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Abstract

Background: To test whether epithelial sodium channel (ENaC) genes' variants contribute to salt
sensitive hypertension in Dahl rats, we screened ENaC a, f3, and y genes entire coding regions,
intron-exon junctions, and the 3' and 5' flanking regions in Dahl S, R and Wistar rats using both
Denaturing High Performance Liquid Chromatography (DHPLC) and sequencing.

Results: Our analysis revealed no sequence variability in the three genes encoding ENaC in Dahl
S versus R rats. One homozygous sequence variation predicted to result in a D75E substitution was
identified in Dahl and Wistar rat ENaC o compared to Brown Norway. Six and two previously
reported polymorphic sites in Brown Norway sequences were lost in Dahl and Wistar rats,
respectively. In the 5' flanking regions, we found a deletion of 5GCTs in Dahl and Wistar rat ENaC
o gene, five new polymorphic sites in ENaC 3 and y genes, one homozygous sequence variation in
Dahl and Wistar rat ENaC y gene, as well as one Dahl rat specific homozygous insertion of -
I 1 lBCCCCCA in ENaC y gene. This insertion created additional binding sites for Spl and Oct-1.
Five and three Brown Norway polymorphic sites were lost in Dahl and Wistar rats, respectively.
No sequence variability in ENaC 3' flanking regions was identified in Dahl compared to Brown
Norway rats.

Conclusion: The first comprehensive sequence analysis of ENaC genes did not reveal any
differences between Dahl S and R rats that were isogenic in the regions screened. Mutations in
ENaC genes intronic sequence or in ENaC-regulatory genes might possibly account for increased
ENaC activity in Dahl S versus R rats.

Background

The epithelial sodium channel (ENaC) is made up of
three homologous subunits named a, B, and y that assem-
ble together to form a highly Na+*- selective channel [1].
The structure of these subunits is characterized by the
presence of two transmembrane domains separated by a
large extracellular loop. Identification of mutations in
ENaC subunits causing salt-sensitive hypertension and

hypotension in humans (Liddle's syndrome and pseudo-
hypoaldosteronism type 1) highlighted the impact of
these genes on salt homeostasis and control of blood pres-
sure (BP) [2,3].

In rats, the three o, f and y ENaC (rENaC) subunits are
encoded by three distinct genes Scnnla, Scnnlb, and
Scnnlg respectively, located on chromosomes 4q42,
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1936-41 and 1q36-41. The three subunits share similar
structures and show 33-37% amino acid sequence
homology in human [4]. rENaC a gene is composed of 12
coding exons [5]. rENaC f and y genes are composed of 13
exons, the translation initiation codon is present within
the second exon for both genes [6,7].

Dahl rats represent a robust animal model of genetically
determined salt-sensitive hypertension. High salt intake
increases BP in Dahl salt-sensitive (Dahl S), but not in
Dahl salt-resistant (Dahl R) rats. Blockade of ENaC in the
brain by benzamil prevents the increase in BP in Dahl S
rats on high salt diet [8].

So far, only the coding sequences of genes encoding the
three subunits have been partially screened in Dahl S and
R rats. Analysis of near full length (base 22 till the end, all
numbering starts at the A nucleotide of the primary initi-
ation codon) of the Scnn1b cDNAs derived from kidneys
of Dahl S and R rats failed to reveal any coding sequence
mutations that could affect the predicted peptide
sequence of Scnnlb [9]. Sequencing of nucleotides 21667
t022054,31172t031492,and 29142 to 29522 in the car-
boxy termini of ENaC a, B, and y genes respectively
revealed no differences in Dahl S versus R rats [10]. The
sequence of the entire coding regions, intron-exon junc-
tions, as well as the 3' and 5' flanking regions of ENaC
three genes has not yet been reported in Dahl rats. In order
to identify any variation, each sequence was analyzed
using a combination of two screening methods, Denatur-
ing High Performance Liquid Chromatography (DHPLC),
offering 95-100% sensitivity and 100% specificity and
automatic sequencing, offering 99.7-100% sensitivity
and 100% specificity [11,12]. Dahl S and R rats, as well as
Wistar rats, used as a control, were screened and the
obtained sequences were compared to Brown Norway
sequences retrieved from the rat genome database.

Results

Screening of ENaC ¢, £, and y Genes Coding Regions for
Variations between Dahl R and S rats

No sequence variability was identified in the entire coding
regions, as well as in exon-intron junctions of ENaC a, B,

http://www.biomedcentral.com/1471-2156/8/35

and y genes in Dahl S versus R rats (Table 1). One
homozygous sequence variation G225T in exon 1 of
ENaC a, predicted to result in a D75E substitution, was
identified in Dahl S and R and Wistar rats compared to the
published Brown Norway sequence (Table 1). Previously
published Wistar rat sequences did not identify this varia-
tion [5]. It is therefore possible that Wistar rats are hetero-
zygous at this position. One reported Brown Norway
polymorphic site of ENaC a was lost in both Dahl and
Wistar rats (Table 1). No sequence variability was identi-
fied in Dahl and Wistar rat ENaCp gene compared to the
Brown Norway sequence available in the public domain.
No sequence variation in ENaC y gene was identified in
Dahl and Wistar rats compared to the published Brown
Norway sequence. However, five and one previously
reported polymorphic sites in Brown Norway ENaC y
sequence were lost in Dahl and Wistar rats, respectively
(Table 1). The Wistar rat alleles studied followed a Men-
delian independent assortment.

Screening of ENaC ¢, f, and y Genes 3' and 5' Flanking
Regions for Variations between Dahl R and S rats

We first defined the 5' flanking regions to be screened for
each ENaC subunit. The predicted putative binding sites
on Brown Norway rat ENaC sequences were identical
using TRANSFAC® and TFSEARCH?®. Because of the pres-
ence of potential kidney and brain transcription factor
binding sites, we screened 1.8 kbp, 1.5 kbp, and 4.4 kbp
of the 5' flanking regions of ENaC a, B, and y respectively
from the transcription start site (Figures 1, 2, and 3). Com-
pared to previously reported transcription factors binding
sites [5-7,13], the present analysis determined five, one,
and ten new potential transcription factor binding-sites
sequences on ENaC o, B, and v, respectively (Figures 1, 2,
and 3).

