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Abstract
Background: The maximum likelihood estimator of D' – a standard measure of linkage
disequilibrium – is biased toward disequilibrium, and the bias is particularly evident in small samples
and rare haplotypes.

Results: This paper proposes a Bayesian estimation of D' to address this problem. The reduction
of the bias is achieved by using a prior distribution on the pair-wise associations between single
nucleotide polymorphisms (SNP)s that increases the likelihood of equilibrium with increasing
physical distances between pairs of SNPs. We show how to compute the Bayesian estimate using
a stochastic estimation based on MCMC methods, and also propose a numerical approximation to
the Bayesian estimates that can be used to estimate patterns of LD in large datasets of SNPs.

Conclusion: Our Bayesian estimator of D' corrects the bias toward disequilibrium that affects the
maximum likelihood estimator. A consequence of this feature is a more objective view about the
extent of linkage disequilibrium in the human genome, and a more realistic number of tagging SNPs
to fully exploit the power of genome wide association studies.

Background
Single nucleotide polymorphisms (SNPs) are an invalua-
ble resource to identify regions of the human genome that
may be associated with disease. A key to this process is
linkage disequilibrium (LD) that is defined as the non-ran-
dom association between the alleles of SNPs [1].
Although LD may occur between SNPs that are not in link-
age but are associated, we will focus on the LD due to the
spatial structure of the genome. In this situation, the non-
random association implies that pairs of alleles in the
same haplotype occur differently from what we would
expect in a random pairing and several measures of LD
have been proposed to capture the departure from inde-
pendent pairing of the alleles of SNPs [2].

In this paper we will limit attention to D, its normalized
version D', and the well known bias of the Maximum
Likelihood Estimate (MLE) of D' toward disequilibrium
[2,3]. This bias is particularly large in small samples and
SNPs with rare alleles to the point that SNPs whose alleles
occur independently may be inferred to be in strong LD
[4]. However, relying on small samples to identify pat-
terns of LD is not unusual: for example, the International
HapMap Project (IHMP) aims to establish genome-wide
patterns of LD using genotype data of at most 30 trios or
45 unrelated individuals [5]. The genotype data typed in
this small number of samples are used to describe the
extent of LD in the human genome, and derive a map of
the haplotypes and the SNPs that are sufficient to tag the
human genome. These results will have a deep impact on
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genome wide association studies and, in particular, infer-
ring larger blocks of LD than the real ones may lead to the
selection of an insufficient number of SNPs and hence
decrease the power of genome wide association studies. In
this scenario, biasing the estimate of LD toward equilib-
rium appears to be a safer alternative.

Several solutions have been proposed to reduce the bias of
the MLE of D' toward disequilibrium [4]. A pragmatic
solution is to impose some "ad hoc" threshold on the
minimum allele frequency (MAF) of those SNPs that can
be used to infer the pattern of LD [6]. Imposing this
threshold leads to a non-random selection of SNPs and
may introduce ascertainment bias [7,8]. The thought
behind our approach is that the bias of the MLEs of D and
D' is due to the lack of information in the data to discrim-
inate between equilibrium and different magnitude of
disequilibrium, and any attempt to correct this bias is due
to fail as it was acknowledged in [3]. However, it is known
that, on average, the strength of LD due to linkage
decreases as the physical distance between SNPs increases
[9,10]. Therefore, we propose a Bayesian estimator of D'
that allows us to integrate data with prior information
about the pattern of LD decay. To this end, we use a prior
distribution on the pairwise dependencies between differ-
ent SNPs that is a decreasing function of their physical dis-
tance. We show how to compute the posterior estimate of
D' using Markov Chain Monte Carlo methods, and pro-
vide a numerical approximation that can be used for fast
estimation of LD in large regions of the human genome.
As we show in simulated and real data from the IHMP, the
effect of the prior distribution is to drastically reduce the
bias toward disequilibrium even in small samples, and to
remove the need of arbitrary thresholds on the MAF. We
also show that, compared to the MLE, our estimators lead
to infer patterns of LD decay that are much closer to pub-
lished results [10], and confirms the existence of haplo-
type blocks as regions of low recombination. The method
is implemented in a computer program called Bayesian
Linkage (BLink) [11].

