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Abstract
Background: Time-structured genetic samples are a valuable source of information in population
genetics because they provide several correlated observations of the underlying evolutionary
processes. In this paper we study basic properties of the genetic variation in time-structured
samples as reflected in the genealogies relating individuals and the number of segregating sites
observed. Our emphasis is on "measurably evolving populations" i.e. populations from which it is
possible to obtain time-structured samples that span a significant interval of evolutionary time.

Results: We use results from the coalescent process to derive properties of time-structured
samples. In the first section we extend existing results to attain measures on coalescent trees
relating time-structured samples. These include the expected time to a most recent common
ancestor, the expected total branch length and the expected length of branches subtending only
ancient individuals. The effect of different sampling schemes on the latter measure is studied. In the
second section we study the special case where the full sample consists of a group of contemporary
extant samples and a group of contemporary ancient samples. As regards this case, we present
results and applications concerning the probability distribution of the number of segregating sites
where a mutation is unique to the ancient individuals and the number of segregating sites where a
mutation is shared between ancient and extant individuals.

Conclusion: The methodology and results presented here is of use to the design and
interpretation of ancient DNA experiments. Furthermore, the results may be useful in further
development of statistical tests of e.g. population dynamics and selection, which include temporal
information.

Background
Time-structured genetic samples
Genetic samples obtained over several points in time are
a valuable source of information in population genetics
because they provide several correlated observations of
the underlying evolutionary processes.

These time-structured samples can be separated into two
qualitatively different groups. Firstly, samples may be
taken over such a short evolutionary time that the occur-
rence of mutations between sampling points can be
ignored. Samples of this type have a long standing history
in the study of the process of drift and selection via obser-
vations of allele frequencies (see e.g. [1]). Secondly, time-
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structured samples may be obtained over intervals of evo-
lutionary time that are long enough for mutation to
become a relevant force in shaping the diversity between
samples from different time points. To reflect the fact that
the latter type of samples are capable of showing new var-
iation arising, Drummond et al. used the term "Measura-
bly Evolving Populations" (MEP) to describe populations
from which biological and technological constraints
allow samples of this type to be obtained [2]. Such meas-
urably evolving populations arise from two principal
sources, namely rapidly evolving microorganisms e.g. [3]
and well characterised vertebrate subfossil material from
which ancient DNA can be reliably amplified e.g. [4-6].

Besides a report by Nordborg [7], population genetic stud-
ies of MEPs have mostly focused on the construction and
use of models for population genetic inference that incor-
porate the time structure of the data [8-12]. However, our
interest here is not that of inference, but rather to study
basic properties of time-structured samples obtained from
measurably evolving populations. To this end, we use a
simple model of a constant sized panmictic population of
haploids and base our results on the standard coalescent
process [13,14].

The paper consists of two parts. In the first part we use
recursions to derive results for various measures on coa-
lescent trees connecting time-structured samples having
any time-structure. In particular, we focus on the effect
that different sampling schemes have on the expected
length of the branches in the tree upon which mutations
can arise that are unique to the ancient individuals of the
sample. This is a measure of the expected amount of
genetic variation unique to the ancestral material and as
such of intrinsic interest to the design of many ancient
DNA studies, for example when the objective is to dis-
cover unique ancient haplotypes. In the second part, we
study the case where the sample has a time-structure of
only two time-points, one consisting of a number of con-
temporary extant individuals and one consisting of a
number of contemporary ancient individuals. For this
case we obtain the probability distributions of the
number of segregating sites where the mutation is
observed only in ancient lineages and of the number of
segregating sites where the mutation is shared between
ancient and extant lineages. Using these results we study
the number of ancient samples needed to observe at least
one unique or one shared mutation as a function of pop-
ulation parameters.

The results presented here should be of particular interest
to studies of ancient DNA and the design of ancient DNA
sampling schemes.

