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Abstract
Background: Analyses of genetic data at the level of haplotypes provide increased accuracy and
power to infer genotype-phenotype correlations and evolutionary history of a locus. However,
empirical determination of haplotypes is expensive and laborious. Therefore, several methods of
inferring haplotypes from unphased genotypic data have been proposed, but it is unclear how
accurate each of the methods is or which methods are superior. The accuracy of some of the
leading methods of computational haplotype inference (PL-EM, Phase, SNPHAP, Haplotyper) are
compared using a large set of 308 empirically determined haplotypes based on 15 SNPs, among
which 36 haplotypes were observed to occur. This study presents several advantages over many
previous comparisons of haplotype inference methods: a large number of subjects are included, the
number of known haplotypes is much smaller than the number of chromosomes surveyed, a range
in values of linkage disequilibrium, presence of rare SNP alleles, and considerable dispersion in the
frequencies of haplotypes.

Results: In contrast to some previous comparisons of haplotype inference methods, there was
very little difference in the accuracy of the various methods in terms of either assignment of
haplotypes to individuals or estimation of haplotype frequencies. Although none of the methods
inferred all of the known haplotypes, the assignment of haplotypes to subjects was about 90%
correct for individuals heterozygous for up to three SNPs and was about 80% correct for up to five
heterozygous sites. All of the methods identified every haplotype with a frequency above 1%, and
none assigned a frequency above 1% to an incorrect haplotype.

Conclusions: All of the methods of haplotype inference have high accuracy and one can have
confidence in inferences made by any one of the methods. The ability to identify even rare (≥ 1%)
haplotypes is reassuring for efforts to identify haplotypes that contribute to disease in a significant
proportion of a population. Assignment of haplotypes is relatively accurate among subjects
heterozygous for up to 5 sites, and this might be the largest number of SNPs for which one should
define haplotype blocks or have confidence in haplotype assignments.

Background
Very rapid and inexpensive methods exist for determining
the genotype of diploid organisms at single nucleotide

polymorphisms (SNPs). Unfortunately, these high-
throughput methods do not provide direct information
on which SNP alleles at multiple sites coexist on the same
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chromosome. Instead, computational methods must be
employed to infer the set of SNP alleles that are cosegre-
gating on a single chromosome, referred to as haplotypes.
However, the inference of haplotypes from phase-
unknown data is computationally difficult, partly due to
the fact that the number of possible haplotypes roughly
increases as a power of 2 with each additional SNP.

Interest in the accurate inference of haplotype structure
from unphased genotypic data has increased tremen-
dously in recent years for several reasons. Relative to anal-
ysis of single polymorphisms, haplotypes can greatly
improve one's ability to infer the evolutionary history of a
DNA region [1,2]. Additionally, haplotypes can provide
significant increases in statistical power to detect associa-
tions between a phenotype and genetic variation [3-5].
Indeed, several disease associations with haplotypes have
been detected that were not apparent from single-site
analyses [6-9].

There are three principal computational approaches to
inferring haplotypes from unphased SNP data. The most
commonly used approach is implementation of the
expectation-maximization (EM) algorithm [10]. This
method is computationally intensive and is usually com-
bined with various strategies to simplify the task (i.e., by
considering only subsets of the sites at a time) or to mini-
mize the number of potential haplotypes that must be
considered [11,12]. A more recent alternative is applica-
tion of Bayesian methods that incorporate prior expecta-
tions based upon population genetic principles [13-15]. A
third method based on parsimony ("subtraction
method"; [16]) has the limitation that haplotypes are
assigned only in unambiguous cases [17], and the level of
ambiguity generally increases with the number of sites
considered or the number of sites at which an individual
is heterozygous. This limitation is expected to be signifi-
cant in large-scale analyses of SNP variation, and for this
reason the subtraction method is not considered here.
Unfortunately, it is unclear how accurate the EM and
Bayesian approaches are or whether the EM or Bayesian
method is superior in inferring haplotypes, particularly
when applied to empirical data. Data simulation [18] can
explore the effect of a wide range of parameters and pop-
ulation dynamics (i.e., linkage disequilibrium, selection,
population substructuring) but is unlikely to achieve fully
the complex combinations of these effects inherent in
empirical data. On the other hand, comparisons using
empirical data have been based on as few as six SNPs
[17,19] or have employed data sets in which the number
of SNPs or known haplotypes equals or greatly exceeds the
number of individuals sampled [13,15]. Neither of these
situations is likely to be an accurate reflection of the sam-
ple sizes or numbers of SNPs that will be assayed with the
high-throughput methods available today. To understand

the relative performance of the various methods of haplo-
type inference, there is a need for comparisons that
include both larger numbers of polymorphic sites and
biologically more complex correlations among the sites.
In this study the performance of several leading methods
of haplotype inference are compared for a large data set
(154 individuals, 15 SNPs) undergoing a combination of
mutation, recombination, and gene conversion.

