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Abstract
Background: Differentiating genetically between populations is valuable for admixture and
population stratification detection and in understanding population history. This is easy to achieve
for major continental populations, but not for closely related populations. It has been claimed that
a large marker panel is necessary to reliably distinguish populations within a continent. We
investigated whether empirical genetic differentiation could be accomplished efficiently among
three Asian populations (Hmong, Thai, and Chinese) using a small set of highly variable markers (15
tetranucleotide and 17 dinucleotide repeats).

Results: Hmong could be differentiated from Thai and Chinese based on multi-locus genotypes,
but Thai and Chinese were indistinguishable from each other. We found significant evidence for a
recent population bottleneck followed by expansion in the Hmong that was not present in the Thai
or Chinese. Tetranucleotide repeats were less useful than dinucleotide repeat markers in
distinguishing between major continental populations (Asian, European, and African) while both
successfully distinguished Hmong from Thai and Chinese.

Conclusion: Demographic history contributes significantly to robust detection of intracontinental
population structure. Populations having experienced a rapid size reduction may be reliably
distinguished as a result of a genetic drift -driven redistribution of population allele frequencies.
Tetranucleotide markers, which differ from dinucleotide markers in mutation mechanism and rate,
are similar in information content to dinucleotide markers in this situation. These factors should
be considered when identifying populations suitable for gene mapping studies and when
interpreting interpopulation relationships based on microsatellite markers.
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Background
Genetic characterization and differentiation of popula-
tions are often necessary for the conduct of valid case-con-
trol association studies [1-5], determining the role of
ancestry in phenotypic differences [6,7], assigning popu-
lation groups for valid linkage analysis [8], examining the
distribution of neutral genetic variation among popula-
tions, and inferring migration histories [9-11]. Such dif-
ferentiation has been accomplished with relative ease
between major continental populations [10,12-15], but it
has been asserted that population differentiation within a
continent may not be possible; and when it appears to be
so, may actually be an artifact of study design [16].

The ubiquity and frequently highly variable nature of
short tandem repeat polymorphisms (STRs or microsatel-
lites) have made them desirable markers for measuring
population stratification. Commercially available marker
sets such as those used for forensic purposes make STR
genotyping cost effective, eliminating the time and effort
required to develop multiplex marker panels. Panels
developed for forensic purposes are designed to identify
or exclude an individual as a match for another sample
and were compiled, in part, for their high levels of varia-
tion in many populations [17]. Such panels have been
adopted for non-forensic purposes such as inference of
population phylogenies [18-21] and quantification of lev-
els of population differentiation [1,2,5,8].

Homoplasy, as applied to STRs, refers to the situation
where alleles of the same length have arisen from different
mutation events, such that alleles identical-by-state are
not necessarily identical-by-descent. Simulations of STR
evolution using the stepwise mutation model (SMM)
have indicated that homoplasy in STR genotypes may
cause individuals or populations to appear to be more
genetically similar than they really are. Point mutations,
insertion or deletion events (indels), or complex repeat
motifs can generate additional forms of size homoplasy
that are sometimes revealed by sequencing but are not
detectible through size fractionation (electrophoresis)
[22-24]. These forms of homoplasious alleles have been
observed in a number of the tetranucleotide repeats that
are standard in forensic panels (some of which are
included among the markers used in this study; see
below) [25].

However, it has also been shown that even in the presence
of homoplasy, multi-locus genotypes (the combined gen-
otypes from multiple loci) of highly variable STR markers
are effective in assigning individuals to known or
unknown populations [26-33]. Again, this has typically
been true for large continental populations. Population
differentiation within a continent has been successful, but
only with large numbers of markers when applied to pop-

ulation isolates [10]. Here, we used a small set of markers
and, in contrast to the majority of past studies, addressed
the properties of the markers used.

Conditions such as small population size or recent found-
ing of a population may enable statistical differentiation
using a small panel of highly variable markers, due to
increased effects of genetic drift and decreased incidence
of homoplasy. To evaluate this possibility, we investigated
whether empirical genetic differentiation could be accom-
plished efficiently among three closely related Asian pop-
ulations (Hmong, Thai, and Chinese) using a small set of
STRs that includes both tetranucleotide and dinucleotide
markers. In addition, we studied the relative information
content of tetranucleotide versus dinucleotide markers for
discriminating among these three Asian populations, as
well as European Americans (EA) and African Americans
(AA). We then evaluated the populations for evidence of
recent changes in effective population size.

