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Abstract

Background: Certain loci on the human genome, such as glutathione S-transferase M| (GSTMI),
do not permit heterozygotes to be reliably determined by commonly used methods. Association
of such a locus with a disease is therefore generally tested with a case-control design. When
subjects have already been ascertained in a case-parent design however, the question arises as to
whether the data can still be used to test disease association at such a locus.

Results: A likelihood ratio test was constructed that can be used with a case-parents design but
has somewhat less power than a Pearson's chi-squared test that uses a case-control design. The
test is illustrated on a novel dataset showing a genotype relative risk near 2 for the homozygous
GSTMI deletion genotype and autism.

Conclusion: Although the case-control design will remain the mainstay for a locus with a deletion,
the likelihood ratio test will be useful for such a locus analyzed as part of a larger case-parent study
design. The likelihood ratio test has the advantage that it can incorporate complete and incomplete
case-parent trios as well as independent cases and controls. Both analyses support (p = 0.046 for
the proposed test, p = 0.028 for the case-control analysis) an association of the homozygous
GSTMI deletion genotype with autism.
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Background

Methodology

Despite technological advances, not all loci in the human
genome can readily be fully genotyped using current con-
ventional methods. Incomplete sequence information,
unknown splice junction, unknown size of the deletion,
and a large amount of homology with nearby sequence
can all contribute to such a problem. The GSTM1 locus
can be considered a model of such a locus. Heterozygotes
involving the GSTM1 deletion, or null, allele cannot be
detected using standard genotyping methods [1]. In such
a case, the investigator can determine genotype only up to
homozygous-deletion/not-homozygous-deletion catego-
rization, serving as a reminder that what we label "geno-
type" in our data analysis is actually an observed
phenotype. Studies involving such loci generally use a
case-control contingency table analysis with two catego-
ries for genotype.

Contemporary research often uses a family-based associa-
tion study design in examining a number of loci at once.
The question naturally arises as to whether case-parent
trio DNA be used to advantage over the case-control con-
tingency table analysis at a locus where heterozygotes can-
not be reliably distinguished from one of the homozygote
genotypes. This note examines a likelihood ratio test built
on possible mating types for a case-parent design. Unlike
the well-known transmission disequilbrium test for case-
parent trios, the test discussed here does require allele fre-
quency estimates and so is susceptible to population strat-

Table I: Population and Sampling Frequencies of Case-Parent Trios.
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ification and admixture effects much as a case control
analysis is. With that proviso, we examine the perform-
ance of the proposed test in simulations, and in a new
dataset involving the GSTM1 deletion allele and the
autism phenotype.

Autism and the GSTMI locus

Autism (autistic disorder) is a pervasive developmental
disorder with diagnostic criteria based on abnormal social
interactions, language abnormalities, and stereotypies evi-
dent prior to 36 months of age [2]. Despite its lack of
Mendelian transmission, autism is highly genetically
determined [3,4].

The vast majority of cases of autism are unrelated to
known teratogens but the phenotypic expression of
autism may be affected by the interaction of environmen-
tal factors with multiple gene loci. There is evidence sup-
porting a role for oxidative stress in autism |[5,6].
Oxidative stress could interact with common functional
polymorphic variants of genes that protect against oxida-
tive stress and could thus affect brain development during
gestation or possibly after gestation, contributing to
expression of autism. Glutathione (GSH) is the most
important endogenous antioxidant due to its ability to
bind electrophilic substrates through its free sulfthydryl
group [7] and is the most abundant non-protein thiol,
occurring in millimolar concentrations in human tissues
[8]. Low plasma total GSH (tGSH) levels, elevated levels

"F, M, C" refers to Father, Mother, Child.