The accuracy of computational haplotype inference
improves as the magnitude of linkage disequilibrium
(LD) among sites increases [17]. Gene conversion, operat-
ing in conjunction with normal recombination, can com-
plicate the normal decay of linkage disequilibrium with
distance in a genomic region and can be expected to com-
plicate the computational inference of haplotype struc-
ture. This issue has particular relevance to the human
growth hormone locus. The five genes of the human
growth hormone locus reside within about 45 kb on chro-
mosome 17 [20]. Pituitary growth hormone (GH1) is by
far the most thoroughly studied of the genes and lies at the
5' end of the cluster. The remaining four genes, placental
growth hormone (GH2) and three chorionic
somatomammotropins (CS1, CS2, and pseudogene CS5
or CSHP1), are expressed only from the placenta. The pro-
moter region of GH1 is unusually polymorphic, with 16
SNPs having been identified in a span of 535 bp [21-23].
Most of these SNPs occur at the comparatively small
number of sites that exhibit sequence differences among
the five genes of the GH locus, and this has been inter-
preted as evidence of gene conversion [21,23,24]. A survey
of 25 SNPs in the entire promoter and coding region of
GH1 (Adkins et al. in review) indicates that this bias
towards polymorphism at sites of intergenic divergence is
quite extreme and supports the hypothesis that gene con-
version plays a role in the pattern of variation in the GH1
gene in addition to mutation and recombination. In 154
recruits to the British army, Horan et al. [23] used cloning
and sequencing to empirically determine 36 haplotypes
based on 15 of the promoter SNPs previously identified
(one site identified by [21] was invariant). This study
takes advantage of the exhaustive work of Horan et al. [23]
to compare the relative accuracy of some of the major
implementations of the EM and Bayesian approaches to
haplotype inference.

Results and Discussion
Characteristics of the data set
The 15 sites studied by Horan et al. [23] span 535 nucle-
otides in the promoter of GH1, with minor allele frequen-
cies ranging from 0.3–41.2%. Six of the sites can be
considered "rare" variants with minor allele frequencies
below 5% (0.3–3.6%). Standardized linkage disequilib-
rium (D'; [25]) among the remaining nine sites ranges
from complete linkage disequilibrium (sites -301 and -
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308; Table 1) to effective linkage equilibrium (i.e., sites -1
and +59). Fallin and Schork [18] identified several charac-
teristics of an unphased set of genotypes that improve the
accuracy of haplotype inference, most of which are exhib-
ited by this data set and discussed below. Therefore, this
data set probably represents one that is favourable to the
accurate inference of haplotypes.

Increasing sample size improves the accuracy of inferred
haplotypes. In Horan's study [23] 308 chromosomes were
surveyed to yield 36 haplotypes, a ratio of 8.6. Three hap-
lotypes can be unambiguously inferred from the 27 fully
homozygous individuals, and 11 subjects are hetero-
zygous at only one site, from which an additional 11 hap-
lotypes can be unambiguously inferred. This leaves 116
individuals (232 chromosomes) heterozygous at ≥ 2 sites
upon which to attempt to infer the remaining 22 true
haplotypes.

The distribution of haplotype frequencies also influences
the accuracy of haplotype inference in two ways. First, the
presence of some haplotypes at comparatively high fre-
quency increases the chances that those haplotypes can be
unambiguously inferred from homozygotes, allowing the
alternative haplotype to be inferred with high confidence
in compound heterozygotes. Second, the presence of
some haplotypes at near-zero frequency allows truly non-
existent haplotypes to be accurately estimated as having
zero frequency. The empirical haplotype frequencies in
this study exhibit considerable dispersion. Two haplo-
types are relatively common (33% and 16%; Table 2).
Thirty-one haplotypes have frequencies below 5%, and 19
have frequencies ≤ 1%. In multiple regression analysis,
Fallin and Schork [18] found dispersion of haplotype fre-
quencies to be the strongest predictor of the accuracy of
haplotype inference.

