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Abstract
Background: Phenotypes with repeat records from one individual or multiple individuals were
often encountered in practices of mapping QTL in linecross. The current genetic mapping method
for a trait with repeat records is adopted by simply replacing the phenotype by the average value
of the repeat records. This simple treatment has not sufficiently utilized the information from the
replication and ignored the impacts of the permanent environmental effects on the accuracy of the
estimated QTL.

Results: We propose to map QTL by using the repeatability model to directly analyze the repeat
records rather than simply analyze the mean phenotype, improving the efficiency of QTL detecting
because of adequately utilizing the information from data and allowing for the permanent
environmental effects. A maximum likelihood method implemented via the expectation-
maximization (EM) algorithm is applied to perform the parameter estimation of the repeatability
model. The superiority of the mapping method based on the repeatability model over simple
analysis using the mean phenotype was demonstrated by a series of simulations.

Conclusion: Our results suggest that the proposed method can serve as a powerful alternative to
existing methods. By mean of the repeatability model, utilizing the repeat records on individual may
improve the efficiency of QTL detecting in line cross.

Background
Replication is the fundamental of the experimental
design, the important advantages of which are that it
allows for an estimate of experimental error and increases
the reliability of information obtained at each experimen-
tal point [1,2]. Replication denotes sampling or measur-
ing multiple times under the same experimental
condition (within one treatment), where the experimen-
tal unit may be either one individual or multiple individ-
uals with the identical genetic background.

Often plants or animals are observed more than once for
a particular trait. For examples, fleece weight of sheep in
different years, blood pressure and pulse of a human over
time, litter size of sows over time, antler size of deer in dif-
ferent seasons, racing results of horses from several races,
exam scores of students during university and so on. These
records observed belong to replicate ones if they are not
influenced by the measuring environments, such as the
years, seasons, parities, races.

In classical quantitative genetics, a trait with repeat
records is generally analysed by means of the repeatability
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model [3,4], in which, there is an additional permanent
environmental effect besides an individual's additive
genetic value for a trait. The permanent environmental
effect as a measure of the differences among experimental
units, is a non-genetic effect common to all observations
on the same individual [5]. Such environmental effects
are usually accounted for in the model to ensure accurate
prediction of breeding values [4]. However, the repeata-
bility model has not been paid adequate attention to
mapping QTL by using data with repeat records.

The current genetic mapping method for a trait with
repeat records is adopted by simply replacing the pheno-
type by the average value of the repeat records [6,7]. This
simple treatment has not sufficiently utilized the informa-
tion from the replication and ignored the impacts of the
permanent environmental effects on the accuracy of the
estimated QTL, although it enables to improve the power
of detecting QTL with a certain extent.

In this study, we apply the repeatability model to map-
ping quantitative trait loci with repeat records and dem-
onstrate the higher efficiency of this model by the
simulations.

Theory and methods
Mapping QTL based on the mean phenotype
Take a simple F2 population of size n derived from two
homozygous lines as an example. There are the three pos-
sible genotypes denoted by Q1Q1, Q1Q2, and Q2Q2,
respectively, at a quantitative trait locus Q. The pheno-
typic value of an individual i is usually described by the
following linear model,

yi = µ + zia + wid + ei, (1)

Where µ is the population mean, a and d are additive and
dominant effects of the QTL, ei is the residual error with a
N(0, σ2) distribution, and

If mi records are repeatedly sampled from each individual
and the phenotypic value of an individual i is measured
by the average of mi records, the model is modified as

where

and the variable with additional subscript j indicates the
corresponding variable for the jth record of the ith F2 indi-
vidual. The residual error now follows a N(0, σ2/mi) dis-
tribution, given that eij ~ N(0, σ2).

Let

be the conditional density of , where θ = [µ a d σ2]T are

the parameters; the log likelihood function defined under
the missing variables zi and wi is

The expectation-maximization (EM) algorithm [8] can be
used to obtain the MLE, as shown below,

and

The expectation shown in Equation 6 can be further
expressed as

Define the posterior probabilities of the three QTL geno-
types for jth individual as

where pik are the conditional probabilities inferred by
marker information, then
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Because  is a function of the unknown parameters, iter-

ations are required for EM algorithm. The iterations are
described as

Step 0: Set up initials for θ(0).