Results and discussion
The traditional D and D'
Given two SNPs L1 and L2, with alleles A/a and B/b, A and
B the major alleles, we define the probability of the hap-
lotype ij by pij = p(L1 = i, L2 = j), i = A, a, j = B, b. As in [12],
we assume the relation pA ≥ pB on the probabilities pA =
p(L1 = A), pB = p(L2 = B) from which the inequality pAb ≥ paB
follows.

The two SNPs are in linkage equilibrium when the co-occur-
rence of two alleles on the same haplotype is random, e.g.
pij = pipj for all i = A, a, j = B, b. On the other hand, LD
implies some form of dependency in the alleles on the
same haplotype and hence departure from independence

of the probabilities pij. Although there are many ways to
measure departure from independence in a 2 × 2 table
[13], a widely used measure of LD is the parameter D
defined by

D = pAB - pApB - papb ≤ D ≤ papB.

Because the domain of D is a function of the allele fre-
quencies, different normalization methods have been
proposed to facilitate the interpretation [2]. The most

common one is the measure  that was suggested by

Lewontin [14] and is defined as D/max D:

 is defined in the interval [-1, 1], with  = ± 1 describ-

ing perfect disequilibrium and  = 0 describing equilib-

rium. It is also common to take the absolute value of ,

say D' = | | to have a measure in the interval [0,1]. This

is for example the default measure of LD in the popular
program HaploView [6].

Maximum likelihood estimation
Suppose now that we have a data set of N individuals and
n = 2N known haplotypes for the two SNPs (we assume
here known phase for all haplotypes and discuss the phas-
ing issue at the end of this section). We denote by nij (i =
A, a, j = B, b) the frequencies of the four haplotypes, and
by ni and nj the allele frequencies with nA ≥ nB. Assuming
that the four haplotypes follow a multinomial distribu-
tion with probabilities pij, the likelihood function can be
written as:

and the MLE of pij, pA and pB are

from which we derive the MLE of D,  and D':
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where I(x ∈ X) is the indicator function defined as I(x ∈ X)
= 1 if x ∈ X and 0 otherwise. Note that:

•  whenever nab = 0, so that  = -1 and  = 1;

•  whenever naB = 0, so that  = 1 and  = 1.

These two facts determine the bias toward disequilibrium

of  and D' that can lead to infer that two SNPs are in

disequilibrium when they are actually in equilibrium. For
example, the expected number of haplotypes ab in a sam-
ple of n haplotypes between two SNPs in equilibrium is
npapb. If both pa and pb are smaller than 0.1, then the min-

imum sample size n that yields an expected number of
haplotypes ab greater than 1 is 100, and this number goes
up to 400 when both pa and pb are 0.05. Therefore, data

from small samples and rare alleles do not provide infor-
mation to discriminate between equilibrium and disequi-
librium, while the MLE of D' returns its maximum value
consistent with perfect disequilibrium. This situation is
well known and supported by simulation studies. Teare
and coauthors [4] showed the extent of this bias through
extensive simulations in which they examined the effect of
sample size, MAF and strength of LD on the MLE of D'.
Their study suggested that the bias is severe in small sam-
ples (less than 100 subjects), when both alleles are rare
(MAF less than 0.05), and the two SNPs are in equilib-
rium. An "ad hoc" solution consists of disregarding those
SNPs with a MAF below some threshold. Although this
reduces the bias of the MLEs, it introduces an ascertain-
ment bias that may impact the inferred pattern of LD [7].

Bayesian approach
Our Bayesian estimator is based on the following intui-
tion: on average, the magnitude of disequilibrium
between two SNPs decreases at exponential rate with their
physical distance. We use this information to build a con-
jugate prior distribution on the parameters pij with the
property that, a priori, the larger the distance between two
SNPs, the more likely the two SNPs are in linkage equilib-
rium. The standard conjugate prior to a multinomial dis-
tribution is a Dirichlet distribution with density function
defined as:

Given data nij, the posterior distribution is still a Dirichlet
distribution with density function:

in which the prior hyper-parameters αij are updated into
αij + nij. The prior means of the parameters pij are αij/αT,
where αT = ∑ijαij. The posterior means become E(pij|n) =
(αij + nij)/(αT + n) and can be used as point estimates of the
parameters. Furthermore, the posterior distributions of
the marginal probabilities pA and pB follow Beta distribu-
tions with hyper-parameters (αA + nA, αa + na) and (αB +
nB, αb + nb), for αA = αAB + αAb, αa = αT - αA, αB = αAB + αaB,
and αb = αT - αB.