Actual Observable
F, M, C Genotype Population Case Frequency®? F, M, C Genotype Population Case Frequency? Label
Frequency® Frequency®
2,2,2 p* p4M P,P,P p2(3 - 2p) p2(1 +2r (1 - p))/ a
M
2,1,2 p3(l - p) p3(l - p)/M
2, 1,1 p3(1 - p) np3(1 - p)iM
1,2,2 p3(1 - p) p3(1 - p)/M
12,1 p(1 - p) rp3(1 - p)IM
11,2 p(I - p)? p(! - p)HIM
L1, 2p%(1 - p)? 2rp2(1 - p)2M
11,0 p*(I - p)? rop*(1 -p)¥M P, P,D p*(1 - p)? rop*(1 - p)2M b
2,0,1 p2(1 - p) P21 -pyIM  P.D,P p(l - p)? rp(l - )M c
1,0, 1 p(l - p)? np(l - pPiM
1,0,0 p(l - p)? rop(l -pP¥M  P,D,D p(l - p)? rop(l - p)3IM d
0,21 p*(1 - p)? npX(1-p)¥M  D,PP p(l - p)? np(l - p)AM e
01,1 p(l - p)? np(l - pPiM
0.1,0 p(l - p)? rp(1-p)¥M  D,P.D p(l - p)? rp(1 - p)IM
0,0,0 (I -p)* ro(1 - p)#M D,D,D (I -p)* ro(1 - p)*M g

Note: M = p2+ 2r,p(l - p) + ry(l - p)2. The allele frequency of the full allele is denoted by p.

aUnder the assumption of Hardy-Weinberg equilibrium.

bUnder the assumption of Hardy-Weinberg equilibrium, and a risk of rq (r|) for a child with zero copies (one copy) of full allele relative to the risk

to a child with two copies of the full allele.
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Table 2: Power with 50 Case-Parent Trios and 100 Controls. CC = Pearson's Chi-Squared Test, LR | = likelihood ratio test with | df,
LR 2 = likelihood ratio test with 2 df. Controls were used only for the Chi-Squared test.

rn=1 = \/E n=ry

ro CcC LR | LR 2 CC LR 1 LR 2 CcC LR 1 LR 2
q=.25 1.0 0.04 0.06 0.06

1.5 0.11 0.10 0.09 0.08 0.07 0.07 0.06 0.07 0.07

2.0 0.23 0.20 0.19 0.15 0.09 0.09 0.10 0.07 0.08

2.5 0.38 0.32 0.34 0.23 0.12 0.14 0.12 0.07 0.09

3.0 0.53 0.46 0.47 0.32 0.17 0.18 0.14 0.07 0.10
qg=.50 1.0 0.05 0.05 0.05

1.5 0.20 0.16 0.14 0.11 0.08 0.07 0.06 0.06 0.07

2.0 0.47 0.38 0.31 0.23 0.15 0.12 0.08 0.06 0.07

2.5 0.72 0.62 0.52 0.36 0.22 0.18 0.09 0.07 0.09

3.0 0.86 0.79 0.70 0.49 0.29 0.25 0.10 0.07 0.10
q=.75 1.0 0.05 0.05 0.05

1.5 0.21 0.17 0.14 0.11 0.09 0.08 0.06 0.06 0.06

2.0 0.47 0.39 0.31 0.20 0.15 0.12 0.06 0.06 0.07

25 0.68 0.59 0.48 0.30 0.22 0.18 0.06 0.06 0.08

3.0 0.82 0.72 0.62 0.39 0.28 0.23 0.07 0.06 0.08

of oxidized GSH (GSSG) and low ratios of tGSH to GSSG
have been reported in autism [9].

Glutathione-S-transferases (GSTs), are an important class
of antioxidant enzymes that catalyze conjugation of GSH
to toxic electrophiles. GSTs are abundant, accounting for
up to 10% of cellular protein [10]. Some genetic polymor-
phisms of GSTs are known to affect enzyme function. It is
possible that a functional GST polymorphism could con-
tribute to the pathogenesis of autism, an effect that could
be potentiated by reduced levels of GSH, one of the sub-
strates of GSTs. GSTs are Phase Il enzymes that conjugate
GSH to activated toxins, xenobiotics and metabolites
including products of Phase I enzymes such as cyto-
chrome P450 oxidases.