Results
Population differentiation
The program STRUCTURE 2.1 [32,33] uses Bayesian clus-
tering of multilocus genotypes to assign individuals to
populations, estimate admixture proportions for individ-
uals, and infer the number of parental populations (K) for
a sample. For STRUCTURE runs which included the three
East Asian populations only and all 32 markers, the
Hmong were allocated into a cluster distinct from a single
Thai/Chinese cluster with 86.0% estimated ancestry for K
= 2 with a posterior probability (Pr(K = 2)) of 1, indicating
K with the best fit for the data (Figure 1a). Separate Thai
and Chinese clusters were not inferred with K = 3 and Pr(K
= 3) was effectively zero (3.3 × 10 -156) (Figure 1b). When
the three East Asian populations were analyzed with EA
and AA samples, the Hmong were then allocated to a sep-
arate cluster with an average of 90.0% estimated ancestry
when K = 4 and Pr(K = 4) = 1 (Figure 1c). Under these
same conditions, the Thai and Chinese were assigned
together to a single cluster with 86.5% and 84.2% esti-
mated ancestry, respectively. When K was increased to 5,
the Thai and Chinese populations continued to form a
single cluster (Figure 1d) and Pr(K = 5) was 1.7 × 10-48. For
K = 2, K = 3, or K = 6, Pr(K) was similarly effectively zero
(barplots not shown).

When the markers were separated by repeat size the extent
of successful population assignment differed greatly
between the two panels; for STRUCTURE runs using the
15 tetranucleotide markers alone Pr(K = 3) was 1, while
for the 17 dinucleotide markers alone Pr(K = 4) was 1. In
addition, although K = 3 had the best fit for the data for
tetranucleotide markers, assignment of individuals to
major continental populations was not robust (Figure 1e)
(EA 63.2%, AA 75.3%, Thai 54.1%, Chinese 48.7%,
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Hmong populations are consistently and reliably distinguished from all others in STRUCTURE analyses using a small number of either dinucleotide or tetranucleotide markers while for other populations successful assignment of individuals varies with marker typeFigure 1
Hmong populations are consistently and reliably distinguished from all others in STRUCTURE analyses using a small number of 
either dinucleotide or tetranucleotide markers while for other populations successful assignment of individuals varies with 
marker type. In (a) and (b) Chinese, Hmong, and Thai samples were assigned by STRUCTURE to 2 or 3 populations respec-
tively. In (c) and (d) European-American (EA), African-American (AA), Chinese, Hmong and Thai samples were assigned to 4 
or 5 populations respectively. Finally, tetranucleotide markers (e) are less useful for differentiating among EA, AA, Thai and 
Chinese populations than dinucleotide markers (f & g). These plots were produced using the STRUCTURE software; each 
individual is represented by a vertical line depicting the estimated percent assignment of the individual into K assumed popula-
tions. Each assumed population is represented by one color. Vertical black lines separate individuals by self-reported ancestral 
population.
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Hmong 86.1%). Dinucleotide markers alone resulted in
higher assignment rates than those of the tetranucleotide
markers when K = 3 (Figure 1f) (EA 94.0%, AA 91.4%,
Thai 88.3%, Chinese 88.4%, Hmong 97.3%) or under the
best fit for the data, K = 4 (Figure 1g) (EA 91.4%, AA
90.4%, Thai 81.0%, Chinese 73.6%, Hmong 82.8%).

Out of concern that each Hmong village in which samples
were collected could consist of its own apparent cluster
due to close relatedness within each village, the villages
were analyzed initially as separate populations in STRUC-
TURE under the same conditions as all STRUCTURE runs
reported here. In all cases, the two source villages formed
one cluster and the average assignment values for all pop-
ulation samples, including Hmong, were no different
than assignment values reported here when the two vil-
lages were combined and assumed to be one population
(data not shown).

