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Abstract

Background: The amount of genome-wide molecular data is increasing rapidly, as is interest in
developing methods appropriate for such data. There is a consequent increasing need for methods
that are able to efficiently simulate such data. In this paper we implement the sequentially
Markovian coalescent algorithm described by McVean and Cardin and present a further
modification to that algorithm which slightly improves the closeness of the approximation to the
full coalescent model. The algorithm ignores a class of recombination events known to affect the
behavior of the genealogy of the sample, but which do not appear to affect the behavior of
generated samples to any substantial degree.

Results: We show that our software is able to simulate large chromosomal regions, such as those
appropriate in a consideration of genome-wide data, in a way that is several orders of magnitude
faster than existing coalescent algorithms.

Conclusion: This algorithm provides a useful resource for those needing to simulate large
quantities of data for chromosomal-length regions using an approach that is much more efficient
than traditional coalescent models.

Background

Given the increasing prevalence of genome-wide data,
and the development of methodologies for the analysis of
such data, there is an increasing need for tools that can
simulate data appropriate for long, genomic regions. Two
options suggest themselves:

1. Model and simulation: The traditional approach has
been to use a model that is

(a) thought to be a reasonable approximation to the evo-
lutionary history for the organism of interest, and

(b) easy to simulate.

By far the most popular such model is the coalescent [1,2]
However, use of the coalescent becomes less practical for
long genomic regions.

2. Existing data and perturbation: An alternate, newer
approach is to take an existing data set and then perturb it
in some fashion to produce "new data from old". A simple
example of such an approach would be re-sampling. More
specific examples can be found in [3,4].

The first approach has the advantage of being able to pro-
duce data that is not dependent on an existing data set.
However, the model it uses will be, by definition, an
approximation to the evolutionary processes that pro-
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Figure |

The various categories of recombination. lllustration of
the different types of recombinations. Ancestral material is
shown as solid red lines, while non-ancestral material is
shown as red-dotted lines. Locations of recombinations are
shown below and to the left of the recombination event.
Type of recombination is indicated with a blue numeral
above the event.

duced the real data. The second approach, while being
dependent on the presence of an initial data set, has the
advantage that the evolutionary model underlying the
unperturbed data is correct. We don't know how the data
got there, but it is 'real' data, so it got there via the correct
evolutionary history. However, the need to then perturb
the initial data to produce new data sets adds noise to the
evolutionary process and thereby results in data that is
only an approximation to reality. Furthermore, the extent
of the dependence of the new data sets on the initial data
set is unclear, and it is therefore not obvious how typical
such data might be of other, unobserved, real data.

We believe both of these approaches have merit. In this
paper we restrict ourselves to a discussion of the former
approach, in which we use an evolutionary model to sim-
ulate new data sets. The use of the standard coalescent
model becomes impractical as the length of the simulated
region increases. However, the coalescent has been proven
to be a powerful simulation tool in these contexts (e.g.,
[5])- Thus, in this paper we exploit an approximation to
the full coalescent algorithm. This approximation, the
sequentially Markov coalescent (SMC), was introduced by
McVean and Cardin [6]. It is able to simulate significantly
longer regions while maintaining the properties of short-
range summary statistics. Since our particular interest is in
the development of such algorithms as a tool for the test-
ing of disease mapping methodologies, we pay close
attention to the behavior of linkage disequilibrium [LD]
in data simulated under the SMC model. The coalescent
was introduceid in [1]. It provided an elegant and efficient
model for the evolution of a population of randomly-
mating, neutral, haploid individuals. As such it has
become a very widely used tool. Over time, generaliza-
tions have been introduced to deal with the more obvi-
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ously restrictive aspects of the original model. For
example, recombination was introduced in [2]. Selection
was introduced in [7,8]. Useful reviews are found in [9-
11].

