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Abstract
In genome-wide genetic studies with a large number of markers, balancing the type I error rate and
power is a challenging issue. Recently proposed false discovery rate (FDR) approaches are
promising solutions to this problem. Using the 100 simulated datasets of a genome-wide marker
map spaced about 3 cM and phenotypes from the Genetic Analysis Workshop 14, we studied the
type I error rate and power of Storey's FDR approach, and compared it to the traditional
Bonferroni procedure. We confirmed that Storey's FDR approach had a strong control of FDR.
We found that Storey's FDR approach only provided weak control of family-wise error rate
(FWER). For these simulated datasets, Storey's FDR approach only had slightly higher power than
the Bonferroni procedure. In conclusion, Storey's FDR approach is more powerful than the
Bonferroni procedure if strong control of FDR or weak control of FWER is desired. Storey's FDR
approach has little power advantage over the Bonferroni procedure if there is low linkage
disequilibrium among the markers. Further evaluation of the type I error rate and power of the
FDR approaches for higher linkage disequilibrium and for haplotype analyses is warranted.

Background
Single-nucleotide polymorphisms (SNPs) are the most
frequent types of polymorphisms and are commonly used
in association mapping of candidate genomic regions.
With the completion of the whole human genome
sequence and the reduction of costs in SNP genotyping,
genome-wide studies with a dense SNP map consisting of
200,000 to 1 million SNP markers will become available
in the near future [1]. How to efficiently control the false
positive rate, or type I error rate, when a large number of
tests are conducted in a genome-wide study is a challeng-
ing problem.

For multiple testing problems, the chance to have a false
significant test is higher than the nominal level even if
each test is controlled at that nominal level. It is therefore
of importance to control the probability of having one or
more false significant tests. This probability is commonly
referred as the family-wise error rate (FWER). That can be
written as P(V > 0), where V is the number of rejections of
truly null hypotheses. There can be different types of con-
trols for FWER: weak, exact, and strong, corresponding to
conditioning on A = all null hypotheses are true (P(V >
0|A)), B = the exact set of truly null hypotheses (P(V >
0|B)), and C = any subset of null hypotheses are true (P(V
> 0|C)), respectively. While it is most desirable to have
exact control of FWER, it is impossible to calculate a p-
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value because the exact set of truly null hypotheses is
unknown. Weak control and strong control are possible to
evaluate, but the former may not be sufficient and the lat-
ter may be too conservative.

The simplest solution to the multiple testing problems is
to apply the Bonferroni procedure, where each test is con-
trolled at α/m, with m being the total number of tests. The
Bonferroni procedure yields a strong control of FWER at
α, but it could be too conservative when many tests are
dependent. Resampling procedures, for example, minP
[2], is less conservative than the Bonferroni procedure.
The minP procedure generally provides weak control of
FWER, and under certain conditions, also renders a strong
control of FWER. However it is not always possible to
examine the conditions and the resampling could be com-
putationally demanding when there are a large number of
tests.

Recently proposed false discovery rate (FDR) procedures
by Benjamini and Hochberg [3] and by Storey [4], do not
require resampling. Instead of controlling FWER, the FDR
procedures control for a less restrictive measure, FDR, i.e.,
the expected proportion of truly null hypotheses among
all the rejected null hypotheses. FDR can be written as
E(V/R), where R is the total number of rejected null
hypotheses. Both approaches give strong control of FDR
and weak control of FWER. A distinction between Storey's
and Benjamini's approaches is that the former incorpo-
rates an estimated proportion of truly null hypotheses
while the latter assumes all hypotheses are truly null. As a
result, the FDR approach of Storey is more powerful as a
result [4].

There are few published simulation studies that compare
FDR procedures with existing approaches for genome-
wide association studies. In this work, we will evaluate the
power and type I error rate of FDR approach in the context
of genome-wide association tests with closely spaced
markers using the Genetic Analysis Workshop 14
(GAW14) simulated datasets.