Accuracy of haplotype inference
The accuracy of computational inferences of haplotype
frequencies and assignments to individuals were com-
pared to empirical values for the full set of 15 SNPs in the
promoter of GH1. Additionally, analyses were performed
on a restricted set of eight SNPs with allele frequencies
above 5% (and excluding site -301 which is in complete
linkage disequilibrium with -308). The latter analyses
were performed to better approximate the characteristics
of data sets that are typically collected in genetic epidemi-
ological studies. Although the presence of rare alleles and
haplotypes improves the accuracy of haplotype inference,
sites with a low frequency minor allele are often ignored
due to their reduced usefulness in mapping disease loci
and the assumption that such loci will contribute little to
population-wide predisposition to disease. Very little dif-
ference was observed in the accuracy of haplotype infer-
ence between the two data sets.

Assignment of haplotypes to individuals was very accurate
by all methods (Table 3). Approximately 90% of individ-
uals were assigned correct haplotypes. However, this
number includes individuals whose haplotypes are unam-
biguous (heterozygotes at 0 or 1 site). Excluding those
individuals, the error rate is closer to 13%.

Estimation of haplotype frequencies was also highly accu-
rate, and there was no meaningful difference in accuracy
among the methods as measured by the similarity index,
IF. As measured by the mean squared error (MSE) the
implementation of the program Phase that ignored link-
age disequilibrium among sites gave marginally lower
accuracy for the full data set and for the data set composed
of higher frequency alleles, but the magnitude of the MSE
was small for all methods and spanned only about a two-
fold difference between the best and worst value. PL-EM
successfully identified the largest number of correct hap-
lotypes, but this success rate was accompanied by the bur-
den of the highest number of incorrect haplotypes

Table 1: Linkage disequilibrium (D') among loci with minor allele frequencies ≥ 5%1

Site

Site -278 -75 -57 -31 -6 -1 +59

-308 1.000 0.653 0.892 0.741 0.458 0.192 0.646
-278 0.857 0.845 0.696 0.820 0.666 0.334
-75 1.000 0.358 0.708 0.561 0.172
-57 1.000 0.872 1.000 1.000
-31 0.410 1.000 0.538
-6 1.000 0.194
-1 0.002

1 Numbering relative to the start of transcription for GH1
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inferred. Indeed, the aggregate frequency of incorrect hap-
lotypes inferred by PL-EM was about 1% higher than for
the other methods. This observation may have practical
value for the analysis of unphased genotypic data. PL-EM
may be slightly advantageous if the analytical goal of

identify the largest number of correct haplotypes is much
more important than minimization of the number of
incorrect haplotypes inferred, which may be the case in
studies of functional genetics. However, if minimization
of the number of incorrect low-frequency haplotypes is

Table 2: Inferred frequencies of haplotypes.

SNP Haplotype Frequency

-476 -339 -308 -301 -278 -168 -75 -57 -31 -6 -1 3 16 25 59 Empirical Phase, no LD Phase, with LD Haplotyper PL-EM SNPHAP