The inference on the parameters D, Ds and D' is more
complex. First, we note that we can write these parameters
as follows:

D = pAB - pApB

Equations (9) and (10) define the parameters Ds and D' as
mixtures of two components, with weights p(D < 0) and
p(D ≥ 0). The two components are non linear functions of
the parameters pij, as is the parameter D, and make the
exact inference on these parameters intractable. However,
we can resort on Markov Chain Monte Carlo methods to
generate a sample of values of either parameters from
their posterior distribution that can be used for further
inference. In Figure 1, we provide a model description that
can be used in Winbugs 1.4 to generate samples from the
posterior distributions of the parameters D, Ds and D'.

Choice of the prior distribution
To complete the specification of the Bayesian model, we
need to provide values for the hyper-parameters. Because
we wish to encode the information that departure from
equilibrium of any two SNPs is a function of their physical
distance, we define:

αij = α(1 - exp(-d))
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with α > 0, and the parameter d that represents the physi-
cal distance between the two SNPs in Mb (1 Mb = 1, 000
nucleotide bases). With this choice of hyper-parameters,
the prior means of the probabilities pij are E(pij) = 1/4 for
all i = A, a, j = B, b, so that, a priori, the two SNPs are
expected to be in equilibrium. On the other hand, the pos-
terior means of pij can be written as:

and, hence, as a weighted average of nij/n (the MLE esti-
mates of pij) and the prior probabilities 1/4. The first
weight n/(n + 4α(1 - exp(-d))) is an increasing function of
the sample size n, and a decreasing function of α and d,
while the second weight 4α(1 - exp(-d))/(n + 4α(1 - exp(-
d))) is an increasing function of α and d, and a decreasing

function of n. Therefore, for large sample sizes, the poste-
rior means of pij approach the MLEs. This is consistent
with the fact that, in large samples, the effect of the prior
distribution on the posterior distribution becomes negli-
gible. However, when the distance d decreases, the func-
tion 1 - exp(-d) approaches 0, and the weight n/(n + 4α(1
- exp(-d))) approaches 1, so that the Bayesian estimate
becomes closer to the MLE. In the limiting case d = 0, or α
= 0, the two estimates are identical. For fixed α and
increasing distance (essentially d > 0.5Mb), the second
weight approaches its maximum value 4α/(n + 4α), and
larger values of α further increase the weight given to the
prior mean. To contain the effect of the prior distribution,
we use α = 1 and simulation studies that are described in
the next section show that this choice produces a good
trade-off between robustness and bias.

In the absence of a closed form expression for the prior

distributions of the parameters D,  and D', we investi-
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gated the effect of α and d by generating stochastic esti-
mates of their prior densities. Figure 2 shows the prior
density of D'generated by Markov Chain Monte Carlo

simulations in Winbugs 1.4 for α = 1, 4 and distance rang-
ing between d = 0.001 Mb and d = 0.5 Mb. The estimates
are based on a sample of 5, 000 iterations, after an initial
burns in of 1, 000 iterations. The two plots in the top

panel depict the prior density of D' for α = 1 (left panel)

and α = 4 (right panel) when the distance between the two
SNPs is d = 0.001 Mb. The prior density peaks at the
extreme value D' = 0 that represents equilibrium between
the two SNPs, and D' = 1 that represents perfect disequi-
librium. Therefore, for small distance, this bimodal distri-
bution makes these opposite situations almost equally

likely. The effect of larger α is to shift the density toward
equilibrium: for example the probability that D' < 0.5 is

0.54 when α = 1 and becomes 0.57 when α = 4. The effect

of increasing α appears negligible in this situation, but it
is more evident when the two SNPs are at a larger distance.
For example, the two plots in the second panel depict the
prior density of D' when d = 0.1 Mb. Compared to the den-
sities in the top panel, now the prior densities are slightly
skewed toward 0, thus making disequilibrium less likely.