Methods
Subjects
We used all 100 simulated replicate datasets of the Dan-
acaa population of GAW14. In each dataset, there were
100 nuclear families, each with an average of 6 members
in which at least 2 were affected. There were a total of
1,469 genetic markers used in this study, including 416
microsatellite markers spaced approximately 7 cM apart,
917 SNPs spaced approximately 3 cM apart, and an addi-
tional 136 SNPs spaced approximately 0.3 cM apart in the
region of disease loci D1, D2, D3, and D4.

In the Danacaa population, only disease loci D1, D2, and
D5 (D5 was a marker) were related to the disease status.

Association analyses
A family-based association test (FBAT) was carried out at
each genetic marker using the FBAT program http://
www.biostat.harvard.edu/~fbat/default.html. In FBAT, a
score statistic capturing the covariance between the phe-
notype and marker genotype is computed and standard-
ized by its mean and variance conditional on the parental
marker genotype data to adjust for population admixture.
The score statistic is distributed as chi-square with degree
of freedom equal to the number of different alleles at the
marker minus one.

FDR-adjusted p-value: q-value

To adjust for multiple testing, for each dataset all the p-val-
ues from FBAT tests for each dataset were input into the
QVALUE program http://faculty.washington.edu/~jsto
rey/qvalue/index.html to compute FDR adjusted p-values,
called q-values. The q-value of the jth test with p-value pj is

defined as

, and  is the estimated proportion of truly null hypoth-

eses; mis the total number of hypothesis tests. Because the
p-values of truly null hypotheses are uniformly distrib-
uted, one can imagine that most of the large p-values, say,

p > λ, are corresponding to truly nulls. Thus, π0 can be esti-

mated as , where λ is chosen using a

smoother method or a bootstrap method to balance the

bias and variance of [4]. A null hypothesis will be

rejected if the corresponding q-value is less than or equal

to α.

Estimation of FDR, FWER, and power
FDR, FWER, and power were estimated using the results of
the 100 simulated datasets. To evaluate FWER when all
the null hypotheses are true (i.e., m0 = m, where m0 = π0·m
is the number of truly null hypotheses), we used an arbi-
trary phenotype, that was a random 0–1 variable not asso-
ciated with any marker. To evaluate the power and FWER
when not all null hypotheses are true (i.e., m0 <m), we
used disease status as the phenotype in the analyses.

FDR was estimated as
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test, i.e., q-value ≤ α. FWER was estimated as the propor-
tion of datasets with at least one significant test at SNPs
that were not associated with the phenotype. Two meas-
ures of power were evaluated. One was the expected
number of true positive tests, i.e., E(T), where T = R-V. The
other was the probability of at least one true positive test,
i.e., P(T > 0). The E(T) was estimated by the average
number of detected true associations for each dataset. The
P(T > 0) was estimated by proportion of 100 datasets in
which at least one true associations was detected. Because
the relationship between SNPs in a disease locus region
and the disease locus was established through adding dis-
ease allele to a subset of haplotypes of the SNPs in gener-
ating the data, the association between individual SNPs
and disease locus was not completely transparent. Because
there was no linkage disequilibrium (LD) in the D1
region, we only count associations with any of the 12
SNPs whose haplotypes were used in generating disease-
carrying haplotypes in D2 region, or with D5 itself (which
was a marker) as true associations. There may be a few of
the 12 SNPs not associated with disease but included in
the counting of true association. Because the number of
such SNPs is very small compared to the total number of
tests (n = 1,469), it should have minimal effect on our
estimates.

Results
FDR of Storey's FDR approach
The estimated FDRs for m0 = m and for m0 <m are pre-
sented in Table 1 for Storey's FDR approach. The esti-
mated FDR under both conditions was close but slightly
higher than α levels.

FWER of Bonferroni and Storey's FDR approaches
The estimated FWERs for the Bonferroni and Storey's FDR
approaches are presented in Table 2. When m0 = m, the
estimated FWER of the two methods were identical and
equally conservative. When m0 <m, the FWER of the Bon-
ferroni method was slightly inflated, but the FWER of Sto-
rey's FDR approach was much inflated.