Notation
Consider the evolution of a haploid population compris-
ing N individuals. We assume selective neutrality, no
recombination and a Wright-Fisher model of propagation
where each individual chooses its parent independently
and at random from the individuals of the previous gen-
eration [15,16]. Time is measured in units of N genera-
tions, and the population is assumed to remain at a
constant size, which is sufficiently large that the diffusion
approximation of the coalescent process applies [13]. The
complete sample is produced by sampling the population
serially over a sampling time-interval consisting of n sam-
pling points (Figure 1) each contributing one new indi-
vidual to the process. Each sampling point is associated
with a sampling time (τi) and hence the temporal config-
uration of the sample is completely determined by the
ordered vector of times τ = (τ1,..., τn) with τ1 ≤ τ2 ≤ � ≤ τn.
Sampling points and times are enumerated from the
present going backwards. We let τ1 = 0 by definition, and
define, τi,J = τi - τJ, i > j, as the difference in sampling times
between sample pair i, j. Note that groups of samples may
be taken at the same time so that τk = τk + 1 � = τk+g-1, for a
group of size g.

The standard coalescent
By a continuous-time approximation, Kingman has
shown that for a contemporary sample (τi = 0, ∀i) a proc-
ess termed the coalescent can describe the genealogical
relationships of the individuals in the sample [13]. King-
man's result applies to the Wright-Fisher model and a
broad class of other reproductive models that share a
common set of requirements [13]. Briefly, the standard
coalescent is a process describing the death of lineages
through coalescence events. Some fundamental results
concerning the standard coalescent which we use in the
following are given here:

The waiting times Wn, Wn-1,..., W2 between successive coa-
lescent events are exponentially distributed as

when time is measured in units of N generations [17].

Let time increase into the past and let the number of dis-
tinct line ages at time t, {A(t), t ≥ 0} be given by the death
process described by the coalescent. Following [18] we
have that given a lineages were sampled at time 0, the con-
ditional probability distribution of the number of remain-
ing lineages at time t is
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Time-structured samplesFigure 1
Time-structured samples. An illustration of a time-structured sample. Time proceeds backward as indicated by the arrow 
at the left. Individuals sampled at five sampling points constitutes the full sample. With each sampling point is associated a sam-
pling time (τ) and the first sampling time is zero by convention. Three samples are ancient (open circles) and constitute a sub-
sample Q. Two individuals are extant (full circles) i.e. they are both sampled at time zero (τ1 = τ2 = 0). Hence, interval one has 
a length of zero time units and is not depicted. The sampling intervals are numbered by i = 1 ... 5 and interval five is the terminal 
interval where after no new samples are included. At the end of the terminal interval a most recent common ancestor (MRCA) 
is found and this time point is denoted TMRCA. The total number of lineages at time t in interval i is a stochastic process with an 
associated variable Ai(t). On the figure is given the total number of lineages at the beginning of each interval (Ai(0)) and for inter-
val four the number at a specific time point t. Likewise, the number of lineages subtending leaves exclusive to Q at time t in 

interval i is a stochastic process with an associated variable . On the figure is given the number of lineages subtending 

leaves exclusively in Q at the beginning of each interval ( ) and for interval four the number at a specific time point t. Muta-
tions occurring in ancestors which subtend leaves exclusive to Q (branches represented by dotted lines) will create segregating 
sites where the mutation is unique to the individuals in Q i.e. the ancient individuals.
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for 2 ≤ b ≥ a, and for the case b = 1

where a[j] = a(a - 1)...(a - j + 1), and a(j) = a(a + 1)...(a + j -
1).

In the following it will be of interest to study the number
of ancestors of sub-samples which in this context are com-
prised of ancient lineages. Let Q be a sub-sample of the
full sample consisting of all ancient individuals and let Qc

be the complement of Q which contains the extant indi-
viduals. It is our interest to study the number of ancestral
lineages at some time t that subtend leaves in the tree
which are exclusive to Q, {A(Q)(t), t ≥ 0}, as mutations
occurring on these branches will be unique to Q, i.e. be
found solely in ancient samples (Figure 1). However, this
is equivalent to recording the total number of ancestral
lineages at time t, A(t), and the number of ancestral line-
ages that subtend one or more leaves (not necessarily