Once again, greater values of α (right panel) increase the
skewness toward equilibrium. The two plots in the bot-
tom panel show the prior densities when the distance
between the two SNPs is 0.5 Mb and confirm the increas-
ing weight given to equilibrium for larger distance d and

larger α values: the prior density now assigns probability

0.68 to the event D' < 0.5, when α = 1, and probability

0.84 to the same event when α = 4. It is interesting to
observe that, as the distance between SNPs decreases, then
the prior hyperparameters approach 0, and the Bayesian
estimates approach the MLE estimates. Accordingly, the
prior distribution moves mass from D' = 0 to D' = 1 as the
distance decreases and this explains the bimodal shape of
the prior density in the top two panels.

As an example, Table 1 displays the frequencies of the four
haplotypes AB, Ab, aB and ab that were observed between
SNPs S1 and S2 Chromosome 22, at the positions
15040669, 15043944. These are real data that were
derived from the thirty trios of the CEPH population
(Utah residents with ancestry from northern and western
Europe) who provided the DNA samples for the IHMP
[5]. The observed haplotype frequencies are consistent
with the hypothesis of linkage equilibrium, because the
expected number of haplotypes ab is 0.5 under equilib-
rium and the assumption that the population allele fre-
quencies equal the marginal estimates pa = 0.03 and pb =

0.14. However, the lack of observed haplotypes ab could
be due to perfect LD between each pair of SNPs. Given
that the physical distance between S1 and S2 is 0.0032
Mb, and the average D' in chromosome 22 ranges
between 0.8 and 1 for SNPs that are within 0.01 Mb, and
becomes less than 0.5 for SNPs that are distant more than
0.1 Mb [5], it is likely that S1 and S2 are in disequilibrium.
Consider now a third SNP S3 in the position 15405264 of
chromosome 22. The frequencies of the four haplotypes
between S1 and S3 is the same as in Table 1 but now the
physical distance between these two SNPs is 0.364 Mb.
Given the extent of LD, equilibrium is more likely
between S1 and S3, although the haplotype frequencies
are the same. The MLE of D' is 1 in both cases, with the
same confidence interval, while the Bayesian estimate of
D' changes with the distance between the two SNPs. The
plots in Figure 3 show the prior distribution of D' (plots
on the left) and the posterior distribution (plots on the
right) between the closest SNPs (first row) and the first
and third SNP (second row). A priori, disequilibrium and
equilibrium are equally likely when the two SNPs are very
close, but the posterior distribution is dominated by the
data and the left skewness is consistent with the hypo-
thesis of disequilibrium between the two SNPs. The point
estimate of D' is 0.96 with 95% credible interval (0.37, 1).
The effect of the same data on the distribution of D' for
SNPs that are further apart is however more contained: the
posterior distribution of D' remains skewed to the right,
the point estimates of D' is 0.39, and the 95% credible
interval is (0, 0.97) showing the large uncertainty.

Approximate estimates
In practical applications, we have computed the Bayesian
estimate of D' for regions with at most 200 SNPs that
would correspond to examining a block of approximately
500 kb assuming one SNP every 2.5 kb. However, if the
focus is generating a point estimate of the parameters to
be able to display LD over large regions or an entire chro-
mosome as we have shown in [15], resort to MCMC meth-
ods may become unfeasible. It is possible to compute the
exact posterior mean of D, and from this we can derive
approximate estimates of Ds and D' based on a Taylor
expansion. To this end, we replace the weights p(D < 0)
and p(D ≥ 0) in Equations (9) and (10) by the indicator
functions I(E(D|n) < 0) and I(E(D|n) ≥ 0), and the expec-
tation of the non linear functions D/max D by the first
order Taylor expansion:
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The main source of error in this approximation is due to
replacing the probability P(D ≥ 0) by the indicator func-
tion. When we are in a clear situation of disequilibrium,
the probability of the event (D < 0) is almost 0 or 1, and

the approximate posterior expectation of Ds and D'
approaches the exact values. When p(D < 0) is far from 0
and 1, then the error increases and biases the estimates
toward disequilibrium. This is consistent with the fact that

Example of prior distribution of the parameter D' for α = 1 (column 1) and α = 4 (column 2) and increasing distance between the two SNPs: row 1 d = 0.001 Mb; row 2 d = 0.1 Mb and row 3 d = 0.5 MbFigure 2
Example of prior distribution of the parameter D' for α = 1 (column 1) and α = 4 (column 2) and increasing distance between 
the two SNPs: row 1 d = 0.001 Mb; row 2 d = 0.1 Mb and row 3 d = 0.5 Mb. The x-axis displays D' and the y-axes displays the 
empirical estimate of the density function inferred with the program WinBugs 1.4.