Effective population size
The Hmong sample was found to have a heterozygosity
deficiency (p = 0.004), based on a sign test in BOTTLE-
NECK [34], indicating a possible recent population
expansion. Given the number of observed alleles, if the
Hmong population was at equilibrium heterozygosity is
expected to be higher than that which is observed. All
other samples had neither excess nor deficiency for this
measure.

Relatedness
Based on maximum-likelihood estimates of pair-wise
relationships, potential parent-offspring pairs and sibling
pairs were discovered in the Chinese and Hmong samples.
In each case, one individual was then deleted from the
sample and excluded from all other analyses.

Hardy Weinberg Equilibrium (HWE)
No population showed significant deviation from HWE
over all loci (EA p = 0.07, AA p = 0.82, Chinese p = 0.57,
Thai p = 0.87, Hmong p = 0.99) (Table 1). If a Bonferroni
correction is applied to correct for multiple testing,
(requiring a p value of 0.05/32 = 0.00156 for significance)
none of these p-values for individual loci are significant
(Additional File 1).

Heterozygosity
The mean observed heterozygosity (Ho) (Table 2) for all
loci was not statistically different for any of the Asian pop-
ulation pairs, based on paired two-sample t-test (Chinese/
Hmong p = 0.07, Thai/Chinese p = 0.34, Thai/Hmong p =
0.27). With the exception of EA/Chinese, mean observed
heterozygosity was significantly different for all other
population pairs (EA/AA p = 0.01, EA/Thai p = 0.03, EA/
Chinese p = 0.37, EA/Hmong p < 0.01, AA/Hmong p <
0.01, AA/Thai p < 0.01, AA/Chinese p = 0.04).

Mean tetranucleotide Ho was not significantly different
from mean dinucleotide Ho for any population other than
Chinese based on a two-sample t-test (Table 3) (AA p =
0.49, EA p = 0.17, Thai p = 0.30, Chinese p = 0.05, Hmong
p = 0.57).

Marker information content
The mean Hmong/Thai and Hmong/Chinese δ values are
nearly equivalent, and the Hmong were similarly differen-
tiated from these two populations (delta values for each
locus and mean delta values for all loci and by repeat size
are reported for each population pair in Additional File
2). The low mean Chinese/Thai δ appears to explain the
inability of this marker panel to assign the Thai and Chi-
nese to separate clusters. Overall, the dinucleotide mark-
ers provide more information than the tetranucleotide
markers, but this difference is not as great for population
pairs that include the Hmong; for the Hmong/Chinese
and Hmong/Thai population pairs, the difference in the
average dinucleotide δ and the average tetranucleotide δ is
negligible (Figure 2).

Discussion
In this study, we successfully differentiated between
closely related populations using a marker set much
smaller than that previously suggested to be minimally
necessary for such studies. We used a set of highly poly-
morphic microsatellite markers of which some were spe-
cifically selected for high δ between EA, AA, and Asian
populations [15], however, the value of this marker set for
differentiating populations within Asia was previously
unknown. To explain our results, we investigated the evo-
lutionary histories of the samples, and found evidence for
changes in Ne for the Hmong population, based on an
excess of rare alleles. This tribal population has a recent
history of repeated fractioning and migration throughout
Southeast Asia as well as loss of numbers due to military
conflict, which is consistent with our results [35]. Further
suggestive evidence of a recent Hmong population bottle-
neck followed by expansion can be found in the delta val-
ues of tetranucleotide markers compared to that of
dinucleotide markers. Delta measures absolute values of
allele frequency differences which can arise over time via
accumulated mutations or through deviations from neu-
tral conditions such as drift caused by a bottleneck.

If time since divergence determines differences in allele
frequencies delta should be correlated with time since
divergence. The tetranucleotide markers consistently pro-
vide as much information for the Hmong as the dinucle-
otide markers provide, while this is not so for any other
population. We propose that this suggests forces other
than mutation as measured by divergence time contribut-
ing to differences in population allele frequencies
between Hmong and other populations examined here.
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The effects of this can be seen in the differences in cluster-
ing behavior using STRUCTURE when either tetranucle-
otide or dinucleotide genotypes are analyzed alone –
specifically, the difficulty in using the tetranucleotide
panel to assign individuals to major continental groups
for all populations, with the exception of the Hmong.
Rosenberg et al [30] found dinucleotide markers to be
more informative than tetranucleotide markers for popu-
lation assignment in a larger study based on a different
measure of marker informativeness. In their study, popu-
lations from the Americas or Oceania were exceptions to
this pattern. The authors proposed genetic drift during
founding events as one explanation for their results.