exclusively) in Qc {  (t), t ≥ 0}, as the two are related

by A(t) = A(Q) (t) +  (t). The bivariate process {A(t),

 (t)} for a sample of contemporary individuals has
been studied extensively by Saunders et al. [19], and from
this we extract results for the conditional distribution of
the bivariate process {A(t), A(Q) (t)} using the above
relation

where Pr{A(t) = b|A(0) = a} is given by (2), and

The coalescent process of time-structured data
When samples have time-structure (τi > 0 for some i) the
simple death process of the coalescent is replaced by a
series of death processes, interrupted at specified points in
time by new lineages entering the process (Figure 1). We

note that this would correspond to a birth-death process
of lineages if sampling events were random rather than
known. However, lacking knowledge about the properties
of the sampling process we restrict ourselves to condition
on known sampling times. Thus, this serial coalescent
process can be modelled on the basis of the standard coa-
lescent process, by the following algorithm: At the second
sampling point (no coalescence in first interval) a con-
temporary coalescent is initiated with two individuals;
this process is continued for τ3,2 time units; at τ3 time units
another individual enters the process; again a coalescent
process is continued for τ4,3 time units until τ4 where yet
another individual is added and so forth until τn is
reached and the last individual is included; from here the
process continues as a standard coalescent process (as no
new lineages will be added) until the most recent com-
mon ancestor (MRCA) of the sample is reached. There-
fore, we refer to this last interval as the termination
interval (Figure 1). The lineage number at each sample
point is a stochastic variable with a distribution that must
be tracked through the sampling interval. It is clear that
the following results are all conditional on the temporal
configuration of the sample (τ) and consequently this
dependence is suppressed from this point.

The mutation process
We shall be concerned with the sampling properties of
nucleotide sequences. Hence, we adopt the infinitely
many sites model [17], assuming that a single site experi-
ences at most one mutational event so that every mutation
that arises is represented in the sample. Furthermore, we
assume that mutations are generated by a Poisson process

with parameter . The compound parameter θ is given

by θ = 2N μ where μ is the mutation rate per sequence per
generation.

As branch lengths are measured in units of N generations,
the expected number of segregating sites generated over a
tree (or sub-section of a tree) with total branch length l, is

.

Results
Measures on coalescent trees of time-structured samples
In this section we use the theory presented above to derive
recursions describing various measures on coalescent trees
of time-structured data.

Number of lineages through the sampling intervals
Let, {Ai(t), 0 ≥ t ≥ τi+1,i} be a stochastic variable represent-
ing the number of lineages in interval i, t time units after
τi (see Figure 1). Consecutive death processes are related
by single birth events, so that
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The probability distribution of Ai(t) is found by summing
over all the possible lineage numbers at the start of the
interval permitted by the sample configuration

Notice that the last term is given by (2), and that Pr{Ai(0)
= a}, the probability of observing a lineages at the start of
the interval, is given by (5,7) and:

for i = 1, 2

for i > 2

Pr{Ai(0) = a} = Pr{Ai-1 (τi,i-1) = a - 1}.

Lastly, let {Ai} be the marginal lineage number in the
interval [τi, τi+1) with probability

Time to the most recent common ancestor
From (1) and the above it follows that the expected time
to the MRCA of a time structured sample, (TMRCA), is given
by

Total branch length of the genealogy
The above results can also be applied to produce the
expected total branch length for time-structured data
(B(tot)), given by

where Bi is the branch length added in each of the n - 1
time-intervals that comprise the total sampling interval,

and B(term)) is the branch length added over the last
interval

where the latter term corresponds to the expected total
branch length of the tree relating a sample of size a in a
standard coalescent process [17].

Number of lineages subtending leaves exclusive to a sub-sample
Let the function δ(Q, i) be a membership function for the
sub-set Q so that

