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Abstract
We used our newly developed linkage disequilibrium (LD) plotting software, JLIN, to plot linkage
disequilibrium between pairs of single-nucleotide polymorphisms (SNPs) for three chromosomes
of the Genetic Analysis Workshop 14 Aipotu simulated population to assess the effect of missing
data on LD calculations. Our haplotype analysis program, SIMHAP, was used to assess the effect of
missing data on haplotype-phenotype association. Genotype data was removed at random, at levels
of 1%, 5%, and 10%, and the LD calculations and haplotype association results for these levels of
missingness were compared to those for the complete dataset. It was concluded that ignoring
individuals with missing data substantially affects the number of regions of LD detected which, in
turn, could affect tagging SNPs chosen to generate haplotypes.

Background
As we begin to discover more about how haplotypes are
defined and inherited, the emphasis in genetic association
studies has moved away from the analysis of single nucle-
otide polymorphisms (SNPs) to incorporate multilocus
haplotype analysis. Individuals often inherit a set of syn-
tenic SNPs in linkage disequilibrium (LD) from one par-
ent as a unit commonly termed a haplotype. LD, which
refers to the non-independence of alleles in haplotypes,
provides us with information about the statistical non-
independence of markers. Haplotypes are likely to play a
key role in helping us to understand the genetic basis of
complex human diseases. In principle, haplotypes should
offer advantages in terms of statistical power to detect a
true association with a given sample size compared with
analyses based on single SNPs or combinations of SNPs
[1-3], because they contain more genetic information
than the genotypes alone.

It is increasingly clear from other fields of statistical inves-
tigation that simply ignoring missing data or restricting
the analysis to subjects with complete data-even when
data is missing completely at random-can lead to biased
or inefficient analyses [4-8]. This problem worsens if data
are not missing at random, as may be the case with sys-
tematic errors in genotyping assays, and hence imputation
of such data can be difficult without information about
the reason for the missingness. Ignoring individuals with
missing data is an inadequate way of dealing with the
problem, although it is often the procedure adopted.
However, in the case of missing genetic data, the effects on
LD analysis and subsequent haplotype formation can be
substantial depending on the amount of data missing.

Another known problem with association analyses using
haplotypes is the uncertainty around inferred haplotypes
when phase is ambiguous for an individual. For individu-
als with multiple heterozygous loci, more than one haplo-
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type pair (or diplotype) is possible. The most commonly
used method for haplotype implementation is to deter-
mine the most likely diplotype for an individual with
ambiguous phase, and treat it as known. This does not
however, take into account the possibility that the most
likely haplotype is not correct. Information surrounding
the likelihood of an allocated diplotype can be used in
association testing to weight diplotypes given their prob-
abilities of being true.

It was the aim of this contribution to use the Genetic Anal-
ysis Workshop 14 (GAW14) simulated data to assess the
effects of varying degrees of missing data on LD and on
haplotype association with Kofendrerd Personality Disor-
der (KPD), using JLIN [9] and SIMHAP [10]. We hypoth-
esized that increasing proportions of missing data would
result in a decreased ability to detect regions of LD and a
concomitant reduction in power to detect haplotype asso-
ciations.

Methods
Generating missing data
The GAW14 simulated data provided a useful platform for
testing the effects of missing data on the calculations of
LD coefficients and haplotype-phenotype associations
across a region. As this data was complete, we were able to
calculate LD for the set of markers on a chromosome and
treat this as a baseline to which we compared the LD
results when varying degrees of missing data were gener-
ated. We were blind to the answers at the time of analysis.
Using replicate 1 of the simulated data from the Aipotu
region, genotypes were removed at random from chromo-
somes 1, 3, and 10. Explanation for choosing these chro-
mosomes is provided in the Haplotyping section below.
New datasets were generated with genotype missingness
implemented at rates of 1%, 5%, and 10%. Data were
removed over all markers rather than at individual mark-
ers. The initial 1% of genetic data removed was included
in the 5% missing dataset, and this 5% of genotypes
removed were then included in the 10% of data to be
removed for the final set, to ensure consistency.

Mapping LD
JLIN is an LD visualization program that we have devel-
oped that derives various disequilibrium coefficients for
pairs of biallelic markers on a chromosome. Two-SNP
haplotype frequencies are derived using the expectation-
maximization (EM) algorithm for phase uncertainty. The
disequilibrium coefficient D' as described by Lewontin
[11] is calculated, and various other disequilibrium coef-
ficients are derived as described by Devlin and Risch [12].
LD information is displayed in a graph, where the user can
easily specify parameters such as axes labels, colors, and
statistics displayed. D' was plotted for the three generated
datasets, as well as for the original complete dataset on

chromosomes 1, 3, and 10 within the four simulated pop-
ulations. These plots were compared to assess if any obvi-
ous differences were apparent across the varying levels of
missing data.