Mean tetranucleotide Ho was not statistically different
from mean dinucleotide Ho for any population other than
Chinese. Although these markers suggest high intrapopu-
lation variation for all populations in this study, this does
not provide information on differences in the sources of
that variation either within or between populations for
each type of marker.

The decrease in difference between δ values between the
two subsets of markers for population combinations that
include the Hmong indicates that genetic drift (random
changes in allele frequencies from one generation to the
next that are more likely to affect small populations)
rather than mutation has been a major force of evolution
contributing to observed allele frequencies in this popula-
tion. Differences in marker information content between
the tetranucleotide and dinucleotide panels for all other
populations in this study indicate that mutation rate and
mechanism have shaped allele frequency distributions in
these populations more than genetic drift, as would be
expected for large populations at mutation-drift equilib-
rium.

The dinucleotide markers were previously selected for dif-
ferentiation between European and African populations
and high variation [15] and the tetranucleotide markers
were chosen for forensic purposes for their high rates of
variation in multiple populations.

Total sample size, unequal sample size between popula-
tions, and number of markers can affect the stability of
clustering in STRUCTURE [36,37]. We cannot exclude
biases introduced through these study design elements
influencing our observations, however, stable clustering
patterns were inferred in this case by repeated STRUC-
TURE runs. Although increasing the number of markers or
population sample size can strengthen clustering patterns
where clustering exists, the number of individuals in a
sample or the minimum number of markers necessary to
differentiate between all populations is dependant on the
evolutionary histories of the population samples. Sample
sizes similar to ours have been demonstrated previously
to be generally sufficient for stable and accurate clustering
[36].

Some of the tetranucleotide markers in this study have
been shown to consist of complex repeats including more
than one repeat motif, as well as insertions or deletions of
partial repeats [17] (structure of observed alleles and their
amplicon sizes can be found for tetranucleotide repeats
typically used for forensic purposes and in this study at
[25]. These factors, as well as historically large effective
population size such as those of the EA and AA popula-
tions, increase the likelihood of size homoplasy. We
hypothesize that the accumulation of homoplasious alle-
les of tetranucleotide loci may contribute to their lower
information content when compared to that of the dinu-
cleotide markers in populations other than Hmong.

Table 1: Results from Fisher's test for deviation from HWE for all 32 loci combined

EA AA Thai Chinese Hmong

chi square 81.3 53.6 51.5 61.3 41.6
df 64 64 64 64 64
p-value 0.07 0.82 0.87 0.57 0.99

Table 2: Mean Nei's gene diversity (Hz)and mean observed heterozygosity (Ho)for all markers for each population

N Hz Hz SD Ho Ho SD

EA 91 0.77 0.01 0.76 0.01
AA 54 0.81 0.01 0.81 0.01
Thai 45 0.74 0.02 0.72 0.01
Chinese 28 0.75 0.03 0.74 0.01
Hmong 70 0.71 0.02 0.69 0.01
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Conclusion
When STR loci are used either to detect association, link-
age, or population substructure, population history and
marker choice both affect study results. Demographic his-
tory and marker properties are often overlooked when
determining population or marker suitability for gene
mapping studies (i.e. to identify variants that affect traits),
but have bearing on the efficiency and feasibility of such
studies.

The three Asian populations in this study have mean Ho
values which are not significantly different from each
other. It is likely that genetic drift, in conjunction with
long-standing endogamy, allow the Hmong to be statisti-
cally differentiated from the Thai and Chinese using mul-

tilocus genotypes, despite the high level of within-
population variation of the Hmong. Potential homoplasy
in populations at equilibrium warn against the use of
STRs (particularly those with known homoplasious alle-
les) for phylogenetic analysis or linkage or association
mapping purposes in large populations, other than quan-
tifying population stratification. Since the tetranucleotide
repeats used in commercially available kits designed for
forensic purposes have been well-characterized and have
been demonstrated to contain many instances of size
homoplasy, these markers should not be relied upon for
phylogenetic analyses. Risks of homoplasy interfering
with association or linkage analysis, in which identical-
by-state is often assumed to mean identical-by-descent,