Let, {  (t, 0 ≤ t ≤ τi+1,i} be a death process representing

the number of lineages subtending leaves exclusively in Q,
t time units after sampling individual i. Consecutive death

processes (  (t),  (t)) are related by single birth

events, so that

The joint probability distribution over Ai(t) and  (t)

is found by summing over all the possible lineage config-
urations at the start of the interval that are permitted by
the sample configuration and the structure of Q

where, , and where Pr{Ai(0) = a,

 (0) = d}, is given by (13,14) and (15). The uncondi-

tional probability distribution over  (x) is given by

Lastly, let { } be the marginal probability of the

number of lineages subtending leaves exclusively to Q
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over the interval [τi, τi+1). Consequently,  is given by

integrating over the interval length

The expected length of branches subtending leaves exclusive to a 
sub-sample
Let B(Q) denote the expected total length of all branches
subtending leaves only in Q. Similar to (10), we have that

where { } is the expected branch length added over

interval i, given by

and the expected branch length over the last interval

{ } is given by

which corresponds to conditioning on the number of dif-
ferent lineage types present at the initiation of the termi-
nation interval and then weighing the expected branch
length over the contemporary coalescent process by the
probability of observing a given number of ancestors
exclusive to Q in the individual coalescent intervals.

Effect of sampling scheme on the expected number of 
segregating sites unique to ancient samples
Particular constraints on studies involving ancient DNA
are the maximum age at which genetic material can be
obtained and the number of ancient DNA samples
obtainable. The former constraint arises due to problems
with dating techniques, and more importantly, with the
time-dependent degradation of DNA, whereas the latter
constraint arises because material containing DNA may be
hard to obtain or due to financial constraints on e.g. car-
bon dating of fossil material. Therefore, the planning of
an ancient DNA study may consist of the construction of

a sampling strategy which distributes a given number of
ancient samples within a fixed maximum time-interval. A
possible objective of such a study may be to maximise the
expected number of segregating sites where the mutation
is unique to the ancient samples i.e. maximising the
expected length of branches subtending leaves exclusive
to the ancient samples (see equation 18). This would, for
example, be the case in studies which aim at maximising
the number of unique ancient haplotypes observed in
order to infer past mixing events of populations such as
humans and Neanderthals [6,7,20] or patterns of e.g. col-
onisation from an ancient population [21]. Assuming that
a number of contemporary extant individuals are sam-
pled, two strategies for sampling ancient individuals
appear as natural candidates. A stepwise sampling strategy
where ancient samples are distributed evenly over the
available maximum time-interval and a "bouquet" strat-
egy where all ancient samples are sampled at the maxi-
mum age (Figure 2).

In Figure 3 we plot the expected total length of branches
subtending only ancient leaves as a function of the maxi-
mum length of the total sampling interval (τmax) and the
sampling strategy. When τmax is zero, lineages from the
ancient sub-sample Q and Qc are interchangeable in the
coalescent process and the major part of the tree will con-
tain lineages which subtend leaves in both Q and Qc. Ini-
tially, the expected branch length for the bouquet strategy
increases rapidly with increasing τmax since this leaves time
for extant samples to coalesce within themselves before
the inclusion of the ancient sample and thus interfere less
with the part of the tree subtending only ancient lineages.
This means that in this part of the parameter space, large
gains in uniquely ancient genetic diversity can be achieved
by a relatively small elongation of the sampling interval.
At higher values of τmax the probability of observing more
than one extant lineage at the time of the ancient sample
is minimal and thus the expected branch length goes
towards the asymptotic value of including a single extant
lineage. For the step-wise strategy the initial increase in
expected branch length is less marked because the ancient
individuals in this case are younger and share more
branches with the ancestors of the extant individuals for a
given τmax. However, as τmax increases the number of sur-
viving lineages after each sampling interval approaches
one and the expected branch length asymptotes towards a
linearly increasing function.

When the objective is to maximise the expected length of
branches subtending only ancient lineages the bouquet
strategy may intuitively seem the obvious choice as this
maximises the total age of ancient material in the sample.
However, Figure 3 shows that the bouquet sampling strat-
egy only outperforms the stepwise strategy until a certain
value of τmax is reached. Above this value it is advisable to
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distribute ancient samples evenly over the maximum
attainable time-interval rather than to sample all ancient
individuals as old as possible. This may be of particular
relevance to species with small effective population sizes
(τmax large), like top-level predators (saber-toothed tigers,
lions and bears).