Polymorphic alleles of GSTs have been reported to con-
tribute to a number of human diseases. We focused on the
GSTM1*0 polymorphism because the variant allele is a
complete gene deletion that lacks function of the GSTM1
enzyme. Homozygosity for GSTM1*0 was reportedly
associated with an increased risk of prostate cancer in the
presence of either the val/val or the ile/val genotypes of
the Phase I enzyme CYP1Al [11]. Homozygosity for
GSTM1*0 was associated with increased risk of bladder
cancer [12]. GSTM1*0 contributed to risk of hepatocellu-
lar cancer in conjunction with environmental factors [13].
GSTM1*0 contributed to breast cancer risk in conjunction
with the val/val genotype of the Phase I enzyme, CYP1A1
[14]. GSTM1*0 also contributed to the risk of small cell
lung cancer [15] and asthma [16]. GSTM1 is located on
1pl3.3. At least three reports [17-19] show some evidence
of genetic linkage of autism to the region; we are not

aware of any genetic association studies of autism in this
region.

Methods

Likelihood ratio test

For a given bi-allelic locus, there are 15 possible triplets of
genotypes for the father-mother-child trios [20,21]. The
left half of Table 1 shows these triplets, expressed in terms
of the number of full alleles each trio-member has. The
table also shows the population frequency of each triplet
under Hardy-Weinberg equilibrium (HWE) in the par-
ents, as well as the sampling frequencies under the
assumptions that each child is a case and that the relative
risk of zero copies (one copy) of the full allele for the dis-
order in question is 1, (r;). The right hand side of the table
gives the same information when 2 copies of the full allele
cannot be distinguished from 1 copy; 1 or 2 copies are
denoted P (for present) and O copies are denoted D (for
deletion). It does not appear to be possible to test for
Hardy-Weinberg equilibrium in this situation.

Case-parent trios can be categorized into one of the 7
types on the right of the table. The resulting counts will
follow a multinomial distribution with cell probabilities
as given in the table. One can then construct a likelihood
under a model with

l.ry=ry=1,

2.1, =1 but ryunconstrained, or

3. 1y,and r, both unconstrained.
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Table 4: Power Using Controls in All Tests. CC?= Pearson's Chi-Square with twice as many controls as cases. CCb = Pearson's Chi-
Square with four times as many controls as cases. LR | = likelihood ratio test with | df, LR 2 = likelihood ratio test with 2 df. Both

likelihood tests used twice as many controls as cases.

rn=1

r|=\/a Tt

LR | LR 2
q o cce ccb

LR I LR 2 LRI LR 2
CCa cec CCa ceb

50 Case Trios

.25 2.0 0.24 0.20 0.13 0.13 0.07 0.11
0.23 0.30 0.15 0.20 0.09 0.13
.50 2.0 0.51 0.42 0.21 0.19 0.06 0.11
0.46 0.55 0.23 0.28 0.08 0.09
.75 2.0 0.53 0.43 0.20 0.16 0.06 0.08
0.48 0.54 0.19 0.22 0.06 0.06
200 Case Trios
.25 2.0 0.69 0.60 0.35 0.33 0.11 0.27
0.64 0.72 0.42 0.50 0.21 0.25
.50 2.0 0.98 0.96 0.64 0.58 0.09 0.27
0.97 0.98 0.66 0.75 0.16 0.18
.75 2.0 0.98 0.96 0.6l 0.53 0.06 0.13
0.97 0.99 0.59 0.66 0.07 0.07

Model 2 might correspond to a scientific hypothesis that
either one or two copies of the full allele provides the
same biological functionality, while model 3 might corre-
spond biologically to a dose-response model (although r,

is not constrained to lie between 1 and r;). Other models,

such asr, = /1y orr, =r,are also possible. The likelihood

ratio test has a test statistic equal to twice the difference in
the maximized log-likelihoods of the relevant models.
Asymptotically that test statistic is distributed as a chi-
squared random variable with degrees of freedom equal
to the number of additional parameters estimated,
namely 1 for the second model versus the first or the third
versus the second, and two for the third versus the first. In
all models, p, the frequency of the full allele, will be esti-
mated.