No sequence variability was identified in both the 3' and
5' flanking regions of ENaC «, B, and y genes in Dahl S ver-
sus R rats (Table 2).

Four homozygous sequence differences were found in
both Dahl and Wistar rat ENaC o gene compared to
Brown Norway: one homozygous 15 bp deletion (-1788

Table I: Allelic variants in the coding sequence of ENaC subunits in Dahl S, R, Wistar, and Brown Norway rats

Subunit Nucleotide position/exon Dahl S and R Wistar Brown Norway AA change
ENaC o +225/1 TT TT* GG D75E
+10716/3 AA AA GG, GA, AA R290R
ENaC y +4008/4 GG GG AA, AG, GG E255K
+22549/7 CcC TT, TC, CC TT, TC, CC D376D
+24672/8 CcC TT,TC, CC TT, TC, CC C410C
+29195/13 TT CC,CT,TT CC CT, TT C542C
+29291/13 TT GG, GT, TT GG, GT, TT C573wW
Numbering starts at the A nucleotide of the primary initiation codon [I5].
AA: amino acid
* GG genotype was previously reported [5].
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-1826 PEA-3
TGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGGAGAGAGAGTGCGTGGTAGGAAGAGGCAGTGTGCACACCGGAGCACTTTGTGGCTGCCCTCTCCAGGGCTCAAGGGAG
-1706
GCTATCACTAGCAAGTTCTGCAGGGCCTGGGCTGTGTGAATGACTCTCCCGTGGCTCTTTACACTTTTGGGGTGGGAGTTTGAGGCTTTCACACCTGTGTGGTCACTGCTTGCCTCTGTC
-1586 C/EBP
TCCTCTAGCTGGCGTAGCTCGAGGGAGATTTTGGAGACAAACACAGCCCGGATGAAGGAGCTTCTTAGTGTGCCCACCCTCICTTGCCCCAIGATACTGGCAAGGGCAGAGCTGGTGGTCTC
-1466
TCCCAGTATCTGTCATCCCTGCCTGTCCCTGGGCTCTTGGTCTGTGCCCGCAGAGCTCTGCCTGGCCCCCACGCACATTCCTGCAACCCTGTGACCACAACAGGGGACATTACACATTCC

-1346 GR GR Spl GATA-1,2,3
TGGCCTATCAGCCGATGGTGTCAAAARGAACAGAATGTCCTAGGACCTGGCCCAGCCCCTACTTCACCTGGGCCCCTCCCAGGCCTGGACAGGGCCAGGAAGATGGGETGAGAAGTTTAG
-1226 PEA-3 T3R T3R

AGCGAAGAGGATGGGGAAGAGGGTGGTGGGGTCAGCAGGTGCTCCCAGTTTTGGGGGGACCCATTCTCCTITTCCTCCAGGATCTTGGGTGTGAGGCIGACCT|GGGATGACCTITGAGGGA
-1106 GATA-1,2 & YY1 NF-kB PEA-3
CCTCCATCAGAAGGGACCCTGTTTTTTGAGAGTCCACTTAAGCTTTCTTTCCCCTGGCCATCTTGCCTGACAGGGGAGTTCOTTTGGGACTGGCTCCCTCCTCTTCCTCCTCCTCCATCT
-986 PEA-3
TCCCTCAGCTCTTTGCCCAGTCCTGTCAGTCTGTCTCTCTTTTCTGCCTTCCCTGTTCTCCTGGTTTCCCCACCTACTCTCAGCGATCCTCCTTCCGCTTTTGCCTICCTGGCTTTTGTG
-866 AP1 GATA-2
TGTAGAATCCTTCTTCCCTGCACAGGTTCTCTAAGCCTCACCTGTCTCCTGTCCCTAGTCTCCTTGCTAGTCAGTTICGCCATCAGTICCCTGGCCGARACTCTTCAGCAGGTACCCGGTTC
-746 spl

AAGAGCCCTCCTCCCTGGAGAACTCCCAGACCAGACTCCTCCTCCGACCCTCCCCCTCTGCCCTGCTCACCTTTAATTGAGATGCTAATGAGGCTTCTGTCGCTCCCATC

626 spl
CTTGCGGGTGGCTGACGGGCGETCTCCAGAGCCAGGCACTGCACCTGTCAGGTGAGAGGGTGGAGAGGCTCCGCTGCCAGATTTAACTGGAAAGGAACCAGTCACAGCCCAGCCACACCT
-506 spl

GGAAGCCGGGAGCAGGAGGCAGCTCCGGCCTCCTGCAGCCCGCGGTCCCCGAGGCAGAGAAGGCGGTAGCACGGAGCTGGAGGCCAGGGCTAGAGCCTAGAGAAGAGGACCCAGGAGGAG
-386 PEA3
ACAGGGAAGGCAAGGGAGGAAGTGAGGCAGGATCAGAGAGCCTGGCACAGAAAGGGAGACCCAAAGAGAAGCGGGAGTCAGCTGGGCCAAGAGGGCGTGAAAGCTGGAGCCAGTCAAACA
-266 PEA-3
GTCCGGGAGGAAAAAAGGGCAAGAGGGAGAGACGCTAAGCCAGGCAGTGCCTGCTGTGGGGACCCAGGGAGGCGCTAGCGGGCAAACGAAGGTGGCCTTCGCTGTGAAGTCCAGTGGCCA
-146
CTCCAGAGAAGCTCAATACTGCTTGGTTGGCCCCGACTCCAGAAGGTCAGCTGGCTCCTGGAAAGGTGGAGGAGGGTGGGAGGGAGAGTGAACTCAGCCTGGGATGCGGGCACGGTCCCG
-26
GACAGCCCCATTCTGCCTTCACGCTAATGATGCTGGACCACACCAGAGCCCCTGAGCTCAACATTGACCTAGACCTTCACGCCTCCAACTCGCCTAAGGGGTCCATGAAGGGCAACCAAT