Table 1: Data are derived from the 30 trios of the CEPH population. Haplotype frequencies between two SNPs S1 and S2 in 
chromosome 22.

SNP SNP S1
S2 B b

A 99 17 116
a 4 0 4

103 17 120
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the approximation is close to the MLE and therefore suf-
fers of some bias toward disequilibrium. However, we will
show with results of simulations in the next section that
this bias is smaller. Because of this similarity with the
MLE, we will refer to these approximate estimates as the
maximum a posteriori (MAP).

Unknown phase
When the genotype data are unphased, the ML estimation
uses the EM algorithm to infer the unknown phase given
the distribution of known haplotypes [16]. We adopt the
same procedure for the calculation of the MAP estimates.
Given the frequencies of known haplotypes, nij, i = A, a, j
= B, b, the algorithm first computes the MAP estimates of
the haplotype frequencies pij, and then alternates an
expectation step to replace the unphased haplotypes by
their expected phase and a maximization step to compute
the MAP estimates using observed and expected haplo-
types. The algorithm typically converges in less than 4
steps. Unknown haplotypes are regarded as missing val-
ues in the stochastic analysis, so that they become param-

eters of the model and are estimated within the Gibbs
sampling algorithm. We also note that, when the geno-
type data are from trios, we use all phased haplotypes to
compute the initial frequencies, regardless of whether
they are transmitted from parents to offspring.

The method is implemented in the computer program
BLink that is developed in C++ and is available from the
supplementary web site [11]. The software accepts geno-
type data from either unrelated individuals or nuclear
families consisting of two parents and one child.

Evaluation
We examined the performance of the Bayesian estimator
in three groups of simulated data and a real data set
derived from the IHMP. All data used in this evaluation
are available from the supplementary web site [11].

Examples of prior to posterior analysis using the data in Table 2Figure 3
Examples of prior to posterior analysis using the data in Table 2. The x-axes display D' and the y-axes display the empirical esti-
mate of the density function inferred with the program WinBugs 1.4. Figure (a) is the prior density of D' to measure the LD 
between the SNPs S1 and S2 that are at a distance of 3.2 kb. Figure (b) displays the posterior density, given the data in Table 1, 
and shows that data overwhelm the prior distribution when the distance is relatively small. Figure (c) is the prior density of D' 
to measure the LD between the SNPs S1 and S3 that are now more distant (364 kb). Figure (d) shows the posterior distribu-
tion, given the same data in Table 1, and shows now the relatively smaller effect of the data on the prior density.
Page 7 of 13
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Materials and methods
Group 1
The objectives of the first simulation study were (1) to
compare the performance of the Bayesian estimates and
the MLE for different sample sizes and small values of the
MAF, and (2) to assess the accuracy of the MAP approxi-
mation to the stochastic estimates of Ds and D'. We gener-
ated samples of 60, 120, 240 haplotypes, in which we
modeled the true D' as D' = exp(-d) for a distance d rang-
ing from 0 to 0.5 Mb. For each value of D' and each sam-
ple size, we generated 1,000 samples of haplotypes by
using the joint probability of haplotypes defined by Equa-
tion (1), with pB generated from a uniform distribution in
the interval [0.5; 0.9) and pA generated from a uniform
distribution in the interval [pB; 0.95). In each simulated
sample, we computed the MLE, and the MAP estimate of
Ds, as well as the stochastic estimate of Ds using Gibbs
sampling. To compute the stochastic estimates we run the
chain for an initial burn-in of 1, 000 iterations and then
based the inference on a second sample of 1, 000 itera-
tions. We used as point estimate the median value of the
simulated sample and α = 1 in each analysis.

Group 2
In this second set, we generated a sample of 1, 000 indi-
viduals in a region of 0.5 Mb with the program MS that
simulates genotype data under a variety of neutral models
[17]. We considered a population of 1 million individu-
als, a mutation rate of 10E - 9 per base pair, and a recom-
bination rate of 8 × 10E - 9 between adjacent base pairs
per generation. Only 10% of the 8080 SNPs in the sample
of 1, 000 individuals were randomly selected and, from
this sample, we randomly generated subsamples of sizes
60, 120, 240 and 480 haplotypes. In the absence of "true"
values for D', we studied the decay of LD inferred by the
MLE and the MAP estimator for increasing physical dis-
tances, versus the LD decay inferred in the original sample
of 1, 000 individuals. Each point in the plot is the average
estimate of D' for all the SNPs within a physical distance
of d ± 0.01 Mb. By averaging the LD between pairs of SNPs
at increasing distance, these plots are used to summarize
the decay of LD over large regions [18,10]. Ascertainment
bias was assessed by repeating the analysis with these
thresholds on the MAF: 0, 0.05, 0.1, 0.2. Sensitivity to the
prior distribution was assessed by repeating the analysis
for α = 0.25, 1, 2, 4.