The case of two sample points
In this section we focus on the simpler case with only two
sampling points i.e. the bouquet sampling strategy pre-
sented above (Figure 2). Our interest is to study the distri-
bution of segregating sites between different classes of
lineages. Under the infinite sites model, the number of
segregating sites in a contemporary sample of individuals
has been extensively studied by [17]. Furthermore, the
transient distribution of segregating sites between two
time points has been studied by [22].

Suppose that a total of n individuals are sampled. Of
these, b ancient individuals are sampled at the same time
and constitute the sub-sample Q of interest. The remain-
ing n - b individuals are all extant i.e. sampled at time 0.
Assume that there are a ancestors left of the extant individ-
uals at time τn-b, i.e. when the ancient individuals included
in Q are reached. Since no time passes (τn-b+1 = τn-b+2 = ... =
τn) during the sampling of the b lineages in Q, we have

that  (0) = b and  (0) = a.

The coalescence process in the terminal interval now pro-
ceeds through a + b - 1 intervals of waiting. Let tk denote
the beginning of the kth coalescent interval {k = 0,1...a +
b - 2}.

The total number of mutations occurring on the lineages
through the coalescent process in the terminal interval
(U(tot)) will give rise to segregating sites that can be divided
into three categories: mutations which occur on lineages
subtending only in Q and which therefore create segregat-
ing sites where the mutant is unique to the ancient indi-
viduals, (U(Q)), mutations occurring on lineages
subtending only in Qc causing segregating sites where the
mutation is unique to the extant individuals (U(E)), and
mutations occurring on lineages subtending in both Q
and Qc giving rise to segregating sites where the mutation
is shared between the ancient and the extant individuals
(U(S)); U(tot) = U(E) + U(S) + U(Q). In the following we
assume that the ancestral state of the genetic element
under study can be accurately inferred. In the case where
a segregating site represents a mutation that is found in all
individuals of one group (ancient or extant) and absent
from all individuals in the other group, this knowledge is
required to determine whether the segregating site repre-
sents a mutation that is unique to all ancient (in U(Q)) or
to all extant individuals (in U(E)).

Sample typesFigure 2
Sample types. The two sample types considered in the paper. The sampling time of individual i is indicated by τi and a total of 
eight individuals constitute the full sample. Of these eight, four constitute a contemporary extant sub-sample (full circles) and 
four constitute the ancient sub-sample (open circles). In the stepwise sampling scheme the ancient samples are evenly distrib-
uted over the maximum length of the sampling interval (τmax) which corresponds to τ8. In contrast, the ancient samples in the 
bouquet sampling scheme are all taken at the maximum time attainable.

�

time

τmax

stepwise ancient sample

� � � �

�

�

�

�

τ1 = τ2 = τ3 = τ4

�

�

�

�

τ5

τ6

τ7

τ8

bouquet ancient sample

� � � �

� � � �

τ1 = τ2 = τ3 = τ4

� � � �

τ5 = τ6 = τ7 = τ8

An
Q( ) An

cQ( )



 2005, :35 http://www.biomedcentral.com/1471-2156/6/35

Page 8 of 14

Segregating sites found only in ancient individuals
Through the coalescent process, lineages which subtend
leaves exclusively in Q (ancient leaves) may die in two
events: as two of these lineages coalesce, or as one of these
coalesce with a lineage subtending leaves in Qc. Let there

be (  (tk) = c) ancestors left subtending exclusively

ancient leaves at the beginning of the kth coalescent
interval.

The probability of losing a lineage subtending leaves
exclusively in Q over the kth coalescent interval is

and the probability of keeping a lineage subtending leaves
exclusively in Q over the kth coalescent interval is

Effect of sampling type on branch lengthFigure 3
Effect of sampling type on branch length. The expected total length of branches subtending only ancient individuals as a 
function of the maximum attainable sampling time (τmax). The expected total length (E(B(Q))) is shown for the stepwise and the 
bouquet sample types depicted in Figure 2. The number of extant individuals is 30 and the number of ancient individuals is 10. 
The maximum attainable sampling time is varied causing a sample type specific pattern of increase in the expected branch 
length (see text).
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Let  be the number of mutations unique to the line-

ages in Q that occur in the kth coalescent interval. Follow-
ing [23] we then have the probability

The probability distribution of the number of mutations
unique to the lineages in Q which occur from interval k

until the MRCA { } is then given by the recursion

and the full unconditional probability of seeing m muta-
tions is found by summing over all possible start values of
a

Segregating sites arising in terminal interval found only in 
extant individuals
It is evident that the probability distribution of the
number of segregating sites where the mutation is unique
to extant individuals can be found by exchanging Q and
Qc in the above.

