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Abstract
Background: Genome-wide association studies are a promising new tool for deciphering the
genetics of complex diseases. To choose the proper sample size and genotyping platform for such
studies, power calculations that take into account genetic model, tag SNP selection, and the
population of interest are required.

Results: The power of genome-wide association studies can be computed using a set of tag SNPs
and a large number of genotyped SNPs in a representative population, such as available through the
HapMap project. As expected, power increases with increasing sample size and effect size. Power
also depends on the tag SNPs selected. In some cases, more power is obtained by genotyping more
individuals at fewer SNPs than fewer individuals at more SNPs.

Conclusion: Genome-wide association studies should be designed thoughtfully, with the choice
of genotyping platform and sample size being determined from careful power calculations.

Background
One goal of modern human genetics is to identify the
genetic variants that predispose individuals to develop
common, complex diseases. It has been proposed that
population-based association studies will be more power-
ful than traditional family-based linkage methods in iden-
tifying such high-frequency, low-penetrance alleles [1].
Such studies require the genotypes a large number of pol-
ymorphisms (usually single nucleotide polymorphisms
[SNPs]) across the genome, each of which is tested for
association with the phenotype of interest. As originally
proposed, this would be a direct test of association, in
which the functional mutation is presumed to be geno-
typed. An alternate approach to association studies takes
advantage of the correlation between SNPs, called linkage
disequilibrium (LD), that can occur due to the genealogi-
cal history of the polymorphisms [2]. In this approach,
often called indirect association, one SNP is genotyped
and used to infer indirectly the genotypes at other SNPs

with which it is in high LD [3]. As one genotyped SNP,
called a "tag" SNP, can be in LD with numerous other
SNPs, much fewer SNPs (105 – 106) would need to be gen-
otyped to capture the common variation in the genome
[3]. Recent advances in genotyping technology make such
studies feasible [4,5] and the first results of such studies
are being published [6-10].

One key question in designing such studies is the choice
of tag SNPs. Numerous methods for choosing the best set
of tagging SNPs have been developed and compared [11].
One common measure evaluates the pairwise LD, meas-
ured by r2, between the tag SNPs and all other SNPs [12].
The value r2 represents the correlation between two SNPs.
It is a useful measure because, if N individuals are needed
for a specific power with a direct test of association, N/r2

individuals would be needed for an indirect test of associ-
ation [2]. Sets of tag SNPs are usually compared by their
"coverage," or fraction of variants in the genome that are
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in LD (r2 above some threshold) with at least one tag [12-
15].

There are two related problems with this measure of cov-
erage. First, the binary decision of whether r2 is above or
below a threshold does not capture the continual decrease
in power as r2 decreases. If the cutoff value of r2 is 0.8, a
SNP that shows LD of r2 = 0.75 with a tag would be called
undetectable since the measure of LD is below the thresh-
old. In truth, association would be detectable, albeit with
reduced power. Second, knowledge of the coverage of a set
of tag SNPs says nothing about the number of individuals
needed for a well-powered study. A better measure to eval-
uate tag SNPs would be an explicit calculation of the prob-
ability that a genome-wide association study will find a
statistically significant association given that such an asso-
ciation exists (i.e., power). To solve this problem, one
needs to be able to calculate the power of a study given a
specified genetic model and sample size. Skol et al. have
proposed a method for computing power, though they
were concerned with issues of study design rather than tag
SNP choice [16]. Jorgenson and Witte, who noted the
same problems, propose a "cumulative r2 adjusted power"
that integrates LD and tag SNP information to provide the
overall power of a study [17].

Realistically, one does not have an unlimited choice of
SNPs but rather chooses among several competing com-
mercial products with fixed sets of tag SNPs. Therefore,
instead of choosing a set of tag SNPs, a more common
problem now is how to evaluate which of several fixed sets
of tag SNPs is better for a particular study. Several papers
have looked at power for hypothetical and commercial
sets of tag SNPs through empirical simulations on a subset
of chromosomal regions [13,18]. This approach suffers
from both the speed problem of empirical simulations
and the assumption that the sampled regions are repre-
sentative of the genome as a whole. What is needed is an
application of explicit power calculation methods (such
as that of Jorgenson and Witte [17]) to the commercially
available sets of tag SNPs to allow comparison among
products and power calculation for real studies.

Here, I present a method for computing the power of a
genome-wide association study when a genetic model and
sample size are specified and LD information is available
for the population being studied. This method is equiva-
lent to the cumulative r2 adjusted power of Jorgenson and
Witte [17], which will be referred to as "power" for brev-
ity. I show that to obtain the best power, different com-
mercial genotyping products should be used for different
populations. I further find that power is sometimes
improved by genotyping more individuals at fewer SNPs
rather than fewer individuals at more SNPs. These calcula-

tions can guide the optimal design of future genome-wide
association studies.