Our interest here centers on the use of the coalescent algo-
rithm to simulate long chromosomal regions. When long
regions are considered, and the recombination rate is
therefore very high, the coalescent algorithm becomes
somewhat problematic to use. Run-times become longer
(see "Results") and memory requirements become
greater.

In a case in which two widely-separated regions were
being considered, one might simulate these two regions
independently, relying on the fact that the regions would
be essentially unlinked. However, when one is studying a
long, continuous region such a strategy becomes inappro-
priate since linkage disequilibrium is likely to be present
along the entire region. (In a situation in which recombi-
nation hotspots were present, one might try to independ-
ently simulate regions between hotspots.)

Rapid simulation of coalescent ancestries is central to esti-
mation methods such as rejection algorithms, or to the
use of simulation-studies as a test-bed for new methodol-
ogies. Thus we use a simple approximation to the coales-
cent in which the difficulties associated with simulating
long chromosomal regions are mitigated.

Hudson [2] introduced recombination into the coalescent
model. Griffiths and Marjoram [12] then embedded this
within the ancestral recombination graph (ARG), a more
tractable description of the coalescent model in the pres-
ence of recombination. Shortly thereafter, Wiuf and Hein
[13,14] introduced an alternate description of the ances-
tral process with recombination in which the sample is
constructed by moving "along the chromosome". Their
algorithm gains efficiency by ignoring a class of recombi-
nation events that do not affect the present day sample.

In order to discuss this further, we review the concept of
ancestral material. A chromosomal region in an individual
is considered to be ancestral if it is eventually inherited by
any of the sample of interest drawn from the present day
population. Thus, individuals in previous generations are
likely to contain chromosomal regions that are both
ancestral and non-ancestral.

In essence there are five types of recombination events
that occur on the full ARG:

1. Recombination in ancestral material;
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Figure 2

lllustration of FastCoal algorithm. This figure shows how
the algorithm forms the next tree along the chromosome,
moving from left-to-right, given the state of the current tree.

Recombination

2. Recombination in non-ancestral material that has
ancestral material to both sides;

3. Recombination in non-ancestral material that has
ancestral material only to the left;

4. Recombination in non-ancestral material that has
ancestral material only to the right;

5. Recombination in an individual that carries no ances-
tral material.

We illustrate some of these events in Figure 1 [see Addi-
tional file 1]. Only the first two types of event actually
impact the composition of the sample of interest.

As the recombination parameter, p, increases, the number
of recombinations in the ARG, which is of the order of
plog(n) for a sample of size n, (e.g., [12]) grows. A simu-
lation of the full ARG would contain all such recombina-
tion events, and hence be highly inefficient. This is not,
primarily, due to the large number of recombination
events per se, but rather is caused by the growing size of the
ARG, which makes increasing demands on computer
memory.

Simulating the ancestral recombination graph

We begin by introducing some notation. Denote the
length of chromosome being considered by the unit inter-
val [0,1]. Letx € [0,1] denote a point within the region of
interest. McVean and Cardin's SMC method introduces an
approximation to an elegant scheme introduced by Wiuf
and Hein [13,14], which we describe fully in "Implemen-
tation". In summary, Wiuf and Hein's method moves
from left-to-right along the chromosome. Starting with
the tree appropriate for x = 0 they find the (exponentially
distributed) distance along the chromosome to the next
recombination event. They then pick a point uniformly at
random on the graph constructed so far and introduce a
recombination at that point. The left emerging line from
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that recombination follows the path of the existing line
(indicated in green on Figure 2 - [see Additional file 2]),
but the right emrging line, which is the newly-introduced
line, follows a new path (calculated from the usual coales-
cent prior and indicated in red on Figure 2). Once we have
constructed the path for the new line we are left with a
new graph that consists of the old graph plus this new
line. This procedure is iterated until the end of the chro-
mosome is reached. Note that the size of the graph
increases as x increases. (For details see "Implementa-
tion".)