Step 1: Calculate the posterior probabilities  with equa-

tion (7).

Step 2: Substituting (8) into equation (5), estimate

Step 3: Substituting (8) into equation (6), estimate

Step 4: Go to step 1, which complete one round of itera-
tion.

Mapping QTL based on the repeatability model
Partitioning residual error ei in model (1) into an individ-
ual-specific permanent environmental effect ζi and ran-
dom environmental effect εij, the jth phenotypic value of
an individual i is represented as

yij = µ + zia + wid + ζi + ε ij (10)

This is a mixed effects model, also called repeatability
model, with a and d being treated as the fixed effects and

pi as the random effect. i.i.d. N(0, ) distribution and ε

ij i.i.d. N(0, ) distribution.

We use an mi × 1 vector yi = [yi1 yi2 … yim ]T, for n = 1, 2, …,
n to denote the array of phenotypic values for the ith indi-
vidual and define ϕi = [1 1 … 1]T as a vector of dimension
mi. In matrix notation, model (9) can be written as

yi = ϕiµ + ziϕia + wiϕid + ϕiζi + εi (11)

where εi = [εi1 εi2  … εim]T is an mi× 1 vector for the random

environmental effects which follows N(0, Ii, ) with Ii

being an (mi× 1) × (mi× 1) identity matrix. The condi-

tional expectation of model (11) given the fixed effects is

E(yi) = Mi = ϕiµ + ziϕia + wiϕid (12)

and the variance-covariance matrix is

which applies to all i = 1, 2, …, n.

The conditional density of yi based on Mi and Vi is

where θ = [µ a d ]. Corresponding log-likelihood

function defined is

With derivative for µ, a and d, we can obtain

but the explicit equations for  and  can not be

derived in the same way. Instead of above likelihood func-
tion, we construct the following likelihood function by

using joint conditional density of ,

Where θ1 = [µ a d ζi ]

With derivative for θ1, we obtain
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and

Where

so, we can simply utilize existing mixed model EM algo-
rithm to find the MLE of parameters [9]. Followings are
the EM steps for the mixed model analysis.

Step 0: Initialize all parameters with values in their legal
domain, denoted by θ(0).

Step 1: Compute the posterior probabilities of the three
genotypes for each individual

Step 2: Compute all the expectations involved in the fol-
lowing maximization steps (same with the equation (8)).

Step 3: Find the posterior distribution of the random effect
pi from equation (18). This posterior distribution turns
out to be a mixture of three normal distributions with a
mean

and a variance

Step 4: Update the population mean, additive effect and
dominance effect by equation (16). The resulting equa-

tions are equivalent to equations (9) replacing mi with

.

Step 5: Update the covariance matrix of the random effect

Step 6: Update the residual variance by equation (19)

Step7: Repeat from step 1 to step 6 until a certain conver-
gence criterion is reached.

MLE of parameters in both model (2) and (10) are itera-
tively solved at specific location on chromosomes using
EM algorithm and the QTL position and effects are deter-
mined by means of likelihood ratio statistics in chromo-
some or genome scanning.

Simulation studies
A series of simulation experiments were used to compare
the efficiency and behaviour of two mapping methods
based on the repeatability model with simple analysis
using the mean phenotype for a trait with repeat records.
We simulated a single chromosome of 100 cM long with
11 evenly spaced codominant markers for an F2 popula-
tion with sample size n = 100 and a single QTL was put at
position 25 cM (between markers 3 and 4). Under the null
model, the QTL was assigned a value of zero for both the
additive and dominance effects. The empirical critical val-
ues of likelihood ratio statistics for testing the presence of
the QTL were obtained by simulating 1000 replicates.
Under the alternative model, nonzero and equal additive
and dominance effects were simulated. The simulations
were replicated 100 times. Empirical power was calculated
by counting the number of runs in which test statistics
were greater than the critical values.