Results and discussion
The power calculations require genotype data on a large
representative sample of common SNPs from the popula-
tion as well as a list of which of these representative SNPs
are the tag SNPs (SNPs to be genotyped). Power is com-
puted in three steps. First the best tag SNP for each of the
representative SNPs is found. Then, the power for detect-
ing association for each of the representative SNPs assum-
ing that SNP directly influences the phenotype is
computed. For this computation, it is assumed that the
study will be performed by testing for genotype frequency
differences between cases and controls using a two-degree
of freedom χ2 test in which multiple tests are corrected for
using the Bonferroni correction. This test explicitly
assumes a codominant model. I use this test because it is
the most general, at the cost of reduced power relative to
a model-specific test. While a multimarker tagging
approach could be taken [13], this added level of com-
plexity is not usually included in a first-pass analysis of
genome-wide association data and is therefore including
it in our power-calculation would inflate the power one
might expect in real-world application of genome-wide
association studies. Finally, the average power over all the
SNPs is taken to be the power of the study.

Taking the average power over all the SNPs is justified
using probability theory. Assume there are N SNPs present
in a given population, each one represented as Si. Let Ci

represent SNP i being causative, and Di represent SNP i

being detected. Assume that one of these SNPs is the caus-
ative SNP, but it is unknown which of these is the causa-
tive SNP. Then the overall power of the study is given by

. The power computed for a specific SNP Si

is given as Pi = Pr(Di|Ci). Thus, if each Pi multiplied by

Pr(Ci), we get

The added assumption that each SNP is equally likely to
be causative yields
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This final equation is the same as taking the average power
over all the SNPs.

This method was applied to examine the power of
genome-wide association studies in the four populations
studied in the International HapMap Project [19]. I exam-
ined the performance of the tag SNPs provided by the
major high-density genotyping platforms available com-
mercially: 100 K and 500 K SNP sets from Affymetrix and
300 K and 550 K SNP sets from Illumina. (Since then,
more products have come on the market; the same
approach can be taken with them.) I first asked how many
SNPs on each of these arrays would be useful for studying
a given population by asking what percentage of tag SNPs
provided by each platform are common (minor allele fre-
quency > 5%) in each of the four HapMap populations
(Table 1). The largest fraction of common SNPs is found
when the Illumina chip is used in the CEU population. As
the Illumina chip was designed to optimize coverage of
the CEU population, this result is unsurprising.

I next asked how power changes with increasing sample
size for the various genotyping platforms (Figure 1), pop-
ulations, and models. For all sets of tag SNPs, as expected,
power increases both as the sample size increases and as
the magnitude of effect, measured by the genotype relative
risk (GRR), increases. While Figure 1 only shows this data
for a multiplicative model in the CEU population, simi-
larly shaped curves were observed in the other popula-
tions and for other models [see Additional file 1]. In the
Affymetrix 500 K and Illumina 300 K SNP sets, the slope
of the power curve starts leveling off (approaching zero)
with a few thousand individuals when GRR is more than

1.5. For smaller GRRs, the sample sizes required for ade-
quate (at least 50%) power becomes quite large.

One critique of this approach is that the non-specific test
used may not be the most powerful approach if we know
the genetic model the disease follows. For instance, to
study a trait that we believe follows a multiplicative
model; a 2 × 2 contingency table to test for allelic associa-
tion may be more appropriate. Power calculations for this
test (Figure 2) shows that the relative pattern is the same
as for a test of genotypic association, but the power is gen-
erally increased when an allelic test is used in instead of a
genotypic test. Similar power calculations can be done if
one wants to use an explicit test for a dominant or reces-
sive mode of inheritance. However, as can be seen in this
comparison between the Affymetrix 500 K and Illumina
550 K genotyping system, choice of SNPs and sample size
can play a bigger role in determining power than choice of
test. For the specified GRR of 1.5, the Illumina 550 K sys-
tem with a genotypic test is more powerful than the
Affymetrix 500 K system when sample size is greater than
2000 individuals (Figure 2).