There is a class of recombination events which occur to
lines on the full ARG but which do not affect the proper-
ties of samples generated from that graph. These are
recombinations which occur in regions which are non-
ancestral for that line (i.e. are not passed on to the sample
of interest at the bottom of the graph) and which do not
have ancestral regions to both their left and right (corre-
sponding to events of types 3, 4 and 5 in the list of the pre-
vious section). The Wiuf and Hein algorithm gains
efficiency over an algorithm based on the full ARG by
excluding recombinations of types 4 and 5. In particular,
it excludes recombinations which occur in non-ancestral
material and which only have ancestral material to their
right on that line, but not those that have ancestral mate-
rial only to their left. This has the curious feature of mak-
ing the density of recombination events in the simulated

Decay of r*2, n=10
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Figure 3

Decay of r2. This figure shows how r2 decays as a function of
distance for both the SMC and SMC' algorithm and for an
exact coalescent model (simulated using ms). Data was simu-
lated for a 2 Mb region and a sample size of n = 20.
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Table I: Mean Height of ith tree for SMC. We show the mean TMRCA for the ith tree along the chromosome, when it exists, as a
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function of the recombination rate. Data was simulated for a sample size of n = 2. Results are given for ms, SMC and SMC'.

p= | p= 100
i ms SMC sSMC' ms SMC SMC'
| 1.00 1.00 1.00 1.00 1.00 1.00
2 1.68 1.75 1.68 1.41 1.51 1.41
3 2.06 2.11 2.08 1.63 1.76 1.64
4 2.39 2.33 2.40 1.75 1.88 1.77
5 2.68 2.47 2.66 1.81 1.94 1.85
6 2.95 2.57 2.90 1.87 1.97 1.90
7 3.19 2.65 3.12 1.89 1.99 1.93
8 3.44 2.72 3.33 1.91 1.99 1.95
9 3.67 2.79 3.54 1.93 1.99 1.97
10 3.92 2.84 3.69 1.94 2.00 1.98
last tree 1.00 1.00 1.00 1.00 1.00 1.00

graph increase as we move along the chromosomal
region. (However, it is important to note that these 'extra’
recombination events occur in non-ancestral material and
do not influence the composition of the final sample.)
Since, for large p, the efficiency of algorithms that simu-
late (a subset of) the ARG is largely a function of the
amount of memory required to store the graph, this
makes the Wiuf and Hein algorithm more efficient than
algorithms based on the full ARG. The popular ms algo-
rithm of Hudson [15] also excludes recombinations in
non-ancestral material that only have ancestral material to
their left (i.e. of type 3). Thus, all events that do not affect
the current sample are ignored in the ms algorithm, and it
is therefore more efficient than the Wiuf and Hein algo-
rithm.

The novelty of the SMC scheme proposed by McVean and
Cardin, is that before adding the new line corresponding
to a recombination event they delete the old (existing)
line for that recombination, (i.e. all parts of the old line
between the point at which the recombination occurred,
and the point at which the old line coalesced, are deleted).
Thus, each graph we construct is in fact a tree, and knowl-
edge of the deleted lines is lost rather than being stored
within the total graph constructed so far (as in the algo-
rithm of Wiuf and Hein). Consequently, the SMC algo-
rithm explicitly disallows coalescence between lineages
with no overlapping ancestral material. The motivation is
to significantly increase algorithmic efficiency, due to
lower memory requirements, while retaining most of the
LD structure [6]. This is possible largely because the proc-
ess by which trees are constructed as we move along the
chromosome using the SMC is now Markovian.