Empirical Haplotypes
1 G G G G G T A T G A A G A A T 0.334 0.312 0.321 0.325 0.333 0.326
2 G G G G T T A G G G A G A A T 0.162 0.166 0.162 0.166 0.181 0.171
3 G G T T G T A G G A A G A A T 0.091 0.097 0.097 0.101 0.098 0.102
4 G G T T G T A G - A A G A A T 0.052 0.055 0.055 0.049 0.047 0.050
5 G G G G T T G G G G A G A A T 0.042 0.052 0.052 0.052 0.049 0.050
6 G G T T G T A G - A A G A A G 0.029 0.032 0.032 0.032 0.030 0.030
7 G G G G T T A G G G T G A A T 0.026 0.032 0.032 0.032 0.028 0.029
8 G G T T G T A G G G A G A A T 0.019 0.016 0.016 0.013 0.016 0.018
9 G G G G T T A T G G A G A A T 0.019 0.013 0.013 0.013 0.011 0.011
10 G G T T G T A G - G A G A A T 0.019 0.023 0.026 0.023 0.025 0.025
11 G G G G T T G G G G A G G C T 0.016 0.016 0.016 0.016 0.014 0.014
12 G G G G T T A G G A A G A A T 0.016 0.010 0.006 0.006 0.008 0.008
13 G - G G T T G G G G A G A A T 0.016 0.016 0.016 0.013 0.010 0.013
14 G G G G T C A G G G T G A A T 0.016 0.016 0.016 0.016 0.016 0.016
15 G G T T G T A G G G T G A A T 0.013 0.010 0.010 0.010 0.006 0.009
16 G G G G T T G G G A A G A A T 0.013 0.013 0.013 0.016 0.008 0.008
17 G - G G T T A G G G A G A A T 0.013 0.013 0.013 0.013 0.011 0.011
18 G G G G T T A G - G A G A A T 0.010 - 0.006 0.010 0.007 0.008
19 A G G G T T A G G G A G A A T 0.010 0.013 0.013 0.010 0.005 0.010
20 G G G G G T A G - A A G A A T 0.010 - 0.003 0.010 0.006 0.005
21 G G G G T T G G G G A G A A G 0.010 0.010 0.010 0.010 0.011 0.011
22 G G T T G T A T G A A G A A T 0.010 0.013 0.010 0.013 0.007 0.007
23 G G G G G T A G G A A G A A T 0.006 0.016 0.013 0.006 0.006 0.008
24 G G T T G T G G - A A G A A T 0.006 - - - - -
25 G G T T G T A G G A A G A A G 0.003 - - - 0.004 0.004
26 G G G G T T G G G G T G A A T 0.003 0.006 0.006 0.006 0.007 0.007
27 G G G G T T A T G A A G A A T 0.003 0.003 0.003 - - -
28 G G G G T T A G - A A G A A T 0.003 - - - - -
29 A G G G T T A G G A A G A A T 0.003 - - - - -
30 G - G G T T A G G A A G A A T 0.003 0.003 0.003 0.003 0.003 0.003
31 G G G G T T G G - G A G A A T 0.003 0.010 - - - -
32 G G T T G T G G G G A G A A G 0.003 - - - 0.002 -
33 G G G G T T A G G G A G G C T 0.003 0.003 0.003 0.003 0.004 0.004
34 G - G G T C A G G G T G A A T 0.003 0.003 0.003 0.003 0.003 0.003
35 G G G G G T A G G A C C A A T 0.003 - - 0.003 0.003 0.003
36 G G G G T T A G G G T G A A G 0.003 - - - 0.003 0.003

Incorrect Haplotypes
1 G - G G T T G G G G A G G C T - - - 0.002 0.002
2 G G G G T T G G - A A G A A T - 0.006 - 0.009 0.008
3 G G G G T T G T - G A G A A T - - - - 0.002
4 G - G G T T G T G A A G A A T - - 0.003 - -
5 G - G G T T G T G G A G A A T - - - 0.003 0.002
6 G G G G T T G T G G A G A A T - 0.003 - - -
7 G G G G T T G T G A A G A A T - - - - 0.004
8 A G G G T T A T G A A G A A T - - 0.003 0.003 0.003
9 G G G G T T A G G G C C A A T 0.003 0.003 - - -
10 A G T T G T A G - A A G A A T - - - 0.002 -
11 A G T T G T A G G G T G A A T - - - 0.003 -
12 G G T T T T G G - G A G A A T - - 0.006 0.004 -
13 G G T T T T G G G A A G A A T - - - 0.003 -
14 G G G G G T A T - A A G A A T 0.010 - - - -
15 G G G G G T A T G G A G A A T 0.006 0.006 0.006 0.008 0.008
16 G G G G G T A T G A A G A A G 0.006 0.006 0.006 - -

Minor Allele Frequency
0.013 0.036 0.247 0.247 0.399 0.019 0.114 0.367 0.133 0.412 0.065 0.003 0.019 0.019 0.049
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more important, as will usually be the case in genetic epi-
demiological studies, PL-EM may not be the optimal
method. Unfortunately, none of the methods is clearly
superior in minimizing the number of incorrect haplo-
types inferred.

Importantly, none of the methods failed to identify hap-
lotypes with frequencies above 1%. Conversely, no incor-
rect haplotype was assigned a frequency greater than 1%.
Indeed, the aggregate frequency of incorrect haplotypes
was ≤ 3.7% by all methods. These results are reassuring in
two respects. First, it appears unlikely that any of the
methods will fail to identify a haplotype that is a major
contributor to disease risk within a study population. Sec-
ond, it also is unlikely that an incorrect haplotype will be
implicated as a significant disease risk.

