AUC) All 2860 individuals were used in all of the longitudinal analyses.

Table 1: Descriptive statistics for the longitudinal phenotypes

Phenotype Heritability (h2) CovariatesA Proportion of 
Variance due to 

Covariates

Mean Standard 
Deviation

Variance

BMI 75.3% a, g 5.51% 26.54 4.53 20.50
CHOL 64.4% a, g 4.59% 200.22 30.04 902.38
GLUC 62.6% a <0.01% 95.38 13.15 172.92
HDL 65.5% a, b, c, d, g 26.27% 50.33 11.22 125.88
HEIGHT 76.7% g 49.46% 65.26 3.94 45.55
SBP 77.7% a, b, c, g 9.25% 131.32 14.75 217.44
TG 47.4% a, b, d, g 45.29% 121.45 59.11 3493.90

ASignificant covariates employed in the linkage analysis (a = average age in study, b = body mass index, c = cigarettes per day, d = drinks, alcohol 
consumption, g = gender).
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linked to within 3 cM of Gs11 on chromosome 15 (LOD =
6.4) and to within 7 cM of Gs10 on chromosome 21 (LOD
= 33.8). The longitudinal data for triglycerides did not

yield a LOD score above 4.4. But more importantly, there
were no false-positive linkage results at this level of
significance.

Table 2: Genome Screen Results for Single Exam (SE)

Phenotype h2 n covar
A

1 3 5 7 9 11 13 15 17 19 21 false+

BMI SE 75.3 2585 a,g 0.6 0.9 1.4 0.9 0.7 1.0 22.6 1.0 1.6 0.1 0.0 1.7
AUCB 76.0 2585 a,g 0.6 0.5 1.6 1.2 0.9 1.0 23.9 0.9 1.4 0.2 0.0 1.4

Chol SE 58.6 2550 a,g 0.9 0.8 0.7 1.3 0.8 5.7 0.7 2.2 0.4 0.8 0.9 1.4
AUC 67.7 2550 a,d,g 1.7 0.5 0.1 1.0 2.1 5.6 1.1 3.1 0.4 0.4 1.9 1.5

Gluc SE 50.8 2558 a 3.1 1.5 20.7 0.5 0.6 1.3 1.3 0.4 0.1 0.7 0.2 4.7
AUC 67.1 2558 a 1.8 1.1 48.8 0.9 0.2 3.0 1.1 0.0 0.3 3.2 0.0 3.9

HDL SE 63.8 2565 a,b,c,d
,g

1.8 0.5 0.5 1.2 8.9 0.5 0.8 0.1 5.5 1.0 0.5 2.5

AUC 65.3 2565 a,c,d,g 1.9 0.9 0.7 0.9 9.3 0.7 0.6 0.2 6.9 1.3 0.8 2.7
Heigh
t

SE 73.7 2585 g 0.2 1.1 12.3 4.7 0.3 0.2 1.9 0.6 0.3 0.2 0.0 0.7

AUC 75.0 2585 g 0.4 0.8 13.8 5.1 0.5 0.2 1.3 1.0 0.6 0.1 0.0 0.9
SBP SE 57.1 2585 a,b,c 0.1 1.2 2.7 2.8 0.8 0.1 2.9 3.2 1.2 1.3 19.3 2.5

AUC 75.1 2585 a,b,c 0.1 1.7 1.9 2.1 0.5 0.0 1.3 6.3 0.4 1.0 30.6 2.2
Tg SE 41.4 2526 a,b,d,g 4.2 0.9 1.5 0.8 2.8 0.5 0.8 0.8 3.7 1.4 0.4 4.5

AUC 47.2 2526 a,b,d,g 3.9 0.2 3.6 1.0 0.9 0.9 1.2 0.6 1.1 2.0 0.1 1.5

ASignificant covariates employed in the linkage analysis (a, average age in study; b, body mass index; c, cigarettes per day; d, drinks, alcohol 
consumption; g, gender). BResults of the longitudinal data with only those individuals included in the cross-sectional design. Only odd chromosomes 
contain genes; even chromosomes are summarized as highest false positive (false+).