Factor considered include the QTL size, measured as the
proportion of the phenotypic variance explained by the
QTL (also called the QTL heritability), the number of rep-

licates and :  i.e the variance ratio of permanent

environmental effect to random environmental effect. The
QTL size was set at three levels: a = d = 0.265, 0.577, 0.943
correspond to the three levels of h2 = 0.05, 0.10, 0.20
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respectively. The number of replicates was examined at

five levels: m = 1, 3, 5, 10, 15, and :  = 1:4, 2:3,

2.5:2.5, 3:2, 4:1, remaining  +  = 5.0.

The jth phenotypic value of individual i was simulated by
using the repeatability model:

yij = µ + zi a + wi d + ξiσζ + ηijσε (25)

Where both ξi and η ij are the random numbers from
standard normal distribution. 

The results of all simulations consistently show that under
the same experimental condition, (1) using the repeata-
bility model can significantly increase the statistical power

of QTL detecting compared with simple analysis using the
mean phenotype, (2) the position and effects of QTL,
especially the proportion of phenotypic variance contrib-
uted by QTL were more accuracy estimated by using the
repeatability model than using the genetic mapping
model without permanent environmental effects to ana-
lyze mean phenotype. The superiority of the repeatability
model over the simple analysis using the mean phenotype
performs in evidence under the condition of the low QTL
heritability.

The effects of number of replications on the efficiency and
behaviour of the two methods were investigated only at
variance ratio of permanent environmental effect to ran-
dom environmental effect of 1:1. The results of simula-
tions were listed in Table 1 and 2, respectively, by different
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Table 2: Effects of the number of replications on the simple analysis using the mean phenotype

Estimate

a and d h2 Replicate Power Position a d h2 σ2 LOD

0.4189 0.05 1 21 38.36(5.188) 0.673(0.101) 0.505(0.097) 0.096(0.004) 4.266(0.139) 17.00(0.812)
3 34 26.65(0.888) 0.559(0.317) 0.560(0.207) 0.197(0.007) 2.189 (0.034) 15.39(0.493)
5 42 29.50(1.026) 0.653(0.294) 0.541(0.296) 0.178(0.059) 2.743(0.512) 17.34(0.529)
10 56 27.04(0.954) 0.719(0.241) 0.694(0.180) 0.218(0.061) 2.911(0.337) 20.92(0.559)
15 81 26.16(1.521) 0.496(0.029) 0.560(0.021) 0.173(0.005) 2.469(0.038) 16.87(0.416)

0.6086 0.10 1 57 23.89(1.774) 0.767(0.050) 0.777(0.040) 0.120(0.039) 4.785(0.082) 17.22(0.606)
3 78 25.39(0.660) 0.661(0.024) 0.639(0.016) 0.234(0.063) 2.256(0.027) 23.31(0.531)
5 81 27.04(0.954) 0.719(0.241) 0.694(0.018) 0.219(0.061) 2.911(0.034) 20.92(0.559)
10 84 26.23(0.602) 0.667(0.245) 0.683(0.167) 0.223(0.065) 2.600(0.279) 21.65(0.564)
15 87 25.79(0.672) 0.652(0.233) 0.647(0.147) 0.211(0.060) 2.586(0.026) 20.77(0.529)

0.9129 0.20 1 97 25.21(0.563) 1.003(0.043) 0.970(0.030) 0.208(0.005) 4.800(0.082) 23.44(0.725)
3 100 25.10(0.302) 0.909(0.233) 0.916(0.015) 0.357(0.007) 2.311(0.025) 38.04(0.773)
5 99 25.00(0.305) 0.886(0.027) 0.930(0.016) 0.306(0.007) 2.974(0.033) 30.93(0.653)
10 100 25.08(0.307) 0.952(0.026) 0.932(0.016) 0.335(0.007) 2.689(0.027) 34.94(0.673)
15 99 25.07(0.288) 0.929(0.025) 0.914(0.015) 0.330(0.007) 2.659(0.026) 33.65(0.678)

h2 is the proportion of phenotypic variance explained by the QTL. The variance ratio of permanent environmental effect to random environmental 
effect is fixed as 1:1. Standard deviations are in parentheses.