It has been noted previously [17,18] that computational
methods tend to over-estimate slightly the frequency of
the more common haplotypes. The four most common
haplotypes in this data set have an aggregate frequency of
64%. The aggregate frequency inferred for these haplo-
types ranged from 63% to 65.9% among the methods.
The magnitude of error in the estimation of the frequency
of the common haplotypes is very small and indicates that
this should not be a significant source of error in studies
of population genetics or genetic epidemiology if the
present results can be generalized.

Effect of number of heterozygous sites
The number of possible haplotypes compatible with an
individual's unphased genotype is 2k, where k is the

number of heterozygous sites. For this reason, the diffi-
culty of correctly assigning haplotypes to subjects
increases dramatically as those subjects become hetero-
zygous at more sites. Therefore, the error rate for assigning
haplotypes was evaluated based on the number of sites at
which subjects were heterozygous. Up to 3 heterozygous
sites, the error rate is below 10%. For 4 heterozygous sites
the error rate is about 15% and exceeds 20% only when 6
sites are heterozygous. Phase was an odd exception to this
pattern due to an unusually high error rate for four heter-
ozygous sites, despite the lowest error rates for five and six
heterozygous sites. On the assumption that an error rate
not much larger than 10% is desirable for a genetic study,
it appears that computationally assigned haplotypes for
subjects heterozygous at more than four SNPs should be
viewed with extreme caution. Similarly, there is a current
effort to define haplotype blocks in the human genome to
facilitate genome-wide scans for disease loci with a
minimum number of sites that must be genotyped. If the
results for this gene can be generalized, it would appear
unwise to define haplotype blocks based on more than 4–
5 SNPs.

Conclusions
All of the implementations of the EM and Bayesian meth-
ods of haplotype inference had high accuracy. Therefore,
if this data set is representative of other SNP genotyping
studies one can have high confidence in the assignment of
haplotypes and estimation of haplotype frequencies pro-
duced by any one of the programs. Each method identi-
fied every haplotype with a frequency greater than 1%.
Therefore, it is unlikely that any of the methods would fail

Table 3: Accuracy of computational inferences of haplotype structure of the GH1 gene promoter.

15 Promoter SNPs Error Rate Based on # of Heterozygous Sites (N)

Error Rate

Algorithm MSE IH # correct/# wrong IF Overall Ambiguous Individuals 2 (13) 3 (32) 4 (24) 5 (28) 6 (11)

Phase v2, no LD 3.6 × 10-5 0.81 27/4 0.91 0.11 0.15 0.08 0.09 0.25 0.11 0.27
Phase v2, with LD 2.2 × 10-5 0.81 28/5 0.93 0.10 0.13 0 0.09 0.17 0.14 0.27
Haplotyper 1.0 2.0 × 10-5 0.81 28/5 0.93 0.09 0.13 0 0.06 0.13 0.18 0.27
PL-EM 1.0 2.5 × 10-5 0.82 31/9 0.92 0.11 0.15 0 0.09 0.13 0.21 0.36
SNPHAP 1.0 2.0 × 10-5 0.82 30/7 0.93 0.09 0.13 0 0.09 0.13 0.14 0.27

8 SNPs with Minor Allele Frequency ≥ 5%

Phase v2, no LD 4.8 × 10-5 0.79 19/3 0.92 0.11 0.15
Phase v2, with LD 4.1 × 10-5 0.80 20/4 0.92 0.11 0.15
Haplotyper 1.0 3.8 × 10-5 0.81 19/2 0.93 0.10 0.14
PL-EM 1.0 2.3 × 10-5 0.85 22/4 0.94 0.08 0.11
SNPHAP 1.0 3.3 × 10-5 0.85 22/4 0.93 0.08 0.11
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to identify a haplotype contributing to disease risk in a sig-
nificant proportion of a population. Conversely, no incor-
rect haplotype was assigned a frequency greater than 1%,
indicating a low probability of an incorrect haplotype
being identified as a significant disease risk factor. Assign-
ment of haplotypes was very accurate for subjects hetero-
zygous for up to three SNPs, and was at least 80% accurate
for up to five heterozygous sites. This suggests that haplo-
type blocks should perhaps be defined based on no more
than five sites and that this might be the practical limit at
which one can have confidence in the assignment of hap-
lotypes to subjects.

