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Abstract

Background: We applied stochastic search variable selection (SSVS), a Bayesian model selection
method, to the simulated data of Genetic Analysis Workshop |3. We used SSVS with the revisited
Haseman-Elston method to find the markers linked to the loci determining change in cholesterol
over time. To study gene-gene interaction (epistasis) and gene-environment interaction, we
adopted prior structures, which incorporate the relationship among the predictors. This allows
SSVS to search in the model space more efficiently and avoid the less likely models.

Results: In applying SSVS, instead of looking at the posterior distribution of each of the candidate
models, which is sensitive to the setting of the prior, we ranked the candidate variables (markers)
according to their marginal posterior probability, which was shown to be more robust to the prior.
Compared with traditional methods that consider one marker at a time, our method considers all
markers simultaneously and obtains more favorable results.

Conclusions: We showed that SSVS is a powerful method for identifying linked markers using the
Haseman-Elston method, even for weak effects. SSVS is very effective because it does a smart
search over the entire model space.

Background

In this work, we analyzed the slope of the cholesterol
increase with age in the simulated data (Problem 2). Our
objective was to identify the markers that are linked to the
disease genes related to a high rate of increase in choles-
terol. Genetic Analysis Workshop 13 provided informa-
tion that the disease genes are located on chromosomes
7(s7), 15(s8), and 21(s9), respectively, and that the gene
on chromosome 21(s9) only affects cholesterol rate in the
females, i.e., it interacts with gender. The Haseman-Elston
[1] method allowed one to apply linear regression meth-

ods for linkage analysis. For each sibling pair, it used the
number of alleles identical by descent (IBD) at each
marker as the explanatory variables and a statistic measur-
ing similarity of values of the quantitative traits in the sib-
ling pair as the response variable. The original Haseman-
Elston method [1] used the squared difference between
the traits of the siblings. In a recent publication, Elston et
al. [1] proposed the cross-product of the two trait values
in a sib pair as the response, which was used in this paper.
Suh et al. [2] applied Stochastic Search Variable Selection
(SSVS), a Bayesian variable selection method proposed by
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George and McCulloch [3] for the linear regression
model, to the Haseman-Elston method. Although the
scope of Suh et al was very preliminary, with only the IBD
values at the linked markers plus 10 unlinked markers
used as candidate explanatory variables in the variable
selection, it showed the Bayesian variable selection
approach to be very promising. The study presented here
extended these methods in two respects. First, we took
advantage of SSVS by including all 399 markers as candi-
date explanatory variables. It is computationally impossi-
ble to consider all subsets of 399 markers using a
traditional frequentist approach. Secondly, a hierarchical
prior probability structure as discussed by Chipman [4]
was imposed on the model space to study the interaction
effects (epistasis). The results were reported and compared
with those obtained with the more traditional forward
and backward step-wise regression.

Methods

Haseman-Elston method

We chose to analyze the rate of change in cholesterol over
time in the simulated data. First, for each individual, we
obtained the least square (LS) estimate for the slope of
cholesterol over the time. For the ith sibling pair, using the
LS estimate of slope as the trait (Yy; Y,;), we computed
their cross-product CP; = (Y;;-m)(Y,; - m) as our response
values, where m is the mean of the slopes over all siblings
in the same family. Elston et al. [1] introduced the cross-
product CP, as the replacement of the squared difference

Di2 = (y1 i =Yy )2 . In our regression analysis, we adopted

CP as the response, and also used squared-difference for
comparison. For simplicity, we assumed the errors to be
independent but a correlation structure could be imple-
mented into our method in a straightforward way.

There are about 1500 full sib pairs and a few half sib pairs
in each replicate. In the replicate we considered there are
1522 full sib pairs. The number of alleles shared in each
pair was obtained for each sib pair at each marker using
the SIBPAL program of the SAGE software [5]. There were
a total of 399 markers. We had

p
Response =3, + ZBJ-X]- +¢,
j=1

where the € ~ N(0, 62) were assumed to be independent
and X values were IBD scores.