Another possible criticism of this method is that the SNPs
genotyped as part of the International HapMap Project
may not be a representative subset of the common SNPs
in the genome as a whole. To investigate this possibility, I
compared the coverage of the various SNPs in the
ENCODE and non-ENCODE regions from the HapMap
project (Figure 3). Since the ENCODE regions of the Hap-
Map project were completely resequenced in a subset of
48 individuals, I hypothesized that almost all common
(minor allele frequency >5%) variants would have been
identified in that region. If the SNPs genotyped as part of
the HapMap are a representative subset of all of the com-
mon SNPs, then the coverage of an arbitrary set of tag
SNPs should be equal for the two data sets. Assuming tag
SNPs were chosen similarly for the ENCODE and non-
ENCODE regions, relying on the HapMap data slightly
overestimates r2 with the tag SNPs and therefore could
slightly inflate the power estimation. As the fraction of
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Table 1: The number of SNPs present in each population and present in each commercial genotyping system

Population CEU JPT+CHB YRI

SNPs in HapMap 3868157 3890416 3796934
SNPs w/MAF >= 0.05 (%) 2230515 (58%) 2046163 (53%) 2477182 (65%)
Common SNPs on Affy 100 K chip (%) 91400 (79%) 82995 (72%) 91363 (79%)
Common SNPs on Affy 500 K chip (%) 378415 (77%) 346887 (70%) 409849 (83%)
Common SNPs on Illumina 300 K chip (%) 313265 (99%) 251560 (79%) 252678 (80%)
Common SNPs on Illumina 550 K chip (%) 506543 (91%) 425631 (77%) 441884 (80%)

The percentages given are the fraction of SNPs from the overall SNP set, and from each of the genotyping platforms, that are present 
with a MAF of at least 0.05 in each population
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SNPs with an r2 greater than the cutoff differs between the
ENCODE and non-ENCODE regions by at most ten per-
centage points, and an average of three percentage points,
this overestimation is not likely to be extreme.

An easy and useful way to compare the power of different
tag SNP sets in different populations is the sample size
needed to achieve 80% power. The Illumina 550 K clearly
performs best in all three populations (Figure 4). For the
CEU population, the Illumina 300 K outperforms the
Affymetrix 500 K, while in the other two populations the
Affymetrix 500 K is better. This is not surprising, as the
Illumina chips were optimized on CEU HapMap data. As
the Affymetrix 500 K set is really two independent 250 K
sets, I also looked at the power of each 250 K set individ-
ually. While the complete 500 K set of SNPs has more

power than either half, the number of individuals
required for 80% power using one half of the set is never
twice the number required for the full set. This means that
in cases when the number of chips that can be run rather
than number of available samples is the limiting factor, it
might make more sense to genotype more individuals
using only one chip than to genotype fewer individuals
using both chips. To test this hypothesis, I plotted power
versus the number chips needed for the components of
the Affymetrix 500 K system (Figure 5). The number of
chips is simply the sample size for Nsp and Sty alone, and
twice the sample size for the Nsp+Sty combination. Except
in cases where power gets very high due to a large GRR
and/or sample size, for a constant number of chips using
only one of Nsp or Sty on more individuals provides a
more powerful study.

Power for the test of genotypic association as a function of sample size at different genotype relative risks (GRR)Figure 1
Power for the test of genotypic association as a function of sample size at different genotype relative risks (GRR). All panels are 
for the CEU HapMap population when the number of cases equals the number of controls and a multiplicative model is used. 
(A) Power for the Affymetrix 100 K system. (B) Power for the Illumina 300 K system. (C) Power for the Affymetrix 500 K 
system. (D) Power for the Illumina 550 K system.
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I have presented a method to compute the power of a
genome-wide association study in which a fixed set of tag
SNPs will be genotyped. For the sake of simplicity, I only
considered one straightforward single-SNP analysis
scheme. While this approach has been used successfully
[6], others have suggested that greater power can be
obtained by looking at multiple tags or haplotypes
[18,20]. This method for computing power can be
adapted to such strategies provided it is possible to com-
pute the power of detecting each SNP in the population
given the set of tagging SNPs. I also assume that each SNP
is equally likely to be functional. If we knew a priori the
probability that a given SNP is functional, we could use
this to weight the average power over all the SNPs. Such a
weighting scheme would prioritize SNPs more likely to be
of interest because of either functional considerations or
location [21]. For instance, assume we assigned each SNP
a probability of being the causative SNP based on external
evidence such as a prior linkage study. If these probabili-
ties are normalized to sum to one, they can be used to
compute a weighted average power in this approach.

Conclusion
Proper design of a genome-wide association study
requires careful calculation of the power. These calcula-
tions will be invaluable to anyone who is planning a
genome-wide association study. Using these calculations,
the proper sample size to get adequate power in a given
study can be computed. Furthermore, the performance of
different genotyping platforms can be compared, allow-
ing an investigator to choose whatever is best for his or her
study. By performing such calculations, genome-wide
association studies can be optimized to get the maximal
power possible for a given set of resources.