Under Model 2, the maximum likelihood estimator of r,
is simply

N _ﬁl—i{z

o =

m g? '

where m is the total number of cases with the full allele
present, n is the total number of cases homozygous for the
null allele, and § =1 - p is the estimated frequency of the
null allele. The estimator 7, is thus simply the observed

ratio of the two detectable genotypes among the cases
divided by the ratio expected under the null hypothesis.

When both r,and r; are estimated, the maximum likeli-
hood estimators are

. np?
o == ———=
q(a—mp)
and
P (m-a)p_
1~ = N
2q(a—mp)

with m, n, f) as before and a the number of (P, P, P) trios.

These estimates do not admit a simple description as
when only r, is estimated.

For all three models, p can be estimated as the solution to
a quadratic or cubic equation, although in case (3) there

is a particularly simple form of p = (2b + d + f)/(2n),

where b, d, and f are as in the mating type table and repre-

sent the counts in cells with non-obligate null

homozygous cases.

The discussion above applies when the data consists only
of completely case-parent trios, but the test can easily
accommodate data on cases with a single genotyped par-
ent, cases with no parental genotypes, and controls. Con-
trol subjects, in particular, will yield more accurate allele
frequency estimates. With the additional subject types, the
likelihood factors into a complete trio term, an incom-
plete trio term, a case-only term, and a control-only term.
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Table 3: Power with 200 Case-Parent Trios and 400 Controls. CC = Pearson's Chi-Squared Test, LR | = likelihood ratio test with | df,
LR 2 = likelihood ratio test with 2 df. Controls were used only for the Chi-Squared test.

rn=1 = \/E n=ry
ro CcC LR | LR 2 CC LR 1 LR 2 CcC LR 1 LR 2
q=.25 1.0 0.05 0.05 0.05
1.5 0.26 0.22 0.17 0.18 0.09 0.08 0.11 0.05 0.07
2.0 0.64 0.57 0.47 0.43 0.19 0.16 0.20 0.06 0.09
2.5 0.88 0.83 0.80 0.65 0.32 0.28 0.31 0.06 0.12
3.0 0.97 0.95 0.94 0.82 0.46 041 0.39 0.06 0.15
qg=.50 1.0 0.05 0.05 0.05
1.5 0.58 0.49 0.39 0.29 0.16 0.13 0.10 0.06 0.09
2.0 0.96 0.92 0.86 0.66 0.39 0.34 0.16 0.06 0.14
2.5 1.00 0.99 0.99 0.88 0.63 0.57 0.22 0.07 0.19
3.0 1.00 1.00 1.00 0.96 0.79 0.75 0.26 0.06 0.24
q=.75 1.0 0.05 0.05 0.05
1.5 0.62 0.51 0.41 0.25 0.17 0.14 0.06 0.06 0.07
2.0 0.97 0.92 0.86 0.59 0.41 0.35 0.07 0.06 0.11
25 1.00 0.99 0.98 0.8l 0.63 0.55 0.08 0.06 0.12
3.0 1.00 1.00 1.00 0.92 0.79 0.71 0.09 0.06 0.15

For cases with incomplete parental genotyping, the cells
in Table 1 are simply collapsed over the parent's unknown
genotypes. For example, when the mother's genotype is
unknown, the probability of the father and child both
having the "Present" allele is simply the sum of the prob-
abilities of the (P, P, P) and (P, D, P) types (cells labeled a
and c in the table). With the greater variety of data types,
the maximum likelihood estimators no longer have
closed forms. The likelihood, however, remains straight-
forward. Under each model and for each data type, the
probability of an observation belonging to a particular
cell is a function of p, 1y, and ;. The overall likelihood is
a product of the likelihoods for each data type. The likeli-
hood can then be maximized using standard numerical
techniques. Code for the R statistical environment [22]
containing functions for calculating test statistics, esti-
mates, and confidence intervals is available [see Addi-
tional file 1].