Group 3
To examine the robustness of the MAP estimators, we also
generated data under a different model of allele fre-
quency, linkage disequilibrium and population differenti-
ation that is implemented in the software COSI [19]. We
simulated a sample of 1, 000 individuals under the cali-
brated model for the European population that considers
bottlenecks, migration and recombination hotspots spac-

ing 0.085 Mb [19]. We randomly selected 10% of the gen-
erated 32452 SNPs and from this sample we randomly
selected subsamples of 60, 120, 240 and 480 haplotypes.
We produced LD decay plots using the thresholds 0, 0.05,
0.1, 0.2 on the MAF and the range of α values that were
used for the analysis of the simulated data in group 2.

Real data
Real data were obtained from the first phase of the IHMP
[5]. We used genotype data of the 30 trios of the CEPH
and Yoruba in Ibadan, Nigeria and chromosome 22
because its pattern of LD has been widely studied [9]. This
chromosome was genotyped in 19120 and 19854 SNPs in
the CEPH and Yoruba samples. We produced LD decay
plots using the thresholds on the MAF and the range of α
values that we used for the analysis of the simulated data
in group 2. We also produced more informative graphical
displays of pairwise LD, by generating bi-dimensional
maps similar to those generated by the program Haplov-
iew, but with a lower resolution to enable the display of
LD over larger regions. The maps were generated with the
program BMapBuilder [15] using the MLE and the MAP
estimate of D'.

Results
Figure 4 reports the distribution of the ML, MCMC and

MAP estimates of  in the data simulated in Group 1, for

different values of  and sample sizes. The plots on the

left show the bias of the MLE of  toward disequilib-

rium that is more apparent for negative values of  and

samples with less than 120 haplotypes. The median ML
estimates of D' is -1 when the real D' is -0.75 for samples
with less than 120 haplotypes, while the median MCMC
estimate in 1000 simulations is -.82 in samples with 60
haplotypes and -0.76 in samples with 120 haplotypes.
Furthermore, even with sample sizes of less than 60 hap-
lotypes, the MCMC estimates and the MAP approxima-
tions are virtually undistinguishable thus suggesting that
the screening of LD in large regions can be based on the
MAP approximation.

Figures 5, 6 and 7 show the summary of the LD decay gen-
erated with the ML and MAP estimators of D'. In each fig-
ure, the x-axis reports the distance between pairs of SNPs
in kb. For each x value, the y-axis reports the estimate of
the average D' for all SNPs within a distance x ± 0.01 Mb.
Figure 5 plots the LD decay of the data simulated with the
program MS. Panels (a) and (b) display the LD decay gen-
erated using the ML and MAP estimates of D', with α = 1,
and MAF > 0 (dashed lines), MAF > 0.05 (continuous
lines), and samples sizes ranging from 60 to 1, 000 repre-
sented by different colors. Both the ML and MAP esti-
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mates show approximately the same values in the sample
of 1, 000 individuals and MAF> 0.05 (continuous lines,
pale blue), so that we can consider those values as repre-
sentative of population values. The LD decay plots based
on the MLE of D' appear to be extremely sensitive to the
threshold chosen for the MAF. For example when the MAF

> 0 (dashed lines), the ML estimator leads us to infer long
range disequilibrium. In contrast, the MAP estimator pro-
duces more consistent results across different thresholds
on the MAF, and sample sizes (see also supplementary
results in [11]), to the point that we do not need to
impose any threshold on the MAF. The plots in panels (c)