Figure |

Location of the variants identified in the 5' flanking region of Dahl S, R, and Wistar rats ENaC o gene on the Brown Norway
rat genomic sequence [|5]. Position of the variants identified in the current study is highlighted in bold. Boxes represent the
putative transcription factor-binding sequences; the putative binding sequences found during the present sequence analysis are
labeled in bold; the factor names are written above the boxes. The first three bases for the major kidney and brain transcrip-
tion start sites are italicized and bold. The translation initiation codon (+1) is underlined. TFSEARCH® scores for the newly
assigned putative binding sequences are 93.1, 89.7, and 89.7 for GATA |, 2, 3 respectively; 89.0 and 88.5 for GATA |, 2 respec-
tively and 85.8 for YYI; 88.5 for GATA 2, and 87.7 for Spl.

— -1803 bp), and the loss of three Brown Norway poly-
morphic sites (Table 2). In addition to previously
described transcription factor-binding sites [5,13], com-
puter analyses suggest that the regions from -1248 to -
1239, from -1052 to -1047, from -780 to -790, and from -
736 to -746 represent putative binding sites for GATA-1, -
2, and -3, GATA-1 and 2 and YY1, GATA-2, and Spl
respectively (Figure 1). The putative GATA-1, -2, and -3
binding site (-1248 to -1239) found in presence of the -
1247A allele loses the binding site for GATA-2 in the pres-
ence of the T allele. The putative binding site for YY1 (-
1052 to -1047) found in presence of the -1050G allele and
overlapping GATA-1 and 2 sites, is lost in the presence of
the A allele; while GATA-1 and 2 transcription binding
sites remained unaltered. Both Dahl and Wistar rats were
homozygous TT and AA for respectively the T-1247A and
the G-1050A polymorphisms.

The G-34648A ENaC [ gene variant, not reported in
Brown Norway rats, was present at the homozygous state
in Dahl rats and at the heterozygous state in Wistar rats
(Table 2). One Brown Norway ENaCp gene polymorphic

site was lost in Dahl rats, but not Wistar rats (Table 2). In
addition to previously described transcription factor-
binding sites [6] the regions from -34650 to -34635 repre-
sent a putative binding site for STAT proteins respectively
(Figure 2). However, the presence of the A-34648G poly-
morphism within this STATX potential site is not pre-
dicted to alter STAT protein binding. Dahl rats were
homozygous AA for the G-34648A polymorphisms, while
Wistar rats were heterozygous.

Four ENaC y gene sequence variations (A-1588C, G-
2525A, A-2561G and T-3313C) were identified in both
Dahl and Wistar rats compared to Brown Norway rats,
these variations were all homozygous in Dahl rats; in Wis-
tar rats T-3313C was found at the homozygous state,
while A-1588C, G-2525A, A-2561G were heterozygous
(Table 2). A 6 bp deletion at -1118 was only found in
Dahl rat ENaCy gene (Table 2). The A-2386G ENaC y gene
variant, not reported in Brown Norway rats, was present at
the homozygous state in Dahl rats. Our screening of the
Wistar ENaC y gene only found the homozygous AA
allele, however, the presence of the G allele was previously
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-34803 NF-kappaB
GGGAZ—\GAGCAAZ—\ACTCAATTGAGAZ—\AACGTCTCCZ—\TCZ—\AATTGGCCTGTCAGCAAATTTTGTGGGCATTCTTGATCAZ—\TTZ-\TTGATGTGGGAGG|ACCCZ—\GCCCACTGTGGGAIGCTGCCAC
-34683
CCCCTGGCAGGTGGTCCTGGGTTGTATAAGAAAGCGGGCTGAGCAAATCATGGGGCACAAGCCAGTAAGCACTAGTGTACCACGGCCTCTGCTTCAGCTCTGACTTCCAGAGCTGCTTAT
-34563
GTTCCTACCTTGACACCCTTTCTGGTATTTATCACAGCATAGAAAACAAACTAGGACAGCCATGCACATGAAGACTCTGGAGTCTTCAAAGATTTTTAAAAGTATTATAGGTACCTGTG@
—34443-0Oct-1 PEA-3 STATX PEA-3
GTCTTCAAGAACTCATATATTAGAAGCATCTGTGGAAAGATACACLAGGAAAITGGAA]CCGTGGTTACAGGAAA‘GAAAGCTGAATGGACAGAGAGTAGCTTTGATCTGAGGAGAGGAG
-34323 Spl
ACAGCA|GAGGGGAGGGGAGGGAGTGACGAGTACAGGTGCCCTTAATCTATTCTGTGGTAAATACCACGATATGGATACGTTCAAAAGAAAAGTTTGCTTGGGCTCCCAGCTCTGGACCAA
-34203 AP1
GGTCACTAGGTCCTGCACCTGGTGATACCCTTCTTGTTGGCAGAGCCCCAGAGTCAAGTTGGGTGCTCCTGGGAGAT AGTTGGCTGCAAAGACGAGATTACCATTGATCCATT
-34083 AP1
ACCCAAATAGATGAGTTAATCTGTTAAC|ITGAGTAGATGAGCTATCCCACTCCTAAGGGGTCTCCTAATCACCCCTTCAAGTGCCACCTCTTCTCCTCTTAAAACGGAGGCTCGGGGTTGG

-33963 Ap-1
GGATTTAGCTCAGTGGTAGAGCGCTTGCCTAGCAAGCGCAAGGCCCTGGGTTCGGTTCCCAGCTCCGAAAAAAAGAAAAAAAAATAGAACGGGGCTGTGAGGTGA CCGTGTAT
-33843-0Octl PEA-3 Sp-1
GTGGCTGAAGCATGCGTGTCTTATGCTGGTTATGGAGTGAGGATACACGGGCTTTTCTGCACCAATGTAGGGCATGGAGTCCCCTGTCGTTGCTTTCCCCCAACC CCCAC]
-33723-Sp-1 Sp-1 Sp-1 AP-1
CCCCZ—\CCCCCACCCTGTGTATAGAGZ—\ATGGGGCTGGGAGGTGAGAAGTGGCCTGTGGGGACTACAGAGGATACTGACCTGGAGCCTGTCAZ—\CTGGAACAAZ—\GTGGCCTGGGAGCC
-33603-PEA-3 Sp-1 Sp-1 Sp-1 Sp-1