Autism study

The cohort (70 nuclear families) for the autism associa-
tion study was ascertained through the New Jersey Center
for Outreach and Services for the Autism Community
(COSAC) and the UMDN]J-RWJMS Department of Pediat-
rics-Division of Neurodevelopmental Disabilities. Each
affected individual had diagnosis by the Autism Diagnos-
tic Interview-Revised (ADI-R) and the Autism Diagnostic
Observation Schedule-Generic (ADOS-G) [23,24]. Blood
samples were drawn from members of autism families
and from unrelated, unaffected controls ascertained from
UMDNYJ clinics and individuals married into dominant
pedigrees of other disorders. This study was approved by
the Institutional Review Board of UMDNJ-Robert Wood

Johnson Medical School and UMDN]J-New Jersey Medical
School.

Genotyping of the GSTM1*0 whole gene deletion poly-
morphism was carried out by the method of Yang et al.
[25] with specific primers using a PCR method with the
beta-globin gene amplified as a positive control for PCR
efficiency. PCR products were separated on polyacryla-
mide gels and visualized with ethidium bromide. The
GSTM1 product was about 200 bp and the beta-globin
product was about 250 bp. In the presence of a positive
betaglobin band, the absence of the GSTM1 band was
interpreted as homozygosity for the whole gene deletion
allele [25].

Results

Simulations

To study the power of the likelihood ratio tests compared
to the usual case control contingency table analysis, we
performed a number of simulations, the results of which
are shown in Tables 2 and 3. Each cell in the tables repre-
sents 10,000 runs. The simulations vary the deletion allele
frequency ¢ (so the observed homozygous deletion geno-
type frequency is ¢2), the relative risks r,and r, for zero or
one copies of the full allele as compared to the risk for the
genotype homozygous for the full allele, and the number
of trios (either 50 or 200). All simulations use a preva-
lence of 0.001 for the disorder. For the case control simu-
lations there were twice the number of controls as cases,
so that each test involved the same amount of genotyping.
The test statistic for the case control simulations was the
Pearson chi-squared statistic without continuity correc-
tion. Other contingency table test statistics give very simi-
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Table 5: Relative Efficiency of Partial Genotyping versus Fully Informative Genotyping. The table gives the percentage relative
efficiency of partial (homozygous deletion versus other) genotyping with the proposed test compared to full genotyping. Numbers less
than 100% indicate the proposed test with partial genotyping is less efficient than the standard test with full genotyping. LR | and LR 2
refer to the proposed likelihood ratio tests with |- and 2-df, respectively. TDT refers to the transmission-disequilibrium test. Schaid
LR¢., refers to Schaid's 2-df likelihood ratio test [26]. Calculations are based on Table 3.

LR | versus LR | versus LR 2 versus
TDT Schaid LR,
q r, r=1 _ r =1 _ r=1 _
0 ! n=4To ! n= 4T ! n= 4T

25 1.5 240 24 120 34 70 14

2.5 218 27 107 35 98 29
.50 1.5 148 44 119 62 90 48

2.5 138 51 107 64 93 56
.75 1.5 114 76 121 105 94 82

2.5 108 77 112 97 95 77

lar results (data not shown). Controls were not used for
the likelihood ratio tests in these Tables 2 and 3, but Table
4 shows a selection of results when the controls are used
in the likelihood ratio tests. The table shows the case just
for r, = 2, but the general pattern holds for other values of
1, (results not shown). Table 4 illustrates that the 1-df like-
lihood ratio test utilizing the controls data has slightly
more power than the contingency table analysis under a
recessive model and slightly less power under the multi-
plicative model. Of course, using 2 controls for each case
represents 5/3 as much genotyping for the likelihood ratio
tests as for the contingency table analyses. The table there-
fore also includes the power when the case:control ratio is
1:4, so that the total genotyping is the same as for the like-
lihood ratio tests. Not surprisingly, this design generally
has greatest power except under the dominant genetic
model.