In our implementation of their algorithm we include a
slight modification in which the old (existing) line for the

recombination is deleted after (rather than before) the
new line is added. Thus, in this modified version, which
we refer to as SMC', the intuitive interpretation is that we
only include recombination events that occur in ancestral
material and ignore all events occurring in non-ancestral
regions. Our motivation for doing this is as follows. The
original specification of the SMC algorithm has the conse-
quence of excluding a class of recombination events that
occur in ancestral material but do not affect the pattern of
LD in the data (because the two lines resulting from the
recombination coalesce with each other before coalescing
with any other line). We denote this class of recombina-
tions by R. Thus, since all recombinations are forced to be
other than type R, the rate at which recombinations of
type not equal to R occurs will now be slightly higher than
it would normally be under the full coalescent model (for
a given recombination parameter p). This suggests that LD
will decay slightly more quickly in the original, SMC, ver-
sion of the algorithm (see "Results" for more details). Our
FastCoal software implements both the SMC and SMC'
versions of the algorithm.

We give results to supplement those in [6] and demon-
strate that the SMC/SMC' approximation is much more
efficient than the coalescent for high o and produces data
that is almost indistinguishable from that produced by an
exact coalescent algorithm. The algorithm simulates an
approximation to the true coalescent model. However, the
degree of approximation is extremely close, at least in
terms of patterns of LD. Furthermore, implementation of
the algorithm results in software that is very significantly
faster, and has much lower memory requirements, when
pis large. In fact, the memory required by the algorithm is
independent of p (in direct contrast to ms, for example).

Page 4 of 9

(page number not for citation purposes)



BMC Genetics 2006, 7:16

http://www.biomedcentral.com/1471-2156/7/16

Table 2: Mean Height of ith tree for SMC. We show the mean TMRCA for the ith tree along the chromosome, when it exists, for a

sample size of n = 20. Results are given for ms, SMC and SMC'

p =100
i ms SMC SMC'
| 1.90 1.90 1.90
2 1.96 1.99 1.96
3 1.99 2.05 2.0l
4 2.05 2.10 2.05
5 2.06 2.14 2.08
6 2.09 2.16 2.11
7 2.11 2.19 2.13
8 2.12 2.20 2.15
9 2.13 222 2.16
10 2.15 2.22 2.18
last tree 1.90 1.90 1.90

Note that by discarding the old line associated with each
recombination, at any given moment the algorithm stores
information for one coalescent tree rather than a more
complicated and memory-intensive graph. This allows the
SMC/SMC' algorithm to run efficiently for high p (when
the size of the corresponding graph becomes very large).
Other than that, the SMC/SMC' process and Wiuf & Hein
algorithms are essentially the same. Thus it follows, in a
manner directly analogous to that in [13,14], that T(x),
the marginal genealogy at a particular location x, is still
exactly described by the traditional coalescent process. See
[6] for an extended discussion of the properties of the
SMC algorithm and a derivation of theoretical results.

We now consider the degree to which data produced by
the approximation algorithm is similar to that produced
by traditional coalescent algorithms and then demon-
strate the relative computational efficiencies for a variety
of parameter values.

Implementation

Wiuf and Hein's algorithm

We start by summarizing Wiuf and Hein's method
[13,14]. Their algorithm provides a way of constructing a
subset of the ARC by moving 'along the chromosome’,
constructing the tree appropriate for each point on the
chromosome and storing those trees within a graph that is
a subset of the full ARG. Recall that x denotes a location in
the interval being simulated. The algorithm proceeds as
follows:

1. Set x = 0 and generate a coalescent tree for x. Denote this
tree by G(x). Denote the length of the graph at x by L(x).

2. Generate y ~ EXp(%LM(x)), the distance along the

chromosome to the next recombination event.
3. Pick a point g on the graph G(x)uniformly.

4. Add a recombination event to the graph at that g. The
recombination occurs at chromosomal location x + y. The
left emerging branch follows the path of the existing line
at that point. The right emerging line coalesces at some
point higher up on the graph (possibly past the MRCA)
according to the usual coalescent probabilities. In particu-
lar, it coalesces with each existing line at rate 1.

5.Setx =x +y. Let G(x) denote the total graph constructed
so far (i.e. G(x) contains all branches appropriate for any
z < x). Set L(x) equal to the total length of G(x).