[GTGCA|GGTAGCCCGACTAACCCAGGAAGGCAGGCT|CCTCCCIGCAGGICCCTCCCGGTTGGT[CCCCGCCCCCCGCGCTCCCTCCGCCTACAGCGTCCCTGGCTCTACAGGTGACCCAGCTCC

Figure 2

Location of the variants identified in the 5' flanking region of Dahl S, R, and Wistar rats ENaC [3 gene on the Brown Norway rat
genomic sequence [15]. Position of the variants identified in the current study is highlighted in bold. Boxes represent the puta-
tive transcription factor-binding sequences; the putative binding sequences found during the present sequence analysis are
labeled in bold; the factor names are written above the boxes. The first three bases for the major kidney and brain transcrip-
tion start sites are italicized and bold. TFSEARCH® score for the newly assigned putative binding sequence for STATX is 92.3.

-4159

IL-6 C/EBPasb & CRE AP-2 GRE
TTCGGTTTATGTAATAGTGGGGATGAGCCCCGGGGCTTCAGTTATATTARACAAGCTCTCTACCAACTGATCTACATCCTCAACTCAAGAATCTGCATTTTAACAAGGTCTGTAGGTGGA
-4039 Oct-1
TCTAAACACATTTGAGTCTAAGATGTTTTARTACTTATTAACACCCTTTCTTTTGTGGGGCCATGTTTCTTCCCAGATCAAAGGGATTGTAACTTGGACACTTGTCTT. ..
-3679 Ap-1 E-box Spl AP-2
CAAGCACGCACGGTGCCACCGCAAGACTGCGCAGCCCGGGTTGAGGCGCGGAGCIGACT CAGGACGGCAGGTGECACTGCGGGGTCGCGGCTTACTCGGGGCTGAGRCGAATCGGGGGTG]
-3559 GC box PEA3 GC box AP-2
[GCCT|GGGGAAAACACCTGGGCAGGTGTGGGCGGAGIICTGAGTGAGGRGGAAAICTCTAIGGGGCGGGGCTTGAGCCTGACCCACGGECGCTTCTGGCCGTGCCACTTGG
-3139 GRE IL-6 spl
CCAGCCTTGAAGAGCATGCATTGACCGCGACTGTICTITTCCGCCGCGGGAAAGCTTTTCTTTAGAGGTGCCTGCTGCAGAAAGRAACAAGCACTTGAAGT[GGGCTAGTTGARAGAG .
-2959 AP-2
CGCARAACTGCGCCAGGTCGCTTCCCARAATGCAGCGAGTCAGTGGGTAGCTCTGTICCCAGGGCTTGAGGTTCTGAGGCTCAAGTTATTTCTGAATAGCACCGTGGCATGGCGGGAATCA
-2839 CRE spl
AAACATTGCCTGATCCCAGGCTTTTGTGCCCAARACTCTAGAATGAACAGAGCCTCGCARACATGTCACCCCTCGTCARGCTTCAGTTTCCTGACGGGGACAGAGGCAAGGATGGGGGGGT
-2719 IL-6 PEA3
[GAGTGAGAGGGAAGGGAGCARGTGTGGTRAGGARAATGGAGACTTGGAATTTCAAAGAATTCTTTCGTTCTTTCATACTGTGTGGCCTTGGGCAGATTACCTAACCTTTTTACACCTGTG
-2599 C/EBP
TTTGCATCTCTGTGGGATGGGGATAGAAATGACACATCATCTTGTCTGTAGTGAGAGT TARATTAGGTGGARACGT T[GGAATAGGAATCCTGGGCACGGCTGTATCTGTAACTGATATCT
-2479 IL-6
GCCATTATTGCTGCTGCZ—\GCAGTTGTCACCTGCG]—\CCACTZ—\TCATTAAGCAATGACATAACTAGTATGTGGTCTTGGGTTCAAATCCTAGCCCAGACACTTTCTATTATGACCTTGGG
-2359
CACQTACTTAGTCTATCTGTGTGCCTCCATTTCATTTGTGTAGTGGGGARATTACGATATCTACCGGAGAAGACCATTGAGAGTATTCTGTGAGTTAACTCTTGAGATGAG .
-1159 1
TGTTACCCCCTTTCCCCTACCCACACACCCACCCCACCCCCATTATTTTATGCACCATCTTGAAAAAGACAAAGARAAGAACATGATGGGGCCATCARAGTCCCCAACTT.
-739 CRE, C/EBP b
CAGAGGCTGTCTCTAARTTAGGTAAANATCAGGTCAAATGACCTGGGGCTCGTAAATATGGAGAGGCCAGCAGTCATGGGGCTGATGTGACACCAGCTGCTATTGACCTCGGTAAGGAGAA
-619 Spl
GAAATGAAACAGAAATCATTTCACTTAGAAGAAAGCAACATGGAAGAGGGGCAGGGGAARCATGGTCAGGACAGAATCTACAAGCTGCTGGGARATTGTGGGAGATTTCATCAGACAGTG
-499 c-Myc & C/EBP b USF
AA[CACATTGCCTGACATGTGCTCTGTGCAGGAGGGACATTTCACTAGGCACCAGGAGACATTGTAAAACAGGAGGGCTGCTCTCAACAAGTGGCCAATGGAAGCGATAAGGCACGGGTTA
-379
TAGTGCCTCTCTGCCTGATAAGAGAAGTCTGGCTGGGTTGCTTTGGAACTCCAGGGAAAGGTCCTTCAGCCAGTCCAGCCAGTATGTACAGGTT .
-19