Table 3: Mean observed heterozygosity (Ho) for each marker type for each population

EA AA Thai Chinese Hmong

Ho tetranucleotide 0.78 0.80 0.74 0.80 0.71
Ho dinucleotide 0.75 0.82 0.69 0.68 0.68

The left side of the figure shows the average delta for all 32 loci for each population pair and the right side of the figure shows the average delta for 15 tetranucleotide (shaded) and 17 dinucleotide (unshaded) markers, separately, for each population pairFigure 2
The left side of the figure shows the average delta for all 32 loci for each population pair and the right side of the figure shows 
the average delta for 15 tetranucleotide (shaded) and 17 dinucleotide (unshaded) markers, separately, for each population pair.
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should be less of a concern in populations that have
undergone recent bottlenecks.

In addition, a history of migrations or bottlenecks in an
isolated population is expected to initially reduce levels of
intrapopulation variation, and increase interpopulation
differentiation [38]. Linkage disequilibrium (LD) will be
higher in such populations [39,40]. A subsequent popula-
tion expansion will recover allelic variation faster than LD
will degrade for a given genomic region. Low intrapopula-
tion variation, the corresponding increase in interpopula-
tion variation, and higher LD, have been identified as
desirable characteristics in a population for gene mapping
and admixture detection [41,42], making geographically
or culturally isolated populations with a history of bottle-
necks potentially more valuable for gene mapping than
populations whose size has remained stable and large. In
addition to reducing genetic heterogeneity for the trait of
interest, use of such populations also could reduce the
costs of association mapping studies because the number
of subjects needed for a specified power level is inversely
related to the population's level of LD [43]. It would
therefore be useful to identify such populations prior to
designing a study.

Existence of a large number of rare alleles within a popu-
lation can be the result of a bottleneck followed by expan-
sion [44-46]. It is possible to infer these events from a
significant heterozygosity deficiency in the Hmong sam-
ple based on results from BOTTLENECK. The data from
the EA, AA, Chinese and Thai samples do not violate the
assumptions of mutation-drift equilibrium. These data
suggest that the populations in this study have been large
and at equilibrium for a relatively long period, with the
exception of the Hmong population (as represented by
the individuals we sampled). Unknown migrants or
recent admixture can introduce new alleles into a popula-
tion at initial low frequencies, mimicking the pattern
caused by population expansion. Such recent admixture is
not a likely explanation of the data in this case in light of
successful clustering of the Hmong sample when analyzed
with samples from the two populations most likely to
contribute to hypothetical admixture: Thai and Chinese.

STRUCTURE, and other clustering algorithms, detect
admixture and quantify population differentiation
through differences in population allele frequencies.
These differences which allow for successful clustering
arise through various evolutionary forces and are shaped
by ascertainment processes which must also be consid-
ered when identifying populations suitable for gene map-
ping studies or interpreting estimates of inter or intra-
population genetic distance. The ability to differentiate
between East Asian populations that have diverged
recently relative to major continental populations indi-

cates that it may also be possible to use more easily-acces-
sible closely related populations, such as European, for
admixture mapping if marker choice and population his-
tory are taken into account.

Methods
Populations and sampling
The Asian populations in this study were collected as part
of an ongoing gene mapping study. Samples of self-iden-
tified Thai (N = 45) and Chinese (N = 29) were obtained
from a blood drive in Bangkok, Thailand. The Thai and
Chinese samples used in this study were selected to
include only subjects for whom all four grandparents were
reported to have the same self-identified ethnicity as the
subject. The Hmong, a Miao-Yao-speaking group of the
Austro-Thai language family, are an endogamous tribal
population with an estimated total population through-
out China, Laos, Vietnam, and Burma of eight million,
approximately 120,000 of whom reside in Thailand. Chi-
nese written history documents the presence of Hmong in
Central China at least 2,300 years ago and their migration
to Southern China several hundred years later. Migrations
farther south have occurred since the seventeenth century
[47]. Hmong refugees fleeing military conflict in Laos
have periodically been resettled since 1975 in the U.S.,
France, and Australia. Hmong samples (N = 103) were
obtained in two Hmong villages in northern Thailand.
Data on grandparents' reported ethnic affiliation were not
available for the Hmong subjects. The dataset also
included samples of unrelated African Americans (AA, N
= 54) and European Americans (EA, N = 91), a subset of a
sample described elsewhere [15]. Both EA and AA samples
were self-identified as such, and these identifications were
previously confirmed via Bayesian marker clustering [15].
After immediate relatives were discovered and excluded
from analysis (see below), sample sizes were reduced as
follows: Hmong (N = 70) and Chinese (N = 28). No close
relative pairs were found within the remaining three pop-
ulation samples. All subjects provided informed consent
as approved by the appropriate institutional review
boards.