Haplotyping
As part of another contribution to GAW14, we performed
linkage and association analyses using MERLIN [13] and
QTDT [14], respectively. From these analyses several
regions of markers showed significant linkage and associ-
ation with disease status, in particular, regions surround-
ing C01R0050, C03R0280, and C10R0882. Using LD
visualization and the program BEST [15], we defined a set
of tagging SNPs to define haplotype blocks in these
regions for the Aipotu population. The set of tagging SNPs
surrounding C01R0050, C03R0280, and C10R0882 were
termed region 1, region 2, and region 3, respectively. New
datasets were generated where genotype missingness was
implemented at rates of 1%, 5%, and 10% within the tag-
ging SNPs, using the same method described in the previ-
ous section.

SIMHAP is a program that we have developed for haplo-
type association analysis. It uses an EM algorithm as
described by Excoffier and Slatkin [16] to impute diplo-
types in individuals, determining a posterior probability
for each possible diplotype for an individual. It then uti-
lizes this information to simulate through generated data-
sets, where the diplotype for individual i in a given dataset
is sampled from n possible diplotypes for that individual
with the given posterior probability. This ensures that the
possibility that the most probable diplotype is not the
actual diplotype is addressed and information surround-
ing less probable (but not impossible) diplotypes is incor-
porated. As a result, an empirical distribution of
parameter estimates, taking into account uncertainty
around haplotype inference, can be derived. The mean, as
well as the 95% confidence interval of the mean, for each
parameter estimate over the empirical distribution is
returned. SIMHAP currently does not infer haplotypes for
pedigree data and so diplotypes with their posterior prob-
abilities were derived using the program HAPLO [8],
which calculates these values for individuals within pedi-
grees, and imported into SIMHAP for use in the modelling
process.

The original, complete data and the datasets generated
with missing data were run through SIMHAP to model the
effect of haplotypes defined by our tagging SNPs on affec-
tion status. Results were derived from 10,000 simulations
of the model to ensure that diplotypes with small poste-
rior probabilities were included in the sampling process.
For each simulation, a generalized linear mixed model
was performed, with family ID as a clustering variable.
The coefficients and their respective significance values for
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haplotypes of interest were extracted from each fitted
model to form an empirical distribution, and the means
and 95% confidence intervals of these estimates were
returned.

Results
LD estimation
Figure 1 shows plots of the LD coefficient D' for pairs of
markers in region 2 for the Aipotu population. An incre-

Plots of the LD coefficient D' for region 2 in the Aipotu populationFigure 1
Plots of the LD coefficient D' for region 2 in the Aipotu population. A, Full dataset with no missing values; B, 1% miss-
ing genotypic data; C, 5% missing genotypic data; D, 10% missing genotypic data.
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Varying proportions of strong D' with increasing degrees of missing dataFigure 2
Varying proportions of strong D' with increasing degrees of missing data. Histograms of the proportion of pair-wise 
comparisons exhibiting a D' value greater than 0.75 for varying degrees of missing data.
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mental shading scale is used to display D' values, where
darker shading indicates a higher D' value and thus
stronger LD. Only D' values greater than 0.75 are plotted
because this is a widely accepted indicator of strong LD.
Plot A represents the complete dataset with no missing-
ness. Plots B, C, and D are LD maps for data missing at a
rate of 1%, 5%, and 10%, respectively. The LD maps in B,
C, and D show increasing amounts of high LD when com-
pared with Plot A. The most evident difference can be
observed when comparing plots A and D, where regions
of strong LD (indicated by a high D') appear to be more
frequent in plot D than in plot A. The plots for the remain-
ing two regions studied exhibit similar effects to those
shown for region 2, suggesting that the effect is not popu-
lation- or chromosome-specific. Because this effect is dif-
ficult to appreciate from the LD plots alone, the
proportion of pair-wise SNP comparisons exhibiting a D'
greater than 0.75 for each level of missing data was deter-
mined. Figure 2 shows histograms of these proportions
for the three regions studied and it can be seen that gener-
ally, these proportions increase as missing data increases.