GCAAAGTCCTGTCCTTACCATGGCGCCTGGAGAGAAGATCAAAGCCAAAATCAAAAAGAATCTGCCGGTTCGAGGCCCCCAGGCACCAACCATTAAGGACCTGATGCATTGGTACTGCAT

Figure 3

Location of the variants identified in the 5' flanking region of Dahl S, R, and Wistar rats ENaC y gene on the Brown Norway rat
genomic sequence [15]. Position of the variants identified in the current study is highlighted in bold. Boxes represent the puta-
tive transcription factor-binding sequences; the putative binding sequences found during the present sequence analysis are
labeled in bold; the factor names are written above the boxes. The first three bases for the major kidney and brain transcrip-
tion start sites are italicized and bold. The translation initiation codon (+1) is underlined. TFSEARCH® scores for the newly
assigned putative binding sequences are 89.2, 87.4, and 89.0 for C/EBP a & b and CRE, respectively; 85.8 for Oct-1; 89.3 for C/
EBP, 87.9 and 85.5 for CRE and C/EBPb respectively; 87.7 for Spl, 91.0 and 87.4 for c-Myc and C/EBPb respectively; and 85.9
for USF.
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Table 2: Allelic variants in the 5' flanking regions of ENaC subunits in Dahl S, R, Wistar, and Brown Norway rats.

Subunit Nucleotide Position Dahl S and R Wistar Brown Norway

ENaC o -705 TT TT CC,CT, 1T
-1050 AA AA GG, GA, AA
-1247 TT TT AA, AT, TT
-1788 Deletion of 5GCTs Deletion of 5GCTs

ENaC -34381 AA GG, GA, AA GG, GA, AA
-34648 AA GG, GA, AA GG

ENaCy -1118 Insertion of CCCCCA
-1588 CC AA, AC, CC AA
-2054 TT TT, CT,CC CC,CT, TT
-2386 GG AA* AA
-2525 AA GG, GA, AA GG
-2561 GG AA, AG, GG AA
-3313 CcC CC TT

Numbering starts at the A nucleotide of the primary initiation codon [I5].

* GG genotype was previously reported [7].

reported [7] (Table 2). One previously reported Brown
Norway polymorphic site ENaC y was lost in Dahl rats,
but not Wistar rats (Table 2). In addition to previously
described transcription factor-binding sites [7], the
regions from -4102 to -4120, from -4010 to -4022, from -
2483 t0-2497, from -696 to -706, from -607 to -619, from
-442 to -463, and from -400 to -413 represent putative
binding sites for C/EBP a & b and CRE, Oct-1, C/EBP, CRE
and C/EBP b, Sp1, c-Myc and C/EBP b, and USF respec-
tively (Figure 3). One polymorphism, the G-2525A poly-
morphism, out of the seven found in the 5' flanking
region of ENaC vy gene, is located within a potential con-
sensus binding sites for C/EBP (Figure 3). The C/EBP
binding site is present when the -2525G allele is present
and the binding site is lost in the presence of the A allele.
Dabhl rats were homozygous AA for the G-2525A polymor-
phism, while Wistar rats were heterozygous and Brown
Norway rats homozygous for the G allele. Finally, the 6 bp
homozygous insertion at position -1118, which is only
present in Dahl rats, is predicted to create Sp1 and Oct-1
sites (CCCCACCCCATT) (TFSEARCH?® scores 87.7 and
85.8, respectively).

Discussion

The results of the current study show that Dahl S and R
inbred rats are isogenic in the entire coding regions, exon-
intron junctions, 3' and 5' flanking studied regions of
ENaC o, B, and y genes. These results are in agreement
with the initial partial screenings of ENaC subunits in
Dahl rats [9,10]. Nine homozygous sequence variations
were identified in ENaC genes in Dahl rats compared to
the Brown Norway sequence available in the public
domain and eight of these nine sequence variations (5
polymorphic and 3 homozygous) were also identified in
Wistar rats. However, the 6 bp deletion at -1118 which in
the y ENaC 5' flanking region, was specific for Dahl rats
and not found in Wistar or Brown Norway rats. Eleven

and five Brown Norway polymorphic sites were lost in
Dahl and Wistar rats respectively. Among the identified
variations in Dahl and Wistar rats, three are non synony-
mous variations. Four variants in the 5' flanking regions of
ENaC o, B, and y genes are present within putative DNA
consensus regulatory elements and two putative DNA
consensus sites were introduced with the Dahl rat specific
6 bp insertion at -1118 in ENaC .

Of the three non synonymous variants identified in the
present study (aD75E, yE255K, and yC573W), only
yC573W, located in the transmembrane domain M2, was
previously functionally assessed and was found not to
modify ENaC activity in Xenopus oocytes [10]. The aD75E
substitution is present in the N terminus of the channel,
prior to the transmembrane domain M1 and close to the
channel pore, a critical region for kinetics properties of the
channel predicted to participate in channel gating [10,14].
yE255K located in the extracellular loop might alter the
amiloride sensitivity since residues essential for the for-
mation of the high affinity amiloride-binding sites reside
within this domain [1]. The silent polymorphism C542C
was previously documented in ENaC y carboxy terminus
within and between rat strains [10].