Segregating sites shared between ancient and extant 
individuals
Segregating sites where the mutation is shared between
ancient and extant samples occur on ancestral lineages
that subtend leaves in both the sub-sample and the com-

plement. Past the last sampling interval, let {  (t), t ≥

0} represent the number of ancestors present at time t
which subtend leaves in both Q and Qc. In a coalescent

event, the number of lineages in  (t) may be reduced

as two of these lineages coalesce, it may remain constant,

or it may be increased by one as a lineage in  (t) coa-

lesces with a lineage in  (t).

Given that interval k is initiated with (  (tk) = s) line-

ages subtending leaves in both Q and Qc and (  (tk) =

c) ancestors left subtending exclusively ancient leaves, we
have that over the kth interval:

The probability of losing a lineage subtending leaves in
both Q and Qc is

The probability of the number of lineages subtending
leaves in both Q and Qc remaining constant while a line-
age subtending leaves exclusively in Q is lost is

The probability of the number of lineages subtending
leaves in both Q and Qc remaining constant whilst the
number of lineages subtending leaves exclusively in Q is
kept constant is

and the probability of gaining a lineage subtending leaves
in both Q and Qc is
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Let  be the number of mutations shared between the

sub-sample and the complement that occur in the kth coa-
lescent interval. We then have the probability

The number of shared mutations which occur from inter-

val k until the MRCA { } is then given by the recursion

and the full unconditional probability of seeing m muta-
tions is found by summing over all possible start values of
a

Total number of segregating sites arising in terminal 
interval
The total number of segregating sites created in the termi-
nal interval can be found by treating all lineages as one
sub-sample in either of the recursions given above.

Applications
In Figures 4 and 5 we plot two measures as a function of
θ and the maximum attainable sampling time, τmax. The
first of these is the number of ancient individuals that
must be included at the second sample point to reach a
probability greater than 0.95 of there being one or more
segregating sites where the mutation is unique to the
ancient individuals. Likewise, the latter is the number of
ancient individuals that must be included at the second
sample point to reach a probability greater than 0.95 of
there being one or more segregating sites where the muta-
tion is shared between ancient and extant isolates. Both
are decreasing functions of θ which scales branch lengths
in terms of mutations. At low values of θ the probability
of seeing any mutations in the sample is low and a large
amount of ancient individuals are required for any unique
ancient or shared mutations to occur. The expected
number of extant ancestors at the inclusion of the ancient
sample decreases with τmax and thus the distribution of
coalescent trees generated in the terminal interval
becomes less dominated by lineages subtending extant
leaves. As a consequence, the number of ancient individ-
uals needed to produce any segregating sites where the
mutation is unique to the ancient individuals also
decreases with τmax (Figure 4) and the number needed to
see any shared segregating sites increases with τmax (Figure
5). For both functions, the effect of increasing the number
of extant samples can only be seen at low values of τmax
(results not shown). This is due to the nature of the coa-
lescent process where the coalescent intensity increases as
a function of lineage number causing the additional
extant lineages to coalesce before they can affect the sub-
stitution process in the terminal interval.

Typical parameter values observed in ancient DNA studies
are: fragment length ~ 500 nucleotides, substitution rate
per nucleotide site ~ 1·10-7(10-6 – 10-8 range for mito-
chondrial DNA) e.g. [4,24]. Since the parameters θ and
τmax are measured in units of generations over the effective
population size (Ne), knowledge of Ne and the maximal
number of generations spanning the sampling interval
(gmax) are needed to relate these parameter values to the
plots. In Table 1 we list several combinations of the
parameters Ne and gmax and their associated values of θ
and τmax along with values from Figure 4 and Figure 5. To
interpret the entries in Table 1 consider that in ancient
DNA studies the maximal sampling time is often in the
range 30.000 ~ 50.000 years. Dependent on the
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generation time of the studied organism the maximal
number of generations spanning the sampling interval is

then given by: .