Distribution of the estimates of  (y-axis) versus the true D' (x-axis) computed using ML (column 1), MCMC (column 2) and the MAP approximation (column 3), for 3 different sample sizes: n = 60 (row 1); n = 120 (row 2); and n = 240 (row 3)Figure 4
Distribution of the estimates of  (y-axis) versus the true D' (x-axis) computed using ML (column 1), MCMC (column 2) and 

the MAP approximation (column 3), for 3 different sample sizes: n = 60 (row 1); n = 120 (row 2); and n = 240 (row 3). Each 
boxplot reports the distribution of the 1,000 estimates generated for each sample size and value of .
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and (d) display the LD decay generated with the MAP esti-
mator using α = 0.25 (c) and α = 4 (d). The choice of the
prior hyperparameter appears to be influential when all
the SNPs are used to estimate the LD decay, with smaller
values of α that make the MAP estimator more sensitive to
the sample size, and larger values of α that increase the
bias toward equilibrium. These results would suggest
choosing α = 1 in practical applications, to achieve a good
balance between robustness and bias reduction.

The LD decay plots in Figure 6 were generated from the
data simulated with the program COSI with long range
disequilibrium. The plot on the left displays the average
LD computed with the MLE (dashed lines), and the MAP
estimator with α = 1 (continuous lines), MAF> 0.05, and
increasing sample sizes. The bias of the MLE of D' now
works in favor of this estimator that is able to reproduce
the larger values of D' compared to the MAP estimator.
Although of smaller magnitude, the MAP estimate of
D'remains consistent with long range disequilibrium. The

LD decay plots for the data generated in Group 2, based on the MLE (panel a) and the MAP approximation (panel b: α = 1, panel c: α = 0.25, and panel d: α = 4) of D'Figure 5
LD decay plots for the data generated in Group 2, based on the MLE (panel a) and the MAP approximation (panel b: α = 1, 
panel c: α = 0.25, and panel d: α = 4) of D'. The line type represents two thresholds on the MAF: 0.0 (dashed line), and 0.05 
(continuous line). The line color represents five sample sizes: n = 60 (black); n = 120 (red); n = 240 (green); n = 480 (dark blue); 
n = 1000 (pale blue).
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plot in panel (b) shows the LD decay inferred with the
MAP estimator using α = 0.25 (dashed line) and α = 4
(continuous line). The evident departure from the true
pattern of LD when α = 4 again suggests choosing a small
α value, say α = 1, to limit the bias toward equilibrium.

Figure 7 plots the LD decay generated with the ML and
MAP estimators using the CEPH and Yoruba samples of
the IHMP, different thresholds on the MAF, and different
α values. The results confirm the bias toward disequilib-
rium of the MLE of D' – panels (a) and (c)- when all the
SNPs are used in the analysis. The MAP estimator leads to
more consistent results for a range of thresholds on the
MAF, see panels (b) and (d). These results suggest that,
even with a small sample size, we do not need to select
SNPs based on the MAF, thus removing the issue of the
ascertainment bias. Panels (e) and (f) display the LD
decay in Chromosome 22, Yoruba samples, for α = 0.25
(e) and α = 4 (f). Values of α greater than 1 appear to bias
the estimator toward equilibrium, while values of α
smaller than 1 lead to a loss of robustness. Consistently
with the analysis of simulated data, the choice α = 1
appears to achieve a good balance between robustness
and bias reduction.

Figure 9 provides a two-dimensional display of pairwise
LD. Each plot represents the value of D' between a pair of
SNPs as a colored pixel whose intensity is related to the

value of D', see the legend in Figure 8. Higher resolution
maps (16 pixels for a pair of SNPs) are available in the
supplementary web site. The first row of Figure 9 shows
maps of LD for a region of chromosome 22 in the CEPH
populations and the second row shows maps of LD for the
Yoruba population, using the MLE (first column) and the
MAP estimator (second column). These four maps were
generated without imposing any threshold on the MAF,
while the maps in the third row display the pairwise LD in
the same segment of chromosome 22 of the Yoruba pop-
ulation, based on the MLE of D', MAF> 0.05 (panel e) and
MAF>0.1 (panel f). The MAP estimator of D' reduces the
long range LD – maps (b) and (d)- without the need of
imposing a threshold on the MAF. This smoothing
induced by the MAP estimator has the effect of highlight-
ing blocks of high LD more clearly, compared to the MLE.
For example, two blocks are clearly visible on the left of
the maps in panel (d) while they are hidden in a larger
region of high LD in the map created with the MLE of D'
(panel c) and even with tighter thresholds on the MAF
those two blocks are hardly recognizable (panels e and f).
These results provide evidence of a block structure of the
human genome that does not appear to be an artifact of
low SNP density [5]. However, they also suggest the pres-
ence of smaller blocks of LD that may impact on the min-
imum number of tag SNPs needed to have powerful
genome wide association studies.