Previous studies analyzed 1.5 kbp of ENaC «a, 1.3 kbp of
ENaC B, and 4.2 kbp of ENaC vy from the transcription
start site in Wistar, Sprague Dawley and Wistar rats respec-
tively as well as the first intron in Wistar rat ENaC vy [5-
7,13]. In the present analysis, we determined five, one,
and ten new potential transcription factor binding-sites
sequences on ENaC a, 3, and v, respectively. Among all
variants identified within putative transcription factors
binding sites, one of them, the insertion of -
1118CCCCCA, located on ENaC y gene was only present
in Dahl rats. To our knowledge, this variant has not been
previously reported on Dahl rats or any other rat strains
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[7,15,16]. It creates binding sites for Sp1 and Oct-1. Sp1 is
a DNA-binding protein which interacts with a variety of
gene promoters containing GC-box elements. Moreover,
the activity of TATA-less promoters is frequently depend-
ent on Spl sites in the proximal promoter region. Dele-
tion of one of the two clusters of Sp1 consensus binding
sites within the 5' flanking region of the ENaC B gene indi-
cated that the proximal cluster was essential to basal pro-
moter activity in transfected cell lines [6]. Studies of both
the human and rat y -subunits [7,17] also reported the
absence of a TATA box in their promoters and the pres-
ence of GC boxes and Sp1 consensus sites. In human ENac
v, Sp1 may be part of the transcription complex that binds
at the core promoter [17]. Sp1 protein is part of a much
larger family of mammalian transcription factors, the Sp/
XKLF family [18], it is ubiquitously expressed, and con-
tains three highly conserved C2H2-type zinc fingers in the
C-terminal region and have a glutamine-rich activation
domain. Sp1 can bind GC boxes, and acts as a transcrip-
tional activator. Therefore the presence of a potential
additional Sp1 consensus site in Dahl rats may enhance
the transcription of the ENaC y gene in Dahl rats com-
pared to other rat strains. Similarly, Oct-1 sites have previ-
ously been reported to be able to function as repressors or
activators of transcription depending on context [19-21].
Overexpression of ENaC y in collecting duct cells has been
shown to enhance Na+ transport [22]. Remarkably, over-
expression of marginally detectable amount of ENaC y
was sufficient to produce a full increase in Na+ transport
[22]. However, determination of the precise mechanism
of all above variants in influencing promoter activity
awaits further investigation.

It remains possible that mutations in the intronic regions
of the ENaC are involved in the generation of hyperten-
sion in Dahl S rats on high salt intake. Commonly occur-
ring ENaC variants, including intronic substitution (i12-
17CT) were found associated with an increased urinary
potassium excretion rate in relation to the renin levels as
well as with hypertension in humans [23]. However,
when expressed in Xenopus oocytes, the variants did not
show a significant difference in activity compared with
ENaC wild-type [23].

One can speculate that mutations in genes encoding a
protein interacting with ENaC to regulate its activity
might increase ENaC activity leading to hypertension.
SGK1, which activates ENaC in tubules, maps to a known
BP QTL [24]. Abnormal regulation of SGK1 mRNA and
protein level by aldosterone in Dahl S compared to Dahl
R rat was observed suggesting that regulation of ENaC via
SGK1 signaling pathway may be disturbed in Dahl S rat
[25].

http://www.biomedcentral.com/1471-2156/8/35

Conclusion

To our knowledge, this report presents the first compre-
hensive screening for variations in the entire coding
sequences including intron-exon junctions, and in the 3'
and 5' flanking regions of ENaC three genes in the hyper-
tensive Dahl S rats and their normotensive Dahl R control
rats together with an additional control group of Wistar
rats. We could not link salt induced hypertension in Dahl
S to differences in ENaC sequences in Dahl S versus R rats.
Further characterization of SNPs across candidate genes
contributing to the salt-sensitive hypertension phenotype
will be useful in designing genetic mapping panels for
association studies. If disordered activity of the epithelial
cell sodium channel contributes to the pathogenesis of
hypertension in Dahl S rats, it appears to stem from
genetic variations in genes encoding proteins that regulate
ENaC or in intronic sequences important for the structure
or function of the sodium channel.

Methods

Animals

Male Dahl S and R rats (4 rats/group), 4-5 wks of age,
were obtained from Harlan Sprague Dawley (Indianapo-
lis, IN) and handled as previously described [8]. To assess
the salt sensitivity of Dahl S rats, at 5 wks of age, Dahl S
and R rats were placed on a high-salt (1,370 pmol Na/g,
Teklad; Madison, WI) diet for 4 wks. After 4 wks, BP was
measured invasively by intraarterial catheter and the aver-
age mean arterial pressure was estimated to be 156 + 11
forS, and 131 + 1 for Rrats (P < 0.05). Wistar rats (Charles
River Breeding Laboratories Montreal, QC, Canada) were
used as control, and were not subjected to high salt diet.
The animals were then killed by decapitation and whole
blood was collected for DNA isolation. All experiments
were carried out in accordance with the guidelines of the
University of Ottawa Animal Care Committee for the care
and use of laboratory animals.

Genomic DNA isolation and amplification

Genomic DNA was isolated from white blood cells (Qia-
gen FlexiGene, Qiagen Canada, Mississauga, ON, Can-
ada). Using PRIMER3-based Web application [26], 73 sets
of specific oligonucleotide primers (Table 3) where
designed based on the November 2004 rat (Rattus norvegi-
cus) genome assembly [15] in order to screen the coding
sequence of ENaC three genes, including the exon-intron
boundaries, as well as the 5' and 3' flanking regions [Gen-
Bank: NM_031548; NM_012648; NM_017046] [GenelD:
25122;24767;24768]. For large exons (> 350 bp) overlap-
ping primer sets were employed.

The nucleotides representing the entire coding sequences
and the 3'UTR and flanking regions that were screened in
ENaC genes are as follows (numbering starts at the A
nucleotide of the primary initiation codon): for ENaC a,
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Table 3A: Primers designed to screen the coding sequence of ENaC q, 3, and y genes. Optimum temperatures (°C) for PCR and

DHPLC are included in the table.