For a specific example consider the recent effort to
sequence ancient human mitochondrial sequences from ~
20.000 years ago [25]. If we assume an effective human
population of ~ 10.000 and a generation time of 20 years
[20], we have that for humans gmax ~ 0.1 at present. Given
the population and mutation parameters chosen here, we
see from Table 1 that a large number of ancient human
samples (> 50) would be needed to ensure the finding of
segregating sites where the mutation is unique to ancient
humans. It is thus not surprising that the two ancient
human mitochondrial haplotypes inferred in a study by
Caramelli et al. [25] are both found to be circulating in the
present day human population, and it is questionable
whether unique ancient haplotypes can be obtained with-

out a substantial elongation of either the sampling inter-
val or the region sequenced.

Discussion
The use of time-structured population samples has a long
standing tradition in the study of rapidly evolving micro-
organisms. Here, the temporal component of data sets has
allowed researchers to explore complex hypotheses con-
cerning e.g. the action of selection, host-parasite co-evolu-
tion and the evolutionary response of parasites to drugs
(see [2] for a review). With the advent of ancient DNA
technologies it has recently become possible to obtain
time-structured genetic samples that span a large number
of generations from multi-cellular organisms also. As an
example of the potential that such time-structured
samples holds for resolving long standing questions in
evolutionary biology, ancient DNA data have been used
to clarify the genetic relationship between our own species

Segregating sites unique to ancient individualsFigure 4
Segregating sites unique to ancient individuals. The number of ancient lineages required to ensure a probability higher 
than 0.95 of seeing at least one segregating site where the mutation is unique to ancient individuals. Samples are taken by the 
bouquet sampling strategy (see Figure 2) and the number of extant samples is fixed at 30. For computational reasons there is 
an upper limit of 50 ancient individuals. The number of lineages required is shown as a function of θ = 2N μ and the maximum 
attainable sampling time τmax. Contour lines of the required number of individuals are shown at the base of the plot.

gmax = maximal timein years

yearsper generation
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and the Neanderthals [6,7], to estimate absolute rates of
nucleotide substitution [4] and to infer patterns of popu-
lation demography in relation to e.g. climatic changes
[21].

Inspired by these technological advances, our motivation
was to elaborate existing results from population genetics
to the case where samples have a time-structure and to
relate the results to problems faced by experimentalists.

In the first section of the paper, we have presented recur-
sions for various tree measures and applied these to
explore the effect of sampling scheme on the expected
number of segregating sites where the mutation is found
only in ancient individuals. Besides guiding the choice of
sampling strategy, these results allow experimentalists to
consider whether any genetic variation previously unseen

is likely to be discovered by including ancient samples,
and if so, to compare the observed number of segregating
sites where the mutation is unique to ancient individuals
to the expected number under a neutral model. Other
applications may be relevant for the construction of time-
structured data sets, depending on the objective. As an
example, studies may have the objective of estimating the
rate of neutral substitution. For such an estimate, substi-
tutions occurring over the sampling interval constitute
information and substitutions occurring over the terminal
interval constitute noise. Thus, it is desirable to construct
sampling schemes which maximise the ratio of the
expected length of branches in the sampling interval over
the expected length of branches in the terminal interval,
and the effect of e.g. sampling schemes on this measure
could also be explored using the results from this paper.

Segregating sites shared by ancient and extant individualsFigure 5
Segregating sites shared by ancient and extant individuals. The number of ancient lineages required to ensure a prob-
ability higher than 0.95 of seeing at least one segregating site where the mutation is shared by ancient and extant individuals. 
Samples are taken by the bouquet sampling strategy (see Figure 2) and the number of extant samples is fixed at 30. For compu-
tational reasons there is an upper limit of 50 ancient individuals. The number of lineages required is shown as a function of θ = 
2N μ and the maximum attainable sampling time τmax. Contour lines of the required number of individuals are shown at the 
base of the plot.
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In the second part of the paper we studied the simpler case
where samples are taken at only two time-points. This
simplification allowed us to present results concerning
the full probability distribution of the number of segregat-
ing sites where the mutation is unique to the ancient indi-
viduals and of the number of segregating sites where the
mutation is shared between ancient and extant individu-
als. As an application of these we have shown the number
of ancient lineages needed for a sample to have a high
probability of showing at least one segregating site where
the mutation is unique to the ancient material or at least
one segregating site where the mutation is shared between
ancient and extant material. These results should be of
interest to experimentalists who wish to evaluate the
amount of information likely to be obtained from a given
time-structured sample.