Power of Bonferroni and Storey's FDR approaches
The power of the Bonferroni and Storey's FDR approaches
is presented in Table 3. Storey's FDR approach showed
slightly better power than the Bonferroni approach.

Discussion
In this study, we have evaluated the FDR, FWER, and
power of Storey's FDR approach, for a genome-wide asso-
ciation study with a closely spaced marker map. We found
FDR was slightly inflated for Storey's FDR approach based
on 1,469 tests that are mostly independent using 100 sim-
ulated datasets. We noted that Storey's FDR approach only
yielded weak control of FWER while the Bonferroni
method provided close to strong control of FWER. For
these simulated dataset, the power of Bonferroni and Sto-
rey's FDR approaches was comparable, although the latter
yielded slightly higher power at the price of more false
positives at markers that were not associated with the dis-
ease status.

Most markers in this study were spaced at approximately
3 cM apart and thus there was low LD among them. That
may be one of the reasons that the power of Storey's FDR
approach is not much higher than the Bonferroni method
as expected. Another possible reason is that Storey's FDR
approach was originally proposed in the context of micro-
array data analyses where many null hypotheses were not
true. For current study, only three loci contributed to the

Table 1: Estimated FDR for Storey's FDR approach. Estimated 
FDR when none of the SNPs associated with the phenotype (m0 

= m) and when some of the SNPs associated with the phenotype 
(m0 <m) based on the 100 simulated datasets.

α FDRa

m0 = m m0 <m

0.01 0.01 0.01
0.05 0.08 0.09
0.1 0.15 0.15
0.15 0.20 0.19

am = total number of tests; m0 = number of truly null hypotheses

Table 2: Estimated FWER of Bonferroni and Storey's FDR approaches. Estimated FWER when none of the SNPs associated with the 
phenotype (m0 = m) and when some of the SNPs associated with the phenotype (m0 <m) based on the 100 simulated datasets.

α FWER (m0 = m)a FWER (m0 <m)

Bonferroni Storey's FDR Bonferroni Storey's FDR

0.01 0 0 0.03 0.03
0.05 0.01 0.01 0.08 0.21
0.10 0.03 0.03 0.15 0.37
0.15 0.06 0.06 0.21 0.46

am = total number of tests; m0 = number of truly null hypotheses
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disease, and only a few surrounding SNPs may be associ-
ated with the disease loci.

Unlike single testing problem in which type I error is
uniquely defined as the probability that the p-value ≤ α
given that the null hypothesis is true, there is no unique
definition for type I error rate for multiple testing prob-
lem. The FWER may be the most commonly used type I
error measure for multiple testing problems. But even for
FWER, there can be different types of control. The FDR is
a valuable addition to the measures for type I error rate for
multiple testing problems. Understanding which measure
a multiple testing procedure can control is fundamental
for appropriately using the procedures and interpreting
the results.

For dependent tests, Storey's FDR approach is only valid
under weak dependence and with a large number of tests.
Weak dependence can be described as a form of depend-
ence that almost does not affect the validity of the
approach as the number of tests increases to infinity. An
example of weak dependence is dependence in finite
blocks. As a rule of thumb, several thousand tests are
needed to obtain reasonable estimate of q-values and thus
control of FDR [5].

For tests that do not satisfy weak dependence, the proper-
ties of FDR approaches may be unclear. In this case, resa-
mpling methods such as the improved step-down minP
algorithm by Ge et al. [6] may be more promising to bal-
ance type I error and power. One such scenario is haplo-
type analyses in genome-wide genetic studies, where SNPs
are analyzed by group according to a moving window or
LD blocks. Because the groups may have some SNPs in
common, many of the tests can be dependent and the
dependence among the tests can be very complicated.

Conclusion
In conclusion, Storey's FDR approach is more powerful
than the Bonferroni procedure if strong control of FDR or
weak control of FWER is desired. Storey's FDR approach
has little power advantage over the Bonferroni procedure

if there is low LD among the markers. Further evaluation
of the type I error rate and power of the FDR approaches
for higher LD and for haplotype analyses is warranted.
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