Markers and genotyping
For the three East Asian populations, DNA was extracted
directly from blood using PaxGene materials and the
manufacturer's specified protocol (Qiagen, Valencia CA,
USA) (Hmong) or standard phenol/chloroform methods
(Thai and Chinese). All samples were genotyped for
thirty-two unlinked autosomal STR markers. The panel is
comprised of the 15 tetranucleotides in the AmpF/STR
Identifiler PCR Amplification kit (PE Applied Biosystems,
Foster City, CA, USA) (D8S1179 [GenBank:AX412206],
D21S11 [GenBank:AJ550387], D7S820 [Gen-
Bank:NC_000007], CSF1PO [GenBank:AF076965],
D3S1358 [UniSTS:148226], TH01 [UniSTS:240639],
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D13S317 [GenBank:G09017], D16S539 [Gen-
Bank:AF249681, D2S1338 [GenBank:G08202], D19S433
[GenBank:G08036 ], vWA [UniSTS:240641], TPOX [Gen-
Bank:M25706], D18S51 [GenBank:L18333 ], D5S818
[GenBank:G08446 and FGA [GenBank:G3347]) and an
additional 17 dinucleotide repeats (D17S799 [Gen-
Bank:Z16830], D8S272 [GenBank:Z17250], D7S640
[GenBank:Z23671], D8S1827 [GenBank:Z50970],
D22S274 [GenBank:Z16730, D5S407 [Gen-
Bank:Z16723], D2S162 [GenBank:Z17035], D10S197
[GenBank:Z16611], D11S935 [GenBank:Z17148],
D9S175 [GenBank:Z17021], D5S410 [GenBank:Z16825],
D7S2469 [GenBank:Z53000], D16S3017 [Gen-
Bank:Z52036], D10S1786 [GenBank:Z51854],
D15S1002 [GenBank:Z53249], D6S1610 [Gen-
Bank:Z53131], and D1S2628 [GenBank:Z52173]). The
amelogenin locus, included in the AmpF/STR Identifiler
PCR Amplification kit for sex identification, was not
included in any analyses. All STR markers were analyzed
on an ABI PRISM 3100 semiautomated capillary fluores-
cence sequencer. Data were scored using Genemapper
(ABI). We have previously used this marker panel to deter-
mine and statistically correct for ancestry in case-control
studies and genome-wide linkage studies [1,2,5,8].

Statistical analyses
Population differentiation
Because variance of STRUCTURE results increases with
small sample sizes [15], each run was repeated five times.
However, results did not vary notably for each of the five
runs given a set of conditions. For analysis of the three
East Asian populations alone, the parameters used were K
= 2 and K = 3, 50,000 burn-in and 50,000 Markov chain
Monte Carlo (MCMC) iterations. For analysis of all five
populations in this study, the parameters used were K = 2,
K = 3, K = 4, and K = 5, with 50,000 burn-in and 50,000
MCMC iterations. These STRUCTURE runs were each car-
ried out with all 32 markers and then with the 15 tetranu-
cleotide markers and the 17 dinucleotide markers
separated into two marker panels. The posterior probabil-
ity for each value of "K" was calculated to determine the
"K" that best fit the data for each set of populations and
markers. The self-reported population of origin was not
used as additional data by STRUCTURE and the presence
of admixture was assumed.