Methods
Genetic analyses
The empirically determined set of haplotypes from Horan
et al. [23] were kindly provided by Drs. David Cooper and
David Millar. To examine the accuracy of computational
haplotype inference, five different algorithms (Table 3)
were used to infer haplotypes based on the 15 SNPs
scored by Horan et al. (2003), and the accuracy of these
haplotypes was compared to their empirical determina-
tions. The program HAPLOTYPER [13] takes a Bayesian
approach to haplotype inference and a partition-ligation
strategy for improving speed and accuracy that divides the
data into small segments of consecutive loci during hap-
lotype inference that are later combined. We used the
default settings of the htyperv2 program, except that 50
iterations of prediction were requested before the results
were reported. Like HAPLOTYPER, Phase 2.0.2 [15]
employs a Bayesian approach and partition-ligation.
Phase was run both with and without the assumption of
decay of linkage disequilibrium (option M) with distance
in order to evaluate the effect of this assumption. Phase
was run with the default options with these exceptions:
five restarting points (-x option), the triallelic site -1 was
treated as multiallelic but without the stepwise mutation
model (-d option), ten steps through the Markov chain
per iteration ("thinning intervals"), and the length of the
final run with all loci increased by tenfold (option -X).
According to Stephens and Donnelly (2003) HAPLOTY-
PER and Phase differ primarily in the prior distribution
that is used. Phase uses an approximate coalescent that
will give greater weight to haplotype resolutions of multi-
locus genotypes that are most similar to previously
resolved haplotypes, while HAPLOTYPER uses a Dirichlet
prior that chooses randomly among possible haplotype
resolutions if the genotypes can not be made to corre-
spond to previously inferred haplotypes. The program PL-
EM [12] combines partition-ligation with the EM algo-
rithm to infer haplotypes. PL-EM was run with these set-
tings: haplotypes with probability of appearance >0.1
reported, 3–4 loci per partition, 154 partial haplotypes
passed on in each ligation step, 50 independent runs in
each implementation of the EM algorithm. The program

SNPHAP [11] by David Clayton also employs the EM
algorithm to infer haplotypes, but differs from many
implementations by adding one locus at a time and
removing from consideration low probability haplotypes
after each addition until all loci are added. The default set-
tings for SNPHAP were used. Another popular implemen-
tation of the EM algorithm, EM-DeCODER [13], is limited
to 100 genotypes and could not be applied to the full set
of 154 subjects of Horan et al. (2003).

The full data set of Horan et al. [23] includes six sites with
a minor allele frequency below 5%. Sites with allele fre-
quencies this low are often ignored in genetic studies.
Therefore, haplotypes were also inferred based upon a
restricted set of sites that excluded six sites (-476, -339, -
168, +3, +16, and +25) with minor allele frequencies
below 5% and excluded site -301 which is in complete
linkage disequilibium with site -308. Additionally, the
single individual bearing a C allele at sites +1 and +3 was
excluded due to the extremely low frequency of that allele.
This left eight sites upon which to perform haplotype
inference.

Pairwise D' [25], the linkage disequilibium statistic D
standardized by its maximum value, was calculated for
loci with minor allele frequencies above 5% using the pro-
gram Arlequin v2.000 [26] based on the empirical haplo-
types provided by Drs. Cooper and Millar.

Measures of accuracy of haplotype inference
The accuracy of haplotype inference was examined by sev-
eral metrics. The mean squared error (MSE) [18] is
defined as

where pek and ptk are the inferred and empirically deter-
mined frequencies for the kth haplotype, and h is the
number of haplotypes. IF and IH were proposed by Excof-
fier and Slatkin [10]. IF is another measure of how closely
the inferred and empirical haplotype frequencies corre-
spond and is given by

where the variables are defined as above. IF ranges from 0
to a maximum value of 1 when the frequencies match per-
fectly. IH compares the number of haplotypes inferred to
the number actually known to occur and ranges from 0 to
1 (complete correspondence between inferred and true).
IH is defined as

MSE p p hek tk
k

h
= −

=
∑( ) /2

1

I p pF ek tk
k

h
= − −

=
∑1

1
2 1
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where mtrue is the number of haplotypes known to occur,
mest is the number of inferred haplotypes with frequency ≥
1/(2n), and mmissed is the number of known haplotypes
that were not inferred. The error rate [13] is the propor-
tion of subjects whose inferred haplotypes are not com-
pletely accurate.
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