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Abstract

Background: Complex diseases are believed to be the results of many genes and environmental
factors. Hence, multi-marker methods that can use the information of markers from different genes
are appropriate for mapping complex disease genes. There already have been several multi-marker
methods proposed for case-control studies. In this article, we propose a multi-marker test called
a Multi-marker Pedigree Disequilibrium Test (MPDT) to analyze family data from genome-wide
association studies. If the parental phenotypes are available, we also propose a two-stage test in
which a genomic screening test is used to select SNPs, and then the MPDT is used to test the
association of the selected SNPs.

Results: We use simulation studies to evaluate the performance of the MPDT and the two-stage
approach. The results show that the MPDT constantly outperforms the single marker transmission/
disequilibrium test (TDT) [I]. Comparing the power of the two-stage approach with that of the
one-stage approach, which approach is more powerful depends on the value of the prevalence;
when the prevalence is no less than 10%, the two-stage approach may be more powerful than the
one-stage approach. Otherwise, the one-stage approach is more powerful.

Conclusion: The proposed MPDT, is more powerful than the single marker TDT. When the
parental phenotypes are available and the prevalence is no less than 10%, the proposed two-stage
approach is more powerful than the one-stage approach.

Background

Complex diseases are presumed to be the results of many
genes and environmental factors, with each gene only
having a small effect on the disease. To test for the associ-
ation, multi-marker methods that can combine the infor-
mation of markers from different genes or across the
genome are appropriate. To search for a set of susceptibil-
ity genes across the whole genome that is responsible for
a complex trait, we need a multi-marker test (applicable to
linked and unlinked markers) and a searching algorithm.

In case-control studies, several multi-marker association
tests have been proposed which include the Hotelling's T2
test proposed by Xiong et al. [2] and the score test pro-
posed by Chapman et al. [3] and Wallace et al. [4], among
others. All these methods can combine information from
multiple markers in one candidate gene, different genes,
or across the genome. Although several haplotype-based
methods have been proposed for a family-based design
[5-12], those methods can only deal with the markers in a
candidate gene or a tightly linked chromosome region. Xu
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et al. [13] first proposed a multi-marker method dealing
with unlinked markers. The test statistic of Xu et al.'s
method is the weighted sum of the single marker test sta-
tistics and the weights were calculated by using the infor-
mation of parental phenotypes. This method is mainly
developed for quantitative traits and requires parental
phenotypes.

In this article, we proposed a multi-marker association
test for family-based designs. Our method, proposed for
qualitative traits, does not require parental phenotypes
and can deal with markers from different genes or across
the genome. The proposed MPDT, as an extension of the
Pedigree Disequilibrium Test (PDT) [14], can be applied
to any size of pedigrees. To apply the MPDT to genome-
wide association studies, we also propose a searching
algorithm. The proposed multi-marker association test
together with the searching algorithm allows one to
search for a set of susceptibility genes across the genome
responsible for a complex trait. If the parental phenotypes
are available, we propose a two-stage test by using the
same family-based data set. In the two-stage approach, we
first use a single marker test by contrasting parental cases
with parental controls to screen the SNPs, and then use
the MPDT and the searching algorithm to search for a set
of susceptibility genes. The two-stage approach is moti-
vated by the method recently proposed by Steen et al.
[15]. In mapping quantitative trait loci using family data,
Steen et al. proposed an interesting approach that per-
forms a SNP screening and association test using the same
sample. The basic idea of Steen et al.'s method is that the
screening test based on the traits and between-family gen-
otype scores is statistically independent of the association
test which depends on trait values and within-family gen-
otype scores. The screening test is used first to select SNPs,
and then the association test is performed on a much
smaller set of the selected SNPs. Our two-stage approach
uses a similar idea but different tests in both stages.

We use simulation studies to evaluate the performance of
our proposed method. The results show that the MPDT
(either one-stage or two-stage) has the correct type I error
rates. In all the cases that we considered, the MPDT is
more powerful than the single marker TDT. Comparing
the power of the two-stage approach that uses parental
phenotypes with that of the one-stage approach, which
approach is more powerful depends on the value of the
prevalence; when the prevalence is no less than 10%, the
two-stage approach may be more powerful than the one-
stage approach. Otherwise, the one-stage approach is the
more powerful one.

Methods
In this section, we will first give the test statistic of the
MPDT. Then, we will discuss a searching algorithm and
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how to find a set of susceptibility genes by the searching
method and the MPDT. Finally, we will describe a two-
stage approach used to incorporate the information of
parental phenotypes if it is available.

The MPDT

As the PDT proposed by Martin et al. [14], the MPDT is
designed for pedigrees of any size. In the following discus-
sion, for simplicity of presentation, we will only give the
statistic for nuclear families with affected children. It is
straightforward to extend the statistic for general pedi-
grees. Suppose we have genotyped m markers across the
genome or in a candidate region for each sampled indi-
vidual. Consider a sample of n nuclear families with n;
affected children in the i family. For a biallelic marker
with two alleles A and a, we code the three genotypes aa,
Aa, and AA as 0, 1, and 2, respectively.