Effective population size
The program BOTTLENECK evaluates populations for evi-
dence of a recent rapid change in effective population size,
according to differences between Nei's gene diversity, or
unbiased expected heterozygosity (Hz) based on observed
allele frequencies versus expected equilibrium gene diver-
sity (Heq), simulated based upon an assumed mutation
model, number of alleles, and number of gene copies (2N
for a diploid system) for each locus. Based on simulations

of a coalescent process in which observed alleles at a locus
are traced back to a hypothetical common ancestral allele,
BOTTLENECK predicts present-day allele frequencies
assuming constant population size. This results in a Heq
value for the present-day population. Significant devia-
tions from this predicted value are used to infer drastic
changes in effective population size which have occurred
in the recent past. A significant heterozygosity excess (Hz
> Heq) indicates a possible bottleneck while a significant
deficit (Hz < Heq) indicates a possible expansion.
Observed heterozygosity is the percentage of hetero-
zygous individuals in a sample for a locus and is based on
observed genotypes while (Hz) is the probability that two
alleles chosen at random from the population sample will
not be identical, correcting for sample size, and is an indi-
rect measure of the extent to which allele frequencies for a
locus are evenly distributed.

Significance of deviations from Heq was tested under the
two-phased model of mutation (TPM) which assumes
that the majority of mutations are single step mutations,
as in the stepwise mutation model but allows for some
multi-step mutations, which are more likely to be
observed in dinucleotide repeats and may be a more accu-
rate model for microsatellite mutation than the SMM
[48]. BOTTLENECK allows the user to specify the percent
of multi-step mutations assumed and the variance of
allele size for the mutation model. BOTTLENECK authors
suggest a percent of multi-step mutations between 5 and
10. It has been shown that incidence of type I error
(detecting a bottleneck when a population has been at
equilibrium) for the algorithm used in BOTTLENECK
increases when assumed parameters are overestimated
[49]. Therefore, based on detection of predicted bottle-
necks for the AA, Chinese and EA populations when larger
values were used, variance was set conservatively at 20 and
percent of multi-step mutations was set at 5. The number
of iterations of the simulated coalescent process under the
TPM was 1000.

Relatedness
We used marker genotypes to identify, and then exclude
from the analysis sample, closely related subjects who
may not have identified themselves as such. The admix-
ture model in STRUCTURE assumes HWE and linkage
equilibrium within subpopulations; the use of close rela-
tives within a sample would violate those assumptions
and possibly result in false cluster detection [33]. Simi-
larly, BOTTLENECK software assumes no close relatives in
a population sample [34]. Although potential subjects
may be instructed that multiple family members should
not participate, cultural differences in kin definitions, lack
of understanding of instructions, or financial compensa-
tion of subjects may result in individuals disregarding
such instructions. Maximum likelihood estimates of pair-
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wise relationships (parent-offspring, full sib, half-sib, or
unrelated) were produced using the program ML-Relate
[50] for all possible pairs within each population. ML-
Relate does not require pedigree information and there-
fore can be applied to a large anonymous sample.

Hardy Weinberg Equilibrium (HWE)
Tests for deviation from Hardy-Weinberg equilibrium
were conducted for each locus within each population
using the exact test for HWE based on a Markov chain
method implemented in the web-based version of GENE-
POP [51]. The parameters used were 5000 dememoriza-
tions, 500 batches, and 5000 iterations per batch. The
parameter values were increased from defaults until the
observed standard error for p-values was less than 0.01.

Heterozygosity
Allele frequencies, observed heterozygosity (Ho) values,
and Nei's gene diversity (Hz) for each locus were calcu-
lated using MStools [52]. For a diploid system, Hz is calcu-
lated as Hz = 2N(1-∑pi2)/2N -1, where N is the number of
individuals sampled, and pi is the frequency of the ith

allele [53].

Marker information content

Markers were evaluated for delta (δ) [54], a measure of
marker information content, reflecting the ability of a
marker to statistically differentiate between populations.

To arrive at δ, the absolute values of allelewise frequency
differences between two populations are added and this

sum is divided in half,  where  and

 are the allele frequencies for the ith allele in popula-

tion A and B. The more effective the marker is at differen-

tiating between populations, the higher the value for δ
[15]. In comparison to FST, the measure δ is easily calcu-

lated and independent of mutation model assumptions.
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