To examine the effect of incomplete parental genotypes,
we also performed power analyses with some complete
case-parent trios replaced with trios with only one parent
genotyped (data not shown). When the number of sub-
jects genotyped was held constant (i.e., n completely gen-
otyped trios replaced with 3n/2 one-parent-genotyped
trios), the power differed by only a few percentage points.
This result indicates that a case-parent trio with one parent
genotyped carries roughly 2/3 of the information of a
complete trio. It may well be the case that methods that
can distinguish heterozygotes from both homozgyotes are
available, but are more expensive than methods that give
partial information. To examine how much information
is lost by partial genotyping, we calculated the relative effi-
ciency, in terms of sample sizes, of using partial genotyp-
ing versus fully-informative genotyping. Table 5 shows
the percentage relative efficiency for recessive and multi-
plicative genetic models. We do not show the comparison
for the dominant model, as the power performance of the
proposed test with partial genotyping is so poor. The first

pair of columns show the efficiency of the 1-df proposed
test with partial genotyping compared to the TDT test with
fully informative genotyping. The TDT is known to per-
form poorly under a recessive generating model, so the
second pair of columns compares the 1-df proposed test
with Schaid's 2-df likelihood ratio test with full genotyp-
ing [26]. Schaid's test is robust across many genetic mod-
els. The last pair of columns shows Schaid's 2-df test
compared with the proposed 2-df test. The power of the
TDT and Schaid's test was calculated using Knapp's and
Schaid's methods [26,27] and compared with the results
in Table 3.

Autism and the GSTMI deletion allele

The allele frequencies of GSTM1 are known to vary with
the population. For this analysis, the study sample was
restricted to the largest racial and ethnic group, namely
those self-identifying as Non-Hispanic White. The pub-
lished homozygous deletion genotype frequency in this
population is about 0.5 [28], suggesting a deletion allele
frequency q of about 0.7. The final sample reported here
consists of 54 complete case-parent trios and 172 con-
trols. Of the cases, 45 were diagnosed with autistic disor-
der on both the ADI-R and ADOS-G, while 9 were
diagnosed with pervasive developmental disorder not
otherwise specified on one instrument but autistic disor-
der on the other.

The observed genotypes are shown in Table 6. The chi-
squared test statistics are 4.83 for Pearson's, 3.98 for the 1-
df LRT, and 3.98 for the 2-df LRT (based on the next sec-
tion, the 2-df LRT would not be recommended in this sit-
uation, but is included here for completeness), giving p-
values of 0.028, 0.046, and 0.137, respectively, with con-
trols included in all tests. The genotype relative risk esti-
mates are 7, = 1.85 for the 1-df test, 7, = 1.76 and # =

0.94 for the 2-df test. Estimates of q are 0.73 under model
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Table 6: Observed Genotypes in GSTMI and Autism Association
Study.

Mating Type Count
Parent-Case Trios:
PPP 8
PPD 2
PDP 6
PDD 4
DPP 5
DPD 8
DDD 21
Controls:
P 90
D 82

(1) and 0.71 under both models (2) and (3). When con-
trols were not used in the likelihood ratio tests, the chi-
squared values were 0.80 and 1.31 for the 1- and 2-df
tests, respectively, giving p-values of 0.371 and 0.521. The
results for the case-control analysis and the 1-df likeli-
hood ratio test (utilizing controls) are repeated in Table 7.

Discussion
Proposed test

The simulations show that the 1-df likelihood ratio test
has somewhat less power than the case control approach
under a recessive genetic model (r; = 1) and much less

power under an multiplicative model (r, = \/a ). None of

the tests performed well under a dominant model (r, = 1),

but with a deletion allele, likely to result in a loss of func-
tion, this model seems less likely on biological grounds. It
could, however, arise when partial loss of function
reduces the gene product below a functional threshold.
The 2-df likelihood ratio test was slightly less powerful
than the 1-df test for the multiplicative model and consid-
erably more powerful under a dominant model. It is
much less powerful than the 1-df test under the recessive
model, which, of course, is the genetic model for which
the 1-df test model is correct. All of the tests have low
power under a dominant model. If this situation is sus-
pected one the expensive of fully informative genotyping

http://www.biomedcentral.com/1471-2156/7/8

followed by a standard test may be worthwhile. If the use
of the proposed tests can be avoided when biology sug-
gests a dominant risk model holds, the 2-df test does not
appear to hold any power advantage over the 1-df test.