6. If x + y <1 return to 2.

The method of Wiuf and Hein simulates a substantial sub-
sample of the full ARG. Thus, its burden on computer
memory is also substantial, to the point of being intracta-
ble for long genomic regions. McVean and Cardin intro-
duced the SMC algorithm, an approximation to the
process of Wiuf and Hein. The SMC algorithm reduces the
topology being simulated to a tree rather than a graph. We
now introduce our variation on the SMC algorithm,
which we refer to as SMC'.

The SMC' algorithm
The SMC' algorithm proceeds as follows:

1. Set x = 0 and generate a coalescent tree for x. Denote this
tree by T(x). Denote the length of the tree at x by L(x).

Page 5 of 9

(page number not for citation purposes)



BMC Genetics 2006, 7:16

http://www.biomedcentral.com/1471-2156/7/16

Table 3: Run-times. Average time per simulation, as a function of sample size n, based on 20 trials, assuming 6= 10-4/bp and p=5 * 10
4/bp. Simulations were run on a 2.8 GHz Intel Xeon processor. Dashes correspond to simulations that could not be completed because

they required too much (> 3 GB RAM) memory.

n Length (Mb) SMC ms
1000 2 0.9 72
5 2.1 62.6
10 4.3 473.6
20 83 6459.6
50 20.9 -
100 41.6 -
200 83.9 -
4000 2 4.0 10.6
5 104 -
10 222 -
20 40.7 -
50 105.8 -
100 201.5 -
200 406.1 -

2. Generate y ~ Exp( g L(x)), the distance along the chro-

mosome to the next recombination event.
3. Pick a point g on the tree T(x) uniformly.

4. Add a recombination event to the graph at that g. The
recombination occurs at chromosomal location x + y. The
left emerging branch follows the path of the existing line
at that point. We refer to this as the old branch. The right
emerging line coalesces at some point higher up on the
graph (possibly past the MRCA) according to the usual
coalescent probabilities. In particular, it coalesces with
each existing line at rate 1.

5. Delete the part of the old (i.e. left) branch that lies
between the newly added recombination event and the
point at which the old branch coalesces with another line.
At this point we are left with a tree (rather than a graph).

6. Setx = x + y. Let T(x) denote the tree constructed at x. Set
L(x) equal to the length of T(x).

7. If x + y <1 return to 2.

We illustrate this algorithm in Figure 2 [see Additional file
2]. In the original SMC algorithm presented by McVean
and Cardin steps 4 and 5 are conducted in reverse order.

As we discussed earlier, this algorithm has the property
that, at any point in time, the topology being considered
is a tree rather than a graph. Furthermore, as discussed in
[6], the algorithm is now Markovian as we move along the
chromosome. As such it can be efficiently stored in mem-

ory, the amount of memory required being independent
of the recombination rate.

Results

Behavior of algorithm — tree heights

As noted in [6], exploiting the approximation described
by the SMC algorithm (or the SMC' variation), implies
that we are no longer simulating exact coalescent ances-
tries. For the reasons discussed above and in [6] it rather
straightforwardly follows that time to most recent com-
mon ancestor (TMRCA) for any point x € [0,1] will have
the same distribution as for the standard coalescent.

It is of some interest to consider the mean height of the ith
tree moving (from left-to-right) along the chromosome.
Results for ms, SMC and SMC' are shown in Table 1 for a
sample of size n = 2 and p = 1 and 100. Note that the ith
tree will not always exist. The mean heights presented for
tree i in Tables 1 and 2 are conditional on the existence of
the ith tree (for each 7). (Thus, iterations for which the ith
tree does not exist are not used for the calculation of the
mean height of tree i.)There are two intuitions underlying
the results shown in the table. Firstly the results illustrate
a subtlety first discussed in [13,14], in that the (i + 1)th tree
is most likely to exist if the ithtree has a higher TMRCA
than usual. Thus, conditioning on the existence of the ith
tree leads to an increase in the mean height of that tree.
Clearly, this conditioning does not apply to the first tree,
or the last tree (since both always exist) — thus their mean
height is unchanged. Furthermore, the extent of this effect
decreases as the recombination rate increases (since the
ith tree becomes more likely to exist as p increases). Sec-
ondly, there is a difference in behavior between the tree at
x, for some position x, and the ith tree along the chromo-
some. The former has a lower expected height than the lat-
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Table 4: Mean of LD summaries. We show results for the mean value of summaries of LD behavior for ms and the SMC and SMC'
algorithms. We simulated a 2 Mb region for a sample of size 500. Numbers shown are averaged over 1000 replicates. Markers with