To study the effect of gender, we also included the genders
of the siblings as an explanatory variable. It was in fact
coded as two dummy explanatory variables as follows:
(male, male) = (0, 0), (male, female) = (0,1), and (female,
female) = (1,1).

http://www.biomedcentral.com/1471-2156/4/s1/S69

SSvs

George and McCulloch [3] proposed a Bayesian model
selection method for variable selection based on the
Gibbs sampler. The criterion of interest was taken to be
the posterior probability of a model conditional on the
data that could be obtained using the stochastic search
variable-selection. For the simplest case of linear regres-
sion with normal errors:

Y=XB+¢ e~ N(0, 02),

where B may contain main effects or interactions effects.
They set the prior distribution of  as mixtures of two nor-
mal distributions by introducing the latent variable y:

Belvi~ (1-1,) N (0, t2) + v, N (0, c212),

where much larger variance (¢ > 1) allowed for y,= 1 to
have a large influence. A recommended choice for these
parameter values is given by George and McCulloch [3].
The value of ¢ was set equal to 10 in our analysis. A model
was represented by a vectory = (vy, ..., ¥,), where y;,= 0
or 1. If y, = 0, then the marker X] was considered to be
excluded from the model and if y, = 1, it was considered
to be included in the model. Note that 3, was taken to be
always included, thus we could set B, N((0, ¢2t2). With
appropriate prior ony = (y;, Y- ¥,) and 62, we obtained
a posterior distribution of y using Gibbs sampling. There-
fore, by examining the posterior probability of y, we iden-
tified the optimal model with the largest posterior
probability and rank the markers using the marginal dis-
tribution of each v, A prior for y corresponds to a prior on
the model. The commonly used independence prior
implies that the importance of any variable is independ-
ent of any other variable. In other words, under this prior,
each X; enters the model independently of the other coef-
ficients, with probability p(y;= 1) = 1 - p(y; = 0) = p;. A
smaller p; can be used to downweight X; values that are
costly or of less interest. For our case, a useful reduction
was to set p; = p, in which p is the a priori expected propor-
tion of X; values in the model. When only main effects but
no interaction were considered, the importance of any
variable was independent of the importance of any other
variable. Thus the independence prior implied that the
prior of y was simply set as prob(y) = p», where n is the
number of ones in y. Increased weight on parsimonious
models could instead be obtained by setting p small. So in
our case, p was set to be small, 0.02 first, and next to see
how our method is robust to this choice of p, we chose a
new value of p = 0.002 for comparison. The details on the
MCMC algorithms can be found in George and McCul-
loch [3].

We applied SSVS to select markers linked to cholesterol

rate from all 399 markers under consideration. Since it is
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Top ranked markers based upon SSVS The markers are ranked according to their marginal posterior obtained using
10,000 cycles of Gibbs algorithm. Disease loci are located on chromosomes 7, |5, and 21, and gender effect is ranked at the

|5t (Replicate | of the simulated data).

impractical to track the complete posterior of y, only the
marginal posterior of each marker is obtained. Although
both posterior probability of the models and marginal
probabilities of each marker are sensitive to the prior set-
tings, especially ¢ and p, we showed that the ranking of the
marginal posterior of the markers are not.

Figure 2 illustrates the robustness through plots of the
ranking of the markers obtained using two different priors
p = 0.02 and 0.002. Other prior settings showed similar
high correlations in the rankings of the markers.
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Figure 2

Rankings of markers with p = 0.02 and p = 0.002 Ranking of the markers for two different prior settings (p = 0.02 and p
= 0.002) is plotted, which shows its robustness to the choice of p.

We followed the Markov chain Monte Carlo (MCMC)
algorithms described in Chipman [4] and implemented it
using the JAVA programming language. The programs
were run on a Linux cluster using Intel processors. The
length of the MCMC chain was set to 10,000. The running
time was approximately 30 minutes on a single 1.0 GHz
CPU under the above specified environment. The first
1000 samples were used as the burn-in period and not
included in estimating the posterior.