Sequence PCR DHPLC

ENacC o

Exon | Forward GGTAGCACGGAGCTGGAG 64 63
Reverse CCCAGGCTGAGTTCACTCTC
Forward AGCTCAATACTGCTTGGTTGG 6l 63
Reverse GAAGAGCTCCCGGTAGGAG
Forward GGGACAAACGTGAAGAGCAG 6l 63
Reverse CTTGCTTTTGTGCTGCTGAG

Exon 2 Forward CACTGATCCCCTCCGTGTTA 60 64
Reverse TCCATCAGGCCTCTATCTGAA

Exon 3 Forward GCTCTCTGTCCCTCACCTTG 63 62
Reverse ACCACCAAGCATTTCCTGAG

Exon 4 Forward CACATTGGAGGTGACAGGAA 63 6l
Reverse CCAAGGTGAGACCCAGAAGA

Exon 5 Forward GCTGGCCTTGTTCTATCAGG 62 62
Reverse CTCCCTTCAGTCTCCTGCTG

Exon 6 Forward GGTGAAGCCTGAGTCATTCC 63 62
Reverse CCAACCTACTTCCCCTCCAT

Exon 7 Forward GAGGGATGGAGGGGAAGTAG 6l 6l
Reverse AGCCAGCACCTAGGGAAAA

Exon 8 Forward GGCACCATTGAAATGCTCTT 59 6l
Reverse ATCAAAGTGCCCAGTTACGG

Exon 9 Forward GCAGCTGCTTAACCTGGTAGA 6l 6l
Reverse ATGTCCACTTGTGCGTGTGT

Exon 10 Forward CCATCCCTGTAAACATGAGG 6l 6l
Reverse CCCCAATATCTCCACCAGAA

Exon |1 Forward TGGTGGAGATATTGGGGAGA 6l 6l
Reverse CAAACCCTTCTGACCCTTCA

Exon 12 Forward TGACAGGAGGCGCTAGAGT 62 63
Reverse AGTAGCATAGGCAGGTGGAG
Forward CTCCACTCCAGCTTCCTCCT 62 63
Reverse ATCGTTAGCCCCTGTCCTCT
Forward TCTCACTTCAGCACATCTTCC 6l 63
Reverse GGCCTACCCTGGTCTGTCTT
Forward ACCCAAAAGCCCCCTTGT 6l 6l
Reverse AGTACACTGTGGGGGTGAGG
Forward CCAAAGGCACCATTTCTTTT 59 6l
Reverse ATGTAGGCGGTGCCTCAG

ENaC

Exon 2 Forward CTAGTCTCCAGGCCCATGAC 62 64
Reverse CTACTGGAAGGGGCTGGAAT

Exon 3 Forward CCCCATGTTCCACACTCTTT 60 62
Reverse AACAAAAATCGATTGCTACCAG

Exon 4 Forward TAATACGGTGCTGCCATTCC 6l 63
Reverse GCATAGATCAGCCTGTGTGC

Exon 5 Forward CTCCAGCAGAGCAGGACAAT 62 6l
Reverse GGTCTTTCCGCCCTGTGT

Exon 6 Forward GGTGATGGCCTCCCTTCTAT 6l 61.5
Reverse AGGCAGCCTGAACACAAGAG

Exon 7 Forward GCTCCATGGGGAGGTACATA 63 63
Reverse GTCCGGCCCTCATAGGTAAG

Exon 8 Forward AAAGTCTCTGGGCTCCAAGG 63 61.5
Reverse AGAGGCCCCCTTGCCTAAC

Exon 9 Forward GAGGGAAGACCCCTGGAAG 62 63.5
Reverse ATACTGGGTGTCGCTGGAAG

Exon 10 Forward TCCTGCAAGTGAGTGTGTCC 62 63
Reverse AGGGGGAGAAGACCCTCTTT

Exon |1 Forward AGCATGTGTGTGCGTGTGTA 60 63
Reverse CAGCAAGAGCAGTTTGGACA
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Table 3A: Primers designed to screen the coding sequence of ENaC a, 3, and y genes. Optimum temperatures (°C) for PCR and

DHPLC are included in the table. (Continued)

Exon 12 Forward CAACTCAGACTGGAGATGAGCA 62 62.5
Reverse GGAACCATAACCCCCACCTA

Exon 13 Forward CCTAGGTGGGGGTTATGGTT 62 64
Reverse GCAGCCTCAGGGAGTCATAG
Forward CTTCCAGCCTGACACAACC 62 63.5
Reverse GCCTGTCTGCTAGGTCAACA
Forward CTGAGGGGTTCATAGGGTCA 62 60.5
Reverse ATCCTACACCCCAGACATGC

ENaCy

Exon 2 Forward AGTCGCAGGCTCCAGAGAT 62 64
Reverse GAGGGGCTTTGACATCCAT

Exon 3 Forward GGAAGGCAACATGAAGAAGC 6l 60
Reverse ACTGTGAGCCCACCAGCTC

Exon 4 Forward AAGGACCTACCCTGGCATCT 63 60
Reverse CTCAAGGCCTACAGGTGAGC

Exon 5 Forward ACGCAATGCTTCCTGACTTC 60 60
Reverse TGCACTGCTGCTGTCAAGAT

Exon 6 Forward CCCTGGGGACTGCTTTTT 60 60
Reverse TCCATTAGCAGCACCTCCTT

Exon 7 Forward AGGGGAATCCTCCTATCTGG 6l 62
Reverse CCTTGGCCTAGATATAGCTTCA

Exon 8 Forward AGGGAGTTCCCGGTCTCTAC 63 6l
Reverse GCGTGGCCAAGCTGATTC

Exon 9 Forward AGATGGTGGAGGTTCCACAG 63 60
Reverse GGGAGAAAGGCACAGAGTGA

Exon 10 Forward ACTGGGGCAGGTAGGACTTT 62 60
Reverse GCTTTGGCTGTGTTGCTGTA

Exon 11 Forward CCAAAGCCAGAGACAGGTTG 59 61
Reverse TCGAATGAACGAAAAGGTGA

Exon 12 Forward ACCTGGCAGGAAGCCAAG 62 6l
Reverse CCCTCTGGCAGCAAAACTAC

Exon 13 Forward CCCTGAGTGCAGGATTTATCA 6l 64
Reverse GTATCTGGGAGGTGGTGTGC
Forward GTCAGTGGCACAAAGCCAAG 62 64
Reverse AGCTCATAAGTGCCAAGTCCA
Forward CCTGCTGTGAACCGGATA 60 60
Reverse GGCCAACTGTCTGTCTGAGG
Forward GCCAGCTATTGCCTGACAT 60 60
Reverse CGCATACTCTCAGTTCAAAGACA
Forward GCCAAATGGTATTCCCACAA 59 57
Reverse ATTGGACTAGCCTGGGTGCT