MAF less than 0.05 were excluded.

Statistic ms SMC sMcC'

H 404 404 404

Rm 236 232 236

% seq. in hap. blocks 41.1 41.2 41.2

ter, since tall trees are likely to cover a shorter length of the
chromosome. For n = 2 this is akin to size-biased sam-
pling of exponential random variables. A little thought
reveals that for high p and small i, the ith tree will exist
with very high probability, the effect of the conditioning
is therefore lost, and the expected tree height will be
approximately 2 due to the size-biasing effect. The effect
of the size-biasing is lessened at each end of the region.

The results show that the SMC' algorithm appears to pro-
vides a closer approximation to the full coalescent model
than does SMC. As one might expect a priori, the degree of
difference decreases as the sample size increases. We illus-
trate this in Table 2, where results are shown for a sample
size of 20.

It is not clear how this difference in behavior might affect
the properties of the data being simulated, but it suggests
that the covariance of the tree heights at any two positions
x and y along the region of interest will be highest under
ms, with SMC' leading to a somewhat lower covariance
and SMC leading to a further lowering of the covariance.
(For further evidence of this effect see the results for LD
below.)

Behavior of algorithm — run times

We compare the run times of our software with those of
ms (Hudson 2002). We concentrate on parameter values
that are appropriate for modelling the data that will come
from future large-scale association studies. All simulations
assume that 6 = 4Nu = 104 (where N is the effective pop-
ulation size and u is the mutation rate per base pair per
generation) and p = 4Nr =5 * 104 (where r is the crosso-
ver rate per base pair per generation). The #value gives a
SNP density of one SNP with a minor allele frequency
(MAF) of at least 0.05 every 3.4 Kb and the p value
assumes plausible human parameter values (N = 104 and
an average recombination rate of 1.25 cM/Mb).

Table 3 shows the average time per simulation for our
implementation of SMC/SMC' as a function of the sample
size and length of region simulated. (Results for both ver-
sions of the algorithm are essentially identical.) For simu-
lations of smaller regions (e.g., 200 Kb or less), the run

times of SMC/SMC' and ms are roughly comparable
(results not shown). However, for larger regions, the new
algorithm is much faster than ms. When the simulated
region is larger than a few Mb, ms could not be run due to
memory constraints. We anticipate that roughly 32 GB of
RAM and 2-6 days of computing time would be necessary
to simulate data from a small chromosome (n = 4000 and
50 Mb of sequence) using the standard coalescent. In con-
trast, the corresponding simulations with the new algo-
rithm take less than 2 minutes to run and use less than
200 MB of RAM. We note in passing that, as expected, the
run time for our software is roughly proportional to the
length of the sequence simulated. Run times for ms
increase more than quadratically with respect to the sim-
ulated sequence length (results not shown).