LD decay plots for the data generated in Group 3, with high LD, MAF> 0.05, and sporadic hotspotsFigure 6
LD decay plots for the data generated in Group 3, with high LD, MAF> 0.05, and sporadic hotspots. The left panel displays the 
LD decay inferred by using the MLE (dashed lines) and the MAP approximation (continuous line), with α = 1. The line color 
represents four sample sizes: n = 60 (black); n = 120 (red); n = 240 (green); n ≥ 480 (dark blue). The right panel displays the LD 
decay for the same data based on the MAP approximation of D' with α = 0.25 (dashed lines) and α = 16 (continuous lines). The 
line color represents the sample size as in the left panel.
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Conclusion
A good estimation of D' is crucial for a better understand-
ing of patterns of LD, a robust identification of haplotype
blocks, more accurate algorithms for haplotype recon-
struction, and better reproducibility of genetic studies.
The popular MLE of D' is biased toward disequilibrium,
and requires the use of thresholds on the MAF that have
been shown to introduce ascertainment bias. By using an
informative prior that models the LD between SNPs based
on their physical distance, we define a Bayesian estimator
that outperforms the MLE without increasing computa-
tional complexity. Our estimator is slightly biased toward
equilibrium, but this bias tends to disappear quickly with
increasing sample sizes, and at a faster rate than the bias
toward disequilibrium of the MLE. Furthermore, our eval-

uation shows that the MAP estimator does not require any
thresholds on the MAF.

There are several limitations to this work. The probability
distribution of the haplotypes is modelled using a multi-
nomial distribution with a Dirichlet prior, and this
assumption can be relaxed to include more general mod-
els. Also, the prior distribution does not take into account
recombination hotspots. We have assessed the impact of
this assumption in our simulations, but more evaluation
is needed. Our analysis is now limited to biallelic SNPs,
however our Bayesian model can be extended to include
measures of LD for multi-allelic SNPs. For example, a first-
order approximation of the average estimator of D' sug-
gested in [2] can be computed by averaging the MAP esti-
mates. Some more work is needed to examine the effect of
the prior hyper-parameters. In future work we will extend
our results to other measures of LD, particularly r2 = D/
(pApapBpb). Some preliminary results that are posted in our

Maps of LD in a region of chromosome 22 based on the MLE of D' in the CEPH population (a) and the Yoruba population (c) and the MAP estimator of D' in the CEPH population (b) and the Yoruba population (d)Figure 9
Maps of LD in a region of chromosome 22 based on the MLE 
of D' in the CEPH population (a) and the Yoruba population 
(c) and the MAP estimator of D' in the CEPH population (b) 
and the Yoruba population (d). The maps in panels (e) and (f) 
were inferred using the MLE of D' for the same chromosome 
region of the Yoruba population using SNPs with the 
MAF>0.05 and MAF>0.1. The color coding is described in 
Figure 8.

Panels (a) and (b): LD decay plot of chromosome 22, based on the MLE of D' (panel a) and the MAP estimator of D' (panel b) in the CEPH populationFigure 7
Panels (a) and (b): LD decay plot of chromosome 22, based 
on the MLE of D' (panel a) and the MAP estimator of D' 
(panel b) in the CEPH population. The line color represents 
four thresholds on the MAF: 0.0 (black); 0.05 (red); 0.10 
(green); 0.20 (dark blue). Panels (c) and (d): LD decay plot of 
chromosome 22, based on the MLE of D' (panel c) and the 
MAP estimator of D' (panel d) in the Yoruba population. We 
used α = 1. Panels (e) and (f): LD decay of chromosome 22 in 
the Yoruba population based on the MAP estimate of D' with 
α = 0.25 (panel e) and α = 4 (panel f). The line color repre-
sents the four thresholds on the MAF as in the other plots.

Colors used in bitmaps for different values of D'Figure 8
Colors used in bitmaps for different values of D'.
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supplementary web site suggest that a Bayesian estimator
of r2 developed along the line of the estimator introduced
in this paper would gain robustness.
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