Hierarchical prior structure

When interaction effects (epistasis) are considered in the
model selection, the model space becomes enormous and
the common independence prior for y is not appropriate
anymore. With interactions, the prior for gamma can cap-

ture the dependence relation between the importance of a
higher order term and those lower order terms from
which it was formed. Chipman [4] proposed a
hierarchical prior structure for this model space. The
importance of the interactions such as X;X; will depend
only on whether the main effects X; and X; are included in
the model. This belief can be expressed by a prior for

V= (¥x,.¥x; Vxx;) of the form

p(v) = p(vx, )P(ij )P(Yxixj o b )-
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The probability that the term X; X; is active

Pf('YXiX]- = 1‘ Yx, Yx,) may take on four different values,
depending on the values of the pair (YXl- /“/Xj) )

poo if (vx;.vx;) =(0,0)

por if (vx;.vx;)=(0,1)

po if(vx, vx,)=(10)
pi i (vx,vx,) = (1)

Pr(vx,x; = 1‘ Yx, Vx,) =

In our analysis, we set (poo, Po1/ P10 P11) = (0, 0, 0, p). This
corresponded to the prior belief that if the interaction
effect between two factors exists in a model, the main
effects of the two factors must be included in the same
model.

Our study was conducted in two stages. At the first stage,
all 399 candidate markers and gender were the candidate
variables in SSVS, but interactions were not considered. At
the second stage, SSVS was applied to the same sib-pair
responses with the top 30 candidate variables selected
from the first stage and their interactions as the candidate
variables. Among the third were the gender and 29 mark-
ers. This brought the total number of candidate variables
in SSVS to 465. We chose only the top 30 variables from
the first stage for two reasons. First, it is reasonable to
assume that only a few linked loci exist and they should
be contained in the top 30. Second, this is the maximum
size that the current SSVS algorithm handles comfortably
in the second stage.

http://www.biomedcentral.com/1471-2156/4/s1/S69

Step-wise regression

In order to compare the traditional method to our
method, we used a step-wise method based on Akaike
information criterion (AIC) [6] to select a formula-based
model, which was implemented under R, the "GNU S".
The details of this method can be found in the R manual

[7].

Results

Only the first of the 100 simulated data sets was used. Fig-
ure 1 displays the marginal posterior of each marker
obtained from SSVS with all 399 markers but no interac-
tions. The marginal posterior was computed from the rel-
ative frequency of each markers in the MCMC sample of
y. It clearly showed that the high posterior values are con-
centrated on chromosomes 7, 15, and 21. Table 1 shows
the top 30 markers, a marker from chromosome 7 is rated
as most significant, and there are seven, four, and two
markers from chromosomes 7, 15, and 21, respectively.
The variable gender was ranked as 15%. Table 2 shows the
most significant 20 markers obtained from the univariate
LS regression and from the step-wise regression. These
markers were very much evenly distributed in all
chromosomes.

When we considered the results from the univariate
regression, a marker from chromosome 13 was most sig-
nificant. One each from chromosome 7 and chromosome
15 were only marginally significant; none from chromo-
some 21 (where a linked marker was located) are in the
top 20 most significant markers. Similar results were
obtained when backward and forward step-wise regres-
sion methods were used. Among the top 20, only two
markers were from chromosome 15, and one each from
chromosomes 7 and 21. Also, these two traditional meth-
ods failed to locate the gender effect as significant.

Table I: Top rank markers based on their marginal posterior probability.