Table 1: Effects of the number of replications on the mapping analysis based on the repeatability model

Estimate

a and d h2 Replicate Power Position a d h2 LOD

0.4189 0.05 3 37 28.65(1.946) 0.615(0.061) 0.594(0.028) 0.116(0.007) 2.183(0.069) 2.544(0.046) 15.31(0.810)
5 46 27.63(1.506) 0.626(0.291) 0.545(0.226) 0.108(0.041) 2.224(0.050) 2.555(0.018) 15.39(0.493)
10 63 26.55(0.923) 0.698(0.224) 0.661(0.178) 0.134(0.042) 2.375(0.037) 2.548(0.014) 18.85(0.535)
15 86 26.71(1.441) 0.496(0.028) 0.544(0.190) 0.093(0.003) 2.294(0.035) 2.532(0.010) 14.85(0.386)

0.6086 0.10 3 80 25.98(0.635) 0.724(0.036) 0.670(0.025) 0.142(0.006) 2.239(0.049) 2.605(0.030) 18.18(0.635)
5 83 26.55(0.922) 0.699(0.022) 0.661(0.018) 0.134(0.042) 2.375(0.034) 2.548(0.014) 18.85(0.535)
10 87 26.43(0.640) 0.650(0.024) 0.668(0.017) 0.130(0.004) 2.310(0.029) 2.547(0.010) 20.09(0.538)
15 93 25.78(0.678) 0.637(0.232) 0.632(0.138) 0.119(0.037) 2.412(0.028) 2.537(0.078) 18.77(0.515)

0.9129 0.20 3 99 24.04(0.507) 0.937(0.038) 0.960(0.023) 0.223(0.007) 2.322(0.051) 2.643(0.028) 29.25(0.928)
5 99 24.89(0.319) 0.881(0.027) 0.922(0.015) 0.207(0.005) 2.374(0.024) 2.636(0.013) 29.12(0.640)
10 100 24.90(0.330) 0.949(0.025) 0.917(0.157) 0.213(0.005) 2.397(0.027) 2.573(0.010) 32.86(0.655)
15 100 25.16(0.359) 0.914(0.241) 0.884(0.014) 0.120(0.005) 2.473(0.030) 2.569(0.008) 31.26(0.651)

h2 is the proportion of phenotypic variance explained by the QTL. The variance ratio of permanent environmental effect to random environmental 
effect is fixed as 1:1. Standard deviations are in parentheses.
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mapping method. Notices that the simulated results at m
= 1 (no replication) only correspond to the mapping
method based on the mean phenotype for no solution by
using the repeatability model. As expected, the statistical
power of QTL detecting with replication is higher than no
replication, based on either the mean phenotype or the
repeatability model. The estimation of QTL parameters
show a general tendency to improve as the number of rep-
lications increases.

We have also investigated the impact of the variance ratio
of permanent environmental effect to random environ-
mental effect on differences in mapping performance
between the two methods. The results of simulations fix-
ing five replications were listed in Table 3. The difference
in variance between permanent environmental effect and
random environmental effect is greater under fixing total
variance of random effects, the superiority of the mapping
method based on the repeatability model over the mean
phenotype is clearer in the statistical power of QTL detect-
ing. The possible reasons are that either the large variance
of random environmental effect made reliability of the
individual's mean phenotype value low or the variance of
residual error in model (2) increases with the variance of
permanent environmental effect increased.

Discussion
For a trait with repeat records, we proposed use of the
repeatability model to map QTL, which distinguishes

from simple analysis using the mean phenotype not only
in the data analyzed but essentially in the model adopted.
Simple analysis using the mean phenotype was based on
regular genetic model for mapping QTL in linecross,
which excluded the permanent environmental effects. The
excluded permanent environmental effects were depos-
ited to the residual error, decreasing the accuracy of esti-
mation for QTL parameters, which was strictly proved in
the relevant books to statistic models [e.g., [10,11]]. Of
course, the loss of data information has also influenced
the performance of mapping QTL based on the mean phe-
notype.