nt. 1 to 590, 9199 to 9652, 10553 to 10887, 15934 to
16281, 16442 to 16777, 17027 to 17271, 17246 to
17536, 20442 to 20730, 20663 to 20874, 20927 to
21134,21117 t0 21372, and 21582 to 2304 1; for ENaC f,
nt. 1 to 413, 3287 to 3686, 5622 to 6012, 23724 to
23969, 25539 to 25839, 25974 to 26213, 27914 to
28154, 28987 to 29221, 29116 to 29351, 29910 to
30157,30857 to 31100, and 31078 to 32049; for ENaC-y
nt, 1 to 378, 2108 to 2552, 3781 to 4141, 5153 to 5403,
8093 to 8385, 22437 t0 22674, 24560 to 24797, 25439 to
25676, 25616 to 25849, 25842 to 26091, 28671 to
28918, 29065 to 30547. As for the 5' flanking regions of
ENaC genes, -2078 to +1 bp, -34812 to -33582 bp, -4359
to +1 bp of ENaC a, B, and y genes respectively were
amplified.

Sequence Analysis

a) DHPLC (Helix, Varian, Palo Alto, CA) analysis. DHPLC
runs were performed as recommended by Varian using
buffer A and buffer B (Varian) and a flow rate of 0.45 ml/
min. Freshly prepared PCR products were denatured at
95°C for 3 min and re-annealed by decreasing the temper-
ature from 95°C to 64°C at a rate of 1°C/min. Optimal
melting temperatures for the PCR products were deter-
mined using the Stanford University website [27]. The
chosen temperatures correspond to the point at which the
retention time was 75% of (t;nax -trmin)- D) Automatic
sequencing (ABI 310, PE Applied Biosystems, Foster City,
CA). Sequencing was performed using the DYEnamic ET
Terminator kit according to the instructions provided by
the manufacturer (PE Applied Biosystems, Foster City,
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Table 3B: Primers designed to screen the 5'flanking sequence of ENaC o, f3, and y genes. Optimum temperatures (°C) for PCR and

DHPLC are included in the table.

Sequence PCR DHPLC
ENacC o
Forward CAGATTCAGCTGCCATGC 60 62
Reverse AGGCCCTGCAGAACTTGCT
Forward GGTAGGAAGAGGCAGTGTGC 6l 62
Reverse ACAGGGTTGCAGGAATGTG
Forward GCTGGTGGTCTCTCCCAGTA 64 62
Reverse GGTCCCTTCTGATGGAGGTC
Forward GGGGGACCCATTCTCCTT 62 59
Reverse GGACTGATGGCGAACTGACT
Forward CCTTCCTGGCTTTTGTGTGT 6l 62
Reverse GTGTGGCTGGGCTGTGAC
Forward CAGGCACTGCACCTGTCA 62 62
Reverse GGCTTAGCGTCTCTCCCTCT
Forward CACAGAAAGGGAGACCCAAA 60 63
Reverse GGTCTTGCTCCTTGAATTGG
Forward GAGGGCAGCCTGGGATGCGG 6l 62
Reverse TTATAATAGCAATAGCCCCA
Forward TCCAAGGAGAAGGCGCCCCCA 6l 62
Reverse AGGGCTGGGTGAGAGGAT
Forward GGTTTAAGGATTTGCTTGATTC 6l 6l
Reverse TGTTCTGCAAGGACAGCATC
Forward CAAAGTACCCAATATCTATT 6l 6l
Reverse AGGGCTGGGTGAGAGGAT
Forward CCTGGTTTTGGGGTGTGT 6l 6l
Reverse TGTTCTGCAAGGACAGCATC
Forward GCTCTCTTTGGGCTGTGGGGAC 6l 6l
Reverse TGTTCTGCAAGGACAGCATC
ENaC
Forward GGTCTTCTGGGAAGAGCAAA 6l 62
Reverse CACGGTTCCATTTCCTGTGT
Forward CAGCCATGCACATGAAGACT 6l 57
Reverse TTGCAGCCAACTTGACTAGAT
Forward TGGTGATACCCTTCTTGTTGG 6l 60
Reverse CCTCCGTGTATCCTCACTCC
Forward AAAATAGAACGGGGCTGTGA 6l 62
Reverse GGAGCTGGGTCACCTGTAGA
Forward TGACCTGGAGCCTGTCAACT 62 64
Reverse GACGGAACTGCGGTCATT
ENaCy
Forward CTTGACATGTTTCTACCCACCA 6l 58
Reverse TTAGAACGCTGAAACCGTGA
Forward CATCCTCAACTCAAGAATCTGC 60 60
Reverse CCACTCTGCAAGCTGCATTA
Forward TGCAGAAGCAGCAGTAAGAGA 6l 62
Reverse CTGGCGTGTGTACAGTCTGG
Forward CTTCTGGCCGTGCCACTT 6l 62
Reverse TCGGGCTCCTCTTTCAACTA
Forward CGCGGGAAAGCTTTTCTTTA 6l 63
Reverse CTTGCTCCCTTCCCTCTCAC
Forward ATGAACAGAGCCTCGCAAAC 6l 62
Reverse GATAGTGGTCGCAGGTGACA
Forward GGTGGAAACGTTGGAATAGG 62 58
Reverse AAAGCAAGGCTGTCGCTCTA
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CA). Sequencing products were purified (DyeEx 2.0 spin
kit columns; Qiagen Canada, Mississauga, ON, Canada)
and analysed on 310 DNA analyser (Applied Biosystems,
Foster City, CA). Resulting sequences were compared to
the Brown Norway sequence [15]. ¢) ENaC 5' flanking
regions analysis. A comprehensive analysis of putative
kidney or brain transcription factor binding sites was per-
formed using both literature reports [6,7,13] and two
well-known and large-scale databases, TRANSFAC [28]®
and TFSEARCH?® [29]. Using the cell selectivity track, the
database searches were refined to transcription factors
active in the rat kidney and brain where ENaC contributes
to BP control.
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