Posterior Ranking

Markers

A w N -

tied at 5

tied at 8

tied at 12
tied at |5
tied at 19
tied at 22
tied at 24
tied at 26
tied at 27

M160 (chr7) A

M254

M315(chrl15)

MI173(chr7)

M336, M325, M387(chr2l)
M260, M257, M201, M169(chr7)
M385, M351, M306(chrl5)
400(gender), M367, M281, M279, M182
MI175(chr7), MI120
M391(chr2l), M178(chr7)
M309(chri15), M179(chr7)
M311(chrl5)

M164(chr7)

ADisease loci are located all on chromosomes 7, |5, and 21. Markers on these three chromosomes are shown in bold face. p = 0.02 is used in SSVS.
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Table 2: Top 20 markers selected in step-wise regression and univariate regression.

Chromosome Step-wise Univariate
I MI3A M3
2 M57A M43
3 M64A, M69A, M70A, M8|A
4
5 Mll4A M1 144 M[28A
6 Ml42A M142, MI58A
7 Mle2A MIl69A
8 MI82A, MI93A MI182A
9 M211A M2I6B M211A M216B
10 M227A
11 M244A M253A M257A
12
13 M278¢ M278B
14
15 M3I13A M318A M318A
16 M341
17 M347A M3478
18 M359A M355A
19 M372¢€
20
21 M3898
22 M397A

Ap < 0.05, Bp < 0.01, Sp < 0.00|

The result from the second stage SSVS is shown in Figure
3. The marginal posterior probabilities of the interaction
effects are displayed. The existence of the gender-gene
interaction on chromosome 21 is clear.

The same analysis was also carried out on the third simu-
lated data set and similar results were obtained.

Conclusion

We showed that SSVS is a powerful method in identifying
linked markers using the Haseman-Elston method, even
for weak effects. SSVS is very effective because it does a
smart search over the entire model space, while the fre-
quentist best subset model selection procedures are con-
strained by computing power required to examine all
candidate models. The former can work on problems with
many more candidate variables, which is essential when
interaction effects are studied. By using the prior struc-
tures that reflect the relation among the candidate varia-
bles, SSVS can accommodate a good number of candidate
markers as well as their interactions. The two-stage strat-
egy used in this study worked well. It identified the chro-
mosomes of the linked markers in the first stage and the
interaction effects were located in the second stage. Both
univariate regression and the step-wise regression failed to
identify the chromosomes of the linked markers.

Discussion

One thing found to be interesting was that when we also
use the squared-difference as response for comparison, its
false positives did not overlap with those of cross-product.
As we can see in Figure 4, the red strip covers those
unlinked markers with high posterior probability when
squared-difference is used, the posterior of these markers
when cross-product are used are just average. So the infor-
mation obtained from these two responses is complemen-
tary. This result is not a surprise because many recent
works [8] have proposed the use of both the squared-sum
and squared-difference as responses and combined the
results of two regressions together in drawing the infer-
ence. As a special case, the cross-product response weights
these two equally. For a comprehensive review on these
"new" Haseman-Elston methods, see Feingold [8]. A nat-
ural extension of the methods proposed in this paper is to
combine the posterior probability from regressions on
both squared-sum and squared-difference. We will inves-
tigate this in our future research.
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Gene X gene and gene X gender interaction effects The top ranked 30 markers selected from the first stage and their
interactions are considered in the second stage. The interaction between chromosome 21 and gender are observed.

Page 7 of 9

(page number not for citation purposes)



BMC Genetics 2003, 4 http://www.biomedcentral.com/1471-2156/4/s1/S69

Cross-product

o
3
o «
S S _
- o *x
@
£
oy
© (]
£ <
- (=]
o
>
[&]
[ —
® o
= ot
g o
o
2
¥ o
) o |
18
O I
S
(=] T T T T T
0 100 200 300 400
Marker
Squared-difference
~
o
3 s

0.03

0.02

Relative frequency of marginal costerior

0.01

0 100 200 300 400

Marker

Figure 4

Type | error of Haseman-Elston methods with D2and CP as responses False positives when squared-difference is
used do not overlap with ones of cross-product. This suggests that complementary information are contained in each
responses.
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