An advantage of a likelihood-based test is that variants can
easily be incorporated. Data from complete case-parent
trios, incomplete trios, individual cases, and controls can
all be used in the tests described here. If full genotypes dis-
tinguishing heterzygotes were available on some study
participants the likelihood could be modified to incorpo-
rate them. The likelihood can also be modified for testing
specific genetic models. One could even potentially incor-
porate parent-of-origin effects as has been done by Wein-
berg et al. for fully genotyped trios [21].

An important weakness of the proposed test is its reliance
on Hardy-Weinberg equilibrium among parents. The test
is designed for the situation where heterozygotes cannot
be distinguished from one of the homozygotes, a situa-
tion where Hardy-Weinberg equilibrium cannot be tested.
It does not appear that this weakness can be overcome by
statistical methods. However, the most common causes of
the failure of HWE is likely to be genotyping error or pop-
ulation stratification. The case-control method is vulnera-
ble to these effects as well, so this weakness of the
proposed test is no worse than that of the existing
method.

Autism and the GSTM| deletion allele

The full data available, namely case-parent trios along
with controls, gives evidence of a heightened risk for
autism for GSTM1*0 homozygotes. The population fre-
quency of that genotype is large, but the genotype is pre-
sumably interacting with other genetic and
environmental risk factors. Absence of the GSTM1 gene in
GSTM1*0 homozygotes could lead to failure of individu-
als with autism to detoxify important compounds, includ-
ing some that could be agents or products of oxidative
stress.

Further studies are needed to confirm these observations.
The present findings could be consistent with the hypoth-
esis of a gene-environment interaction that alters the

Table 7: Results for GSTMI and Autism Association Study. "Pearson" refers to Pearson's chi-square analysis of the case-control data.
"Likelihood Ratio Test" refers to the |-df test discussed in the text, in this case using the full information in Table 6. OR = Odds Ratio,
RR = Relative Risk of homozygous deletion genotype relative (r, in the text).

Method Pearson Likelihood Ratio Test
Chi-square 4.84 397

p 0.028 0.046

Effect Size (95% Conffidence Interval) OR =2.02 (1.03; 4.04) RR = 1.85 (1.07; 3.30)
Null allele frequency 0.69 0.71
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expression of autism because GSTs are detoxification
enzymes that conjugate absorbed xenobiotics. These find-
ings could lead to documentation and identification of an
exogenous or endogenous moiety interacting with GSTs
to contribute to autism and a mechanism of action of
select environmental chemicals in contributing to the
phenotypic presentation of autism.

Conclusion

As researchers increasingly study larger sets of candidate
loci at a time, they will occasionally find that their study
design may not be best for a specific locus. While a case-
parent design offers many advantages at most loci, it has
not generally been considered possible to use such a
design to test a locus where the heterozygote cannot be
reliably detected. We have demonstrated that, with the
risk of the additional assumption of Hardy-Weinberg
equilibrium, it is possible to construct such a test. For the
same number of genotyped subjects, the resulting test has
less power than a Pearson's chi-squared test using cases
and controls. If controls can be added, the proposed test
has slightly more power, but at a cost of additional geno-
typing; if that genotyping were instead dedicated to addi-
tional controls, the case-control analysis would maintain
its superiority in power. The 2-df test appears to be most
useful only when a dominant model for the deletion
allele is suspected, but would require a large sample in
that circumstance. The 1-df test, however, is more gener-
ally worthwhile when the study participants have already
been assembled. It has the advantage that it can be used
with complete and incomplete trios as well as independ-
ent cases and controls With respect to the association
study of the GSTM1 locus with autism, both the tradi-
tional case-control analysis and the 1-df likelihood ratio
test (utilizing controls) support (at p = 0.028 and p =
0.046, respectively) the association of the homozygous
GSTM1 deletion genotype with an increased risk of
autism. There is no evidence that the heterozygous geno-
type contributes to any increased risk.
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