Behavior of algorithm — LD

We also compared the behavior of LD in data simulated
by SMC, SMC' and ms. In Figure 3 [see Additional file 3]
we simulated 2 Mb of sequence from a sample size of n =
10 using 1,000 replicates. As before we assumed &= 104/
bp, =5 * 104/bp. In Table 4 we use n = 100. We illustrate
the behavior of several simple summaries of LD: 2 as a
function of distance, the number of distinct haplotypes
(H), the minimum number of inferred recombination
events R, (cf. [16]) and the fraction of sequence con-
tained in haplotype blocks (cf. [17]). The means of these
summaries are displayed in Table 4 and Figure 3. As meas-
ured, the algorithms produce nearly identical patterns of
LD, although, somewhat surprisingly SMC leads to a
slightly lower value of R,,. We note that SMC' produces a
slightly closer approximation to the full coalescent model
than does SMC. This is true for all sample sizes, but we
note that the degree of difference between the algorithms
decreases as the sample size increases, and will, for many
purposes, be insignificant. We simulated a range of other
parameter values (including sample sizes ranging up to
2500) and considered several other measures of LD
[18,19], including patterns of LD within triplets of sites.
In all cases the broad conclusions were essentially the
same (results not shown). We conclude that the SMC/
SMC' algorithm produces simulated data that has LD
properties that are virtually indistinguishable from those
resulting from standard coalescent simulations.

Page 7 of 9

(page number not for citation purposes)



BMC Genetics 2006, 7:16

Discussion

Hudson's ms algorithm is an excellent and widely used
tool. As we enter an age in which genome-wide studies are
becoming increasingly frequent, the ability to efficiently
simulate long chromosomal regions becomes more
important. Consequently, the need for an efficient alter-
native to ms arises. While we feel that ms should continue
to be the algorithm of choice when computational
demands do not prohibit its use, we feel the SMC/SMC'
algorithm provides a useful alternative in this new para-
digm. In particular, it will lead to significant improve-
ments in efficiency for methods such as rejection
algorithms or computationally intensive simulation stud-
ies. While it models an approximation to the full coales-
cent model, the degree of approximation appears to be
very good.

Software to implement the SMC algorithm is available as
open-source, freely distributable C++ code. It can be used
to generate data according to both the SMC and SMC' ver-
sions of the algorithm. The current implementation
includes the possibility of allowing for changes in popula-
tion size, in the form of an exponential growth model.
This is dealt with in the standard way by altering the rates
at which sequences coalesce (see [20], for example, for
details). Clearly, there are a range of other complicating
factors that one might wish to add to this code. Our view
is that variation in recombination or mutation rates is best
handled via post-processing the data produced by the
standard form of the algorithm. For example, if one gen-
erates data for given values of 8 and p one can produce
recombination hotspots by contracting a region by a fac-
tor of 1 (where A is the relative rate of recombination in
the hotspot) followed by a consequent thinning of muta-
tions (including each mutation in that region with proba-
bility 1/A4 if one wishes to keep the mutation rate
constant). See [21] for details. The authors encourage
interested parties to submit functions to allow for such
complications. We will maintain these in a central repos-

itory.

Conclusion

We have developed software (FastCoal) to implement the
SMC algorithm of [6]. This algorithm approximates the
standard coalescent process. We also introduce a modified
version of the algorithm, SMC', which appears to produce
a slightly closer approximation to the full coalescent
model. The approximation makes the SMC/SMC' algo-
rithm an appropriate choice for simulating long, chromo-
somal regions, for which existing algorithms become
computationally intractable. We have shown that despite
the fact that this method is an approximation to the exact
coalescent model, it appears to produce data this is virtu-
ally indistinguishable from the exact model, at least in
terms of patterns of pairwise LD and marginal TMRCAs.

http://www.biomedcentral.com/1471-2156/7/16

The behavior of LD is particularly relevant for genome-
wide mapping studies, so we feel our results give convinc-
ing evidence that this software can be used to provide test
data in a highly efficient manner when testing new
genome-wide mapping methodologies.

Availability and requirements

The FastCoal software, written in C++, is available from
PM at pmarjora@usc.edu and runs on Windows plat-
forms.

List Of abbreviations
ARG - ancestral recombination graph;

LD - linkage disequilibrium;
MAF - minor allele frequency;
(TYMRCA - (time to) most recent common ancestor.
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