In the applications presented we have focused on moder-
ate sample sizes. For large samples (>> 50) computational
problems arise due to the computational load of the

recursions and problems with computer representation of
very small probabilities. If larger sample sizes are to be
considered these problems must be circumvented. This
could be done by simplification of recursions, the use of
approximative calculations and the derivation of proba-
bilities through Monte Carlo procedures [7]. Smaller sam-
ple sizes may, however, be sufficient to extract general
properties as the effect of increasing sample size on e.g.
total branch length in the coalescent quickly diminishes.

The results concerning tree measures are applicable to all
time-structured samples. However, the results on segregat-
ing sites are derived under the assumption of the infinite
sites model which is invalid for data sets taken over long
time-intervals from rapidly evolving genetic elements
such as the mito-chondrial control region or genomic
regions of RNA viruses.

For simplicity we have only considered the case of a con-
stant population, but if the demographic function is

Table 1: The effect of sample number under different evolutionary scenarios. Result in this table are based on typical parameter values 
from the ancient DNA literature and a bouquet sampling scheme (see text). Fixed parameter values are: fragment length = 500 
nucleotides, substitution rate per nucleotide site = 1·10-7, number of extant samples = 30. Given these values any combination of the 
population size parameter (Ne) and the maximal number of generations spanning the sampling interval (gmax ) can be translated to a 
value of the population parameter (θ) and the maximum length of the sampling interval (τmax ) which are measured in units of 
generations (see text for definition). For various such parameter combinations we here list the associated values of θ, τmax, and the 
calculated number of ancient samples needed to have a greater than 95% chance of seeing at least one segregating site where the 
mutation is unique to the ancient individuals (nu) and the number of ancient samples needed to have a greater than 95% chance of 
seeing at least one segregating site where the mutation is shared between ancient and extant individuals (ns).

Ne θ gmax τmax nu ns

5000 0.5 1000 0.2 > 50 > 50
- - 5000 1.0 > 50 > 50
- - 10000 2.0 > 50 > 50
- - 30000 6.0 > 50 > 50
- - 50000 10.0 > 50 > 50

10000 1.0 1000 0.1 > 50 > 50
- - 5000 0.5 > 50 > 50
- - 10000 1.0 > 50 > 50
- - 30000 3.0 42 > 50
- - 50000 5.0 39 > 50

30000 3.0 1000 0.03 44 3
- - 5000 0.17 23 5
- - 10000 0.33 15 7
- - 30000 1.0 9 > 50
- - 50000 1.67 7 > 50

50000 5.0 1000 0.02 26 2
- - 5000 0.1 16 2
- - 10000 0.2 11 3
- - 30000 0.6 7 6
- - 50000 1.0 5 9
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known, the effect of varying population size could be
accommodated into the tree measure recursions given
here via the generalisation of (2) given in [26]. This is also
true for the tree measures concerning sub-samples, since
the result in (4) is purely combinatorial and thus inde-
pendent of the demographic function. For the results con-
cerning the number of segregating sites, an extension to
varying population size is not possible with the present
approach as it relies on the independence between con-
secutive coalescent intervals.

Conclusion
The focus of this paper has been on sampling issues and
the production of results that may be of use in the design
and interpretation of experiments including time-struc-
tured genetic samples, particularly ancient DNA experi-
ments. However, given that the inclusion of time-structure
increases the statistical power in evolutionary inference, it
is our hope that the results presented may also be useful
in the pursuit of statistical tests, in the flavour of Tajima's
D [27], which are applicable to time-structured samples.
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