Methods
Genotype data and populations
I used genotype data from release 21 (phase II) of the
International HapMap project [19]. I used data from all
four populations studied in the HapMap project. These
populations are defined by the HapMap project as fol-
lows: Yoruba in Ibadan, Nigeria (abbreviation: YRI); Jap-
anese in Tokyo, Japan (abbreviation: JPT); Han Chinese in
Beijing, China (abbreviation: CHB); and CEPH (Utah res-
idents with ancestry from northern and western Europe)
(abbreviation: CEU). Similar to the analysis performed by
the HapMap project, I combined genotypes from the JPT

Power for genotypic and allelic testsFigure 2
Power for genotypic and allelic tests. Data is shown for a 
GRR of 1.5 under a multiplicative model, the CEU HapMap 
population, and the specified genotyping system.
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and CHB populations to make a joint JPT+CHB popula-
tion. For all three resulting populations, I removed SNPs
that have a minor allele frequency (MAF) less than 0.05 in
that population. The remaining SNPs are considered to be
"common." A summary of the number of SNPs remaining
for each population is found in Table 1. When phased
data is needed, I used the phased chromosomes for release
21.

Calculation of power
To compute the overall power of an association study, I
use three steps. First, I find the best tag SNP for each gen-
otyped SNP in the data set. Then, I compute the power for
each SNP assuming the specified GRR and sample size.
Finally, I take an average power over all the SNPs to get the
overall power.

To find the best tag SNP for each genotyped SNP, I look at
the linkage disequilibrium between each SNP and all tag
SNPs within 300 kb of it. For each pair of SNPs, I infer the
two-locus haplotype frequencies between them using
expectation maximization and compute r2 between the
two SNPs from the inferred haplotype frequencies [12].
The best tag is then taken to be the tag SNP with the high-
est value of r2.

To compute the power for a SNP, I assume that we are
looking at genotype frequency differences using a two-
degree of freedom χ2 test. The power of this test is com-
puted using a non-central χ2 distribution with non-cen-
trality parameter λ. Equations for λ have been previously
derived for a general χ2 test [22] and for application to
genetic association [23]. Specifically, for genotypic associ-
ation λ is given by:

where NA and NU are the number of case (affected) and
control (unaffected) individuals, respectively; p00, p01, and
p02 are the genotype frequencies in the cases; and p10, p11,
and p12 are the genotype frequencies in the controls. If,
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instead of a 3 × 2 table we use a 2 × 2 table for a one-
degree of freedom test of allelic association, the non-cen-
trality parameter is given by

where pA and pU are the frequencies of allele 0 in the cases
and controls, respectively.

I use the Bonferroni correction for multiple testing and
require a p-value of 0.05/M (where M is the number of tag
SNPs genotyped) for statistical significance. When associ-
ation is directly tested (the SNP is a tag SNP), I use the
actual number of cases and controls to compute the
power. For indirect association (the SNP is in LD with a
tag SNP), I reduce the number of cases and controls by a
factor of r2 for the power computation [2].

I assume that the disease has a low enough prevalence in
the population that the risk allele frequency in those with-
out the disease approximates the risk allele frequency in
the population. I can set the disease to follow a multipli-
cative, additive, dominant, or recessive model with a spec-
ified genotype relative risk (GRR) for the SNP of interest
[1]. Given that genotype 0 is the wildtype, and taking p10,
p11, and p12 from the observed genotype frequencies in the
population, p00, p01, and p02 are computed as follows:

Multiplicative

Additive

Dominant

Recessive

After the power is computed for each SNP, I take the over-
all power to be the average power over all the SNPs. In tak-
ing the average power over all SNPs, I give less weight to
the tag SNPs since they are over-represented in the set of
SNPs being analyzed. Assume that of the S SNPs under
consideration (for which we have linkage disequilibrium
[LD] data from, for instance, the HapMap project), M are
tags that will be genotyped on the chip and S-M are not
tags. Further assume that there are T common SNPs in
total in this population, which includes both those S SNPs
for which we have LD data and SNPs for which we do not
know their LD with surrounding SNPs. Let 1-βi be the
power for SNP i where i ranges from 1 to S and SNP i is a
tag SNP when i ≤ M and a non-tag otherwise. Then, the
overall power is given by:

In this manner, the tag SNPs are only considered repre-
sentative of themselves, while the non-tag SNPs for which
we have LD data are considered representative of all com-
mon non-tag SNPs. For these calculations, I use T = 2 ×
107.

Implementation
A computer program to implement these calculations was
written in C. The source code is available upon request
from the author.

Authors' contributions
RJK conceived of the experiments, implemented them,
analyzed the data, and wrote the manuscript.
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Additional material
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