Table 3: Genome Screen Results for AGE = 45

Phenotype h2 n covar.
A

1 3 5 7 9 11 13 15 17 19 21 false+

BMI AGE 
= 45

76.0 2674 g 0.3 0.1 1.1 0.6 1.2 1.3 20.2 0.5 1.0 0.2 0.1 1.5

AUCB 76.2 2674 g 0.5 0.2 1.6 1.0 1.1 1.0 23.0 1.3 1.2 0.3 0.0 1.7
Chol AGE 

= 45
59.7 2650 g 1.6 0.4 0.1 1.0 1.2 3.4 0.9 3.2 0.4 0.3 1.7 1.2

AUC 66.6 2650 a,g 1.3 0.7 0.1 0.5 0.7 4.9 0.6 3.4 0.2 0.3 1.4 1.2
Gluc AGE 

= 45
64.6 2412 - 1.0 0.9 22.2 0.3 1.9 0.5 0.0 0.1 0.4 0.1 0.1 1.3

AUC 62.9 2412 a 1.3 1.0 25.1 0.3 1.7 1.2 0.0 0.0 0.9 0.3 0.0 3.1
HDL AGE 

= 45
65.4 1600 b,c,d,g 2.2 0.5 0.1 1.3 8.5 0.4 0.9 0.0 9.8 0.5 0.6 2.4

AUC 66.1 1600 b,c,d,g 2.9 0.8 0.5 1.1 9.0 0.2 0.5 0.0 8.6 0.7 0.3 2.8
Heigh
t

AGE 
= 45

73.7 2585 g 0.2 1.1 12.3 4.7 0.3 0.2 1.9 0.6 0.3 0.2 0.0 0.7

AUC 75.0 2585 g 0.4 0.8 13.8 5.1 0.5 0.2 1.3 1.0 0.6 0.1 0.0 0.9
SBP AGE 

= 45
74.7 2411 a,b,c 0.5 0.8 2.0 1.5 1.1 0.1 1.2 3.6 0.3 1.2 21.1 2.1

AUC 71.3 2411 a,b,c 0.7 2.4 2.7 3.0 0.7 0.0 1.4 5.3 0.3 0.8 26.8 1.9
Tg AGE 

= 45
53.2 1585 a,b,d,g 6.2 0.2 0.9 0.7 1.7 1.4 0.3 0.3 0.6 0.3 0.5 1.6

AUC 51.9 1585 a,b,d,g 7.6 0.2 0.7 1.3 2.9 2.5 0.3 0.2 0.6 0.5 0.4 1.1

ASignificant covariates employed in the linkage analysis (a, average age in study; b, body mass index; c, cigarettes per day; d, drinks, alcohol 
consumption, g, gender). BResults of the longitudinal data with only those individuals included in the cross-sectional design. Only odd chromosomes 
contain genes; even chromosomes are summarized as highest false positive (false+).
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Analyses performed using the cross-sectional study
designs yielded consistently lower LOD scores in compar-
ison with the longitudinal measures (see Tables 2 and 3).
Using the longitudinal phenotype, linkage to nine
different chromosomal regions was detected. Using the
less powerful cross-sectional phenotypes, linkage was still
detected to many of the same chromosomal regions.
When analyzing data from only a single exam (SE), link-
age to eight of the nine chromosomal regions was identi-
fied, with only the linkage to chromosome 15 for SBP
failing to meet our stringent linkage criteria. When
employing phenotypic data for individuals collected near
age 45 (AGE = 45), linkage to seven of the nine regions
was detected and a new linkage for TG was obtained to
Gb14 at the q-terminus of chromosome 1. The two chro-
mosomal regions that were no longer detected were the
region on chromosome 15 for SBP and the linkage to
chromosome 11 for cholesterol.

Analyses performed using the longitudinal phenotypes,
but with the sample size of the cross-sectional data,
yielded, as expected, lower LOD scores. However, all
genes identified (LOD > 4.4) in the full longitudinal sam-
ple were still detected in the smaller longitudinal samples.

Discussion
Several conclusions can be made from these results. First,
it is not surprising that the highest LOD scores were
obtained near genes accounting for the greatest percentage
of the trait variance. The baseline genes identified by the
six highest LOD scores (4.4 ≤ LOD ≤ 28.7) were among
the genes accounting for the greatest trait variance
(between 15% and 40%). The correlation between these
LOD scores and the proportion of phenotypic variance
each explained was 0.88 (p = 0.02). Even with maximal
information from the longitudinal study design and ideal
conditions such as complete genotype and phenotype
data, two genes contributing a large percentage of the var-
iance to HDL and SBP (20% and 25%, respectively) were
not identified. Also, despite this large data set with com-
plete information, we were unable to detect genes with
smaller effects. No baseline gene accounting for less than
15% of the trait variance was detected in our analyses.
However, the models we utilized also did not identify any
false-positive linkage findings.

Second, over 30 values were removed from the GLUC and
TG distributions because they were in excess of three
standard deviations (with a few above 7 and 10 standard
deviations). Removal of the extreme phenotypic outliers
reduced the number of false-positive results dramatically
(data not shown). By removing these values, the kurtosis
of the distribution was reduced from 37.5 to 2.2 and from
21.5 to 1.7 for GLUC and TG, respectively. But while this
improved the sensitivity and specificity immensely, GLUC

and TG still have the highest levels of kurtosis and are the
only measurements with false-positive linkage results.
From these data, it appears that it is more important to
remove extreme values for the sake of specificity than it is
to retain them for power.

Third, when looking at the same phenotype measured
cross-sectionally or longitudinally, the heritability of the
trait tended to correlate with the magnitude of the linkage
signal. This is of particular importance when examining
TG levels. The heritability, and hence LOD scores,
increased and reached our level of statistical significance
only when the subset of subjects with an age near 45 were
included in the analysis. By maximizing the heritability of
the trait prior to genetic analysis, the power to detect
genetic effects was increased.

Conclusions
Our analyses demonstrated that the use of simple longitu-
dinal phenotypes, AUC, was a powerful means to detect
genes of major to moderate effect on trait variability. In a
few instances, where the heritability of the trait was
increased at a specific age, examining cross-sectional data
at a uniform age (TG) provided higher LOD scores and
linkage to genes that were not detected using other pheno-
typic modelling. We conclude that it is important to care-
fully examine phenotypic traits so as to maximize the
ability to detect genes for complex traits. A variety of strat-
egies may be appropriate depending on the situation and
the underlying biology. In some instances, a multivariate
phenotype that accurately models the underlying biology
will provide the most power. However, in most instances,
the underlying biology is unknown and assumptions
must be made so as to develop phenotypes for genetic
analyses. Other strategies to define the phenotypic trait
accurately and improve power include identifying the
most heritable phenotype, ensuring normality of the trait
distribution, and maximizing the information utilized
through novel longitudinal designs for genetic analysis.
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