Replication required either the experimental conditions
must be the same when multiple records were observed
only from one individual or the genetic backgrounds
must be the identical for each individual while those
records were from multiple individuals. If the former was
not satisfied, then such "repeat" records observed became
longitudinal data, such as test-day records of milk produc-
tion and body weight in cattle, were genetically analysed
using the random regresion model which is essentially the
repeatability model nested submodels of time [12-14].
Besides cloned individuals and progencies from each
plant in RIL, the later was hard to be satisfied. For exam-
ple, there were incompletely same genetic backgrounds
among individuals within a family and F3 progenies from
one F2 individual. To improve the efficiency of detecting
QTL using such data, the genetic backgrounds should be

Table 3: Comparisons of the mapping analysis based on the repeatability model with the simple analysis using the mean phenotype 
under the conditions of different the variance ratios of permanent environmental effects to random environmental effects

Estimate

h2

:
Method Power Position a d h2

 or σ2 
LOD

0.05 1: 4 Repeat 72 25.59(0.919) 0.471(0.021) 0.494(0.013) 0.076(0.003) 0.889(0.022) 4.080(0.025) 17.27(0.484)
Mean 60 25.52(0.870) 0.491(0.024) 0.507(0.015) 0.199(0.006) 1.711(0.234) 19.68(0.525)

2: 3 Repeat 44 27.59(1.662) 0.544(0.032) 0.540(0.022) 0.098(0.006) 1.776(0.039) 3.023(0.024) 15.79(0.495)
Mean 42 26.47(1.415) 0.549(0.030) 0.527(0.027) 0.177(0.006) 2.418(0.039) 17.39(0.500)

3: 2 Repeat 38 24.97(1.441) 0.607(0.034) 0.576(0.023) 0.110(0.004) 2.745(0.060) 2.048(0.018) 14.54(0.389)
Mean 37 25.76(1.456) 0.601(0.034) 0.585(0.026) 0.162(0.006) 3.158(0.054) 16.16(0.452)

4: 1 Repeat 33 30.57(2.141) 0.668(0.050) 0.558(0.035) 0.128(0.063) 3.604(0.067) 1.007(0.010) 14.04(0.437)
Mean 26 30.62(2.321) 0.717(0.051) 0.598(0.043) 0.171(0.007) 3.694(0.071) 16.74(0.570)

0.10 1: 4 Repeat 97 25.01(0.408) 0.643(0.019) 0.622(0.013) 0.115(0.036) 0.917(0.023) 4.042(0.019) 25.05(0.586)
Mean 94 24.93(0.411) 0.648(0.020) 0.628(0.013) 0.267(0.007) 1.765(0.023) 26.56(0.600)

2: 3 Repeat 86 26.32(0.815) 0.667(0.022) 0.635(0.014) 0.122(0.033) 1.890(0.030) 3.085(0.015) 19.28(0.440)
Mean 84 26.34(0.827) 0.669(0.023) 0.643(0.014) 0.215(0.054) 2.518(0.029) 20.80(0.459)

3: 2 Repeat 83 25.53(0.612) 0.655(0.028) 0.679(0.017) 0.137(0.004) 2.718(0.035) 2.079(0.013) 17.76(0.422)
Mean 83 25.73(0.750) 0.659(0.029) 0.689(0.018) 0.199(0.006) 3.145(0.033) 19.37(0.451)

4: 1 Repeat 64 25.14(1.043) 0.703(0.029) 0.686(0.018) 0.143(0.004) 3.812(0.051) 1.007(0.007) 16.27(0.430)
Mean 61 25.44(0.997) 0.725(0.032) 0.751(0.022) 0.192(0.006) 3.898(0.051) 18.32(0.437)

h2 is the proportion of phenotypic variance explained by the QTL. There are 100 individuals each with five records. Standard deviations are in 
parentheses.
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at least taken into account in the analysis [7], furthermore,
the repeatability model may be a good choice for directly
analyzing such "repeat" records.

Although we demonstrate the statistical method of QTL
mapping using a F2 population as an example, other more
simple or complex designs, such as backcross population
and full-sib family can also be extended. Assuming only
one QTL in the model considered here is to conveniently
investigate efficiency of presented method based on vari-
ous estimates. If a trait is controlled by multiple loci, the
composite interval mapping [15,16] or Bayesian mapping
[e.g., [17,18]] will be proposed for mapping those QTLs
by incorporating marker-cofactors outside the scanning
interval or all the QTLs into the model (9).
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