Haplotype analysis
Five haplotype tagging SNPs were defined to characterize
a haplotype block in region 2. Two haplotypes in this
region were found to be associated with (protective for)
KPD. These SNPs were: B03T3041, B03T3046, B03T3050,
B03T3058, and B03T3064. H12121 and H12221 were the
two associated haplotypes. H12121 represents a haplo-
type composed of allele 1 of marker B03T3041, allele 2 of
marker B03T3046, allele 1 of marker B03T3050, allele 2
of marker B03T3058, and allele 1 of marker B03T3064.
Haplotype H12221 is similarly defined. Table 1 presents
the odds ratios, standard error of the log odds ratios, and
p-values determined by SIMHAP for each haplotype over
the varying degrees of missing data. There is a trend
towards increased 95% confidence intervals for all meas-
ures as the amount of missingness increases, although no
obvious patterns emerge relating to changes in haplotype
effects. No haplotypes in region 1 or region 3 were found

to be significantly associated with affection status for any
degree of missing data.

Discussion
The analysis of LD between markers is an important factor
for LD mapping and association, and is important in
determining haplotypes. The GAW14 simulated data pro-
vided a useful platform for assessing the effect of missing
data at varying levels, on LD calculation and haplotype
estimation. Using the LD plotting program JLIN, we dis-
covered that simply ignoring missing genotype data
affects how accurately we map regions of LD, and the level
of strong LD observed. Our hypothesis of a decrease in
detectable LD with increased missing data was not sup-
ported. The number of pair-wise comparisons exhibiting
strong LD tended to increase as missing data increased. As
this number increases, the pattern of LD across a chromo-
some can become more segregated, causing the partition-
ing of haplotype blocks into smaller blocks. This resulting
loss of the overall pattern of LD could lead to problems in
with tag SNP selection and haplotype formation.

The set of haplotype tagging SNPs for haplotype blocks
was generated for the complete dataset and then missing
data was generated within these genotyped SNPs. It is pos-
sible that the set of tagging SNPs may have been different
if they had been chosen after the removal of data; however
the aim of our analysis was to assess the effect of missing
genotype data during haplotype analysis. In reality, miss-
ing data due to genotyping errors will occur after the selec-
tion of tagging SNPs (as these are the markers genotyped
in a population of interest), and thus the effect of missing
data on detection of haplotype association is of more
practical concern. A trend toward increasing confidence
intervals around parameter estimates did emerge as the
amount of missing data increased, however the parameter
estimates themselves remained relatively unchanged and
the amount by which the intervals increased formed no
distinct pattern. This suggests that haplotype association
analysis is fairly robust to missing data. The increasing

Table 1: Haplotype results for varying degrees of missing data

OR (95% CI) SE (logOR) (95% CI) p-Value (95% CI)

H12121
Complete data 0.52 (0.49, 0.57) -0.64 (-0.71, -0.57) 0.011 (0.005, 0.022)
1% Missing data 0.57 (0.53, 0.61) -0.56 (-0.64, -0.49) 0.027 (0.012, 0.052)
5% Missing data 0.58 (0.53, 0.63) -0.54 (-0.63, -0.46) 0.034 (0.013, 0.070)
10% Missing data 0.52 (0.46, 0.58) -0.66 (-0.77, -0.54) 0.010 (0.002, 0.029)

H12221
Complete data 0.62 (0.58, 0.65) -0.48 (-0.54, -0.43) 0.021 (0.010, 0.037)
1% Missing data 0.61 (0.57, 0.64) -0.50 (-0.57, -0.44) 0.018 (0.007, 0.034)
5% Missing data 0.59 (0.54, 0.64) -0.52 (-0.61, -0.44) 0.014 (0.004, 0.034)
10% Missing data 0.59 (0.53, 0.65) -0.53 (-0.63, -0.43) 0.014 (0.003, 0.039)
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confidence intervals could simply be a reflection of
decreased power due to a smaller dataset.

Conclusion
The most common practice for dealing with missing data
in genetic analysis is to simply remove or ignore individ-
uals with missing data. We have shown, using plots of LD
that this practice affects the LD coefficient D' and can
result in an increase in number of pair-wise comparisons
exhibiting strong LD. The large effect of missing data on
LD did not directly translate into large effects on haplo-
type analysis. This suggests that haplotype formation and
analysis is fairly robust to missing data up to a level of
10%. LD is a powerful tool in determining haplotype
blocks and if strong areas of LD are wrongly defined when
data missingness is large, this could affect the way that we
determine haplotype tagging SNPs and thus affect haplo-
type formation. More research could help to determine
the effect of missing data on haplotype tagging SNP selec-
tion. Future work is proposed for exploring various meth-
ods of data imputation, and techniques such as those
adopted in this paper can be used to help determine how
effectively different imputation methods perform.
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