Let F;, M;and u
mother and k" child in the i family at the j* marker,

respectively, i=1,2,..,mj=1,2,..,m k=1,2,..,n;. Con-

i denote the genotype codes of the father,

sidering each affected child as a case, we define a pseudo-
control matching each case. The pseudo-control matching

the ki child in the i" family has a genotype code ufjk atthe

j" marker where u,-cjk is the genotype code of the two alle-

les not transmitting to the k' child by the parents. For
example, if the genotypes of the father, mother, and a
child are Aa, Aa, and AA, respectively, then the pseudo-
control matching this child has a genotype of aa and a
genotype code of 0.

It is easy to see that the genotype codes of parents, chil-
dren, and the pseudo-controls have the relationship

[
Ui = Fij+ Mj; - .

Let Uy, = uj,- ”fjk = 2 x Uy, - F;- M. Define a multi-marker

score U, for the Fk* child in the " family as
Uk =W, Upg) = (Ui Uypy). The multi-marker

score of the i family is defined as

1
Ui = ZUik.
k=1

n n

Let U= ZUl- and V= ZUiUiT . The statistic of the
i=1 i=1

MPDT is defined as
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T = UTVeL,

where V@ is the generalized inverse of V. Under the null
hypothesis of no association between the markers and the

trait, the MPDT has approximately a 32 distribution with
degrees of freedom k, where k is the rank of V. If only one

n n

marker is considered, T = (z Ui)2 / ZUE is the test sta-
i=1 i=1

tistic of the PDT.

Searching algorithm and overall p-value

In this section, we consider a genome-wide association
study. Suppose we have genotyped M markers across the
genome. Our aim is to find a set of markers that jointly
have significant association with the trait. We propose two
searching algorithms: Conditional Search (CS) and
Sequential Forward Search (SFS). In both algorithms, each
of the M markers is tested by using the PDT first. Then, the
markers are ordered according to their p-values of the
PDT. Suppose the p-values of markers 1, 2,..., M are in
ascending order. Based on the ordered markers, the two
algorithms are given below:

cs

The CS algorithm searches marker-sets A;,..., A;, where
marker-set A; consists of markers 1,...,i (i =1,..., L) and L
is a pre-specified value. We calculate the p-value of the
MPDT for each set of markers and call the p-value from
this step a raw p-value.

SFS

The SES algorithm begins with marker-set A; which con-
sists of marker 1. Then, by adding one marker to the
marker-set A;, we get all of the two-locus combinations
with the first marker included. We test all of the two-locus
combinations by the MPDT and choose the two-locus
combination with the smallest p-value (also called a raw
p-value) as marker-set A,. In this way, we can get a series
of marker-sets A, ..., A;.

Both of the two searching algorithms give a series of can-
didate marker-sets and the corresponding raw p-values of
the MPDT. The problems that remain are choosing the
"best" or the final marker-set and evaluating the overall p-
value of the final marker-set. An intuitive idea is to choose
the marker-set with the smallest raw p-values as the final
marker-set and use a permutation procedure to evaluate
the overall p-value. However, our simulation studies
(results not shown) show that in most cases, the more
markers a marker-set contains, the smaller the p-value of
the marker-set will be. Thus, instead of using the raw p-
values, we propose to use a permutation procedure
recently proposed by Ge et al. [16] and further discussed
by Becker and Knapp [17] to adjust the raw p-values and
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use the adjusted p-values to choose the final marker-set.
This procedure also gives the overall p-value of the final
marker-set. Let A,,..., A; denote the candidate marker-sets
and Pgy,..., Py, denote the associated raw p-values of the
MPDT. The permutation procedure includes the following
steps:

1. Generate S (say, 1,000) permuted datasets. In each per-
mutation, there is a 50% probability of changing the
multi-marker genotype (the genotype across all of the M
markers) of each child with that of the corresponding
pseudo-control. The reason that we changed the geno-
types across M markers simultaneously is to keep the LD
structure in each permuted data set.

2. For each permuted data set, search for the L candidate
marker-sets by either of the two algorithms. Based on the
permutated data set, test for the association between each
marker-set and the trait using the MPDT. For the st per-
muted data set, denote the L candidate marker-sets by
Ag,..., Ay and the associated raw p-values by Pg,..., Py.

Then, the adjusted p-value corresponding to the candidate

S
1
marker-set A; is estimated by pg; = S 2 I(Py < Py;), where
s=1
I(+) is a indicator function. We will choose the marker-set
with the smallest adjusted p-value, p, = min(py;, Poor---r

por), as the final marker-set.

3. To evaluate the overall p-value of the final marker-set,
we first adjust the raw p-values P,j,..., P, for the st per-

muted data, s = 1,..., S. The adjusted value of P, is given by

S
1 .
Py = EZI(Pﬂ < Py). Let p, = min{pg,..., py }. Then, the
t=0

overall p-value of the final marker-set is given by

1 S
Poverall = Ezl(ps <Po)- (1)
s=1

Usually, p,,,..; is obtained through another layer of per-
mutation by a standard double permutation procedure,
according to Ge et al. [16], p,yeran Ca0 be estimated by (1),
which needs only one layer of permutation.

A two-stage approach to incorporate parental phenotypes
If parental phenotypes are available, we propose a two-
stage approach to incorporate the parental phenotypes.
The basic idea of the two-stage approach is that the test
used in the first stage is independent of the association test
used in the second stage; the test in the first stage is used
to select promising SNPs, and the association test in the
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second stage can be performed on a smaller set of the
selected SNPs.

Stage one

The test that we propose to use in this stage is based on a
test statistic for a case-control study. Consider a case-con-
trol study with N, cases and N, controls, and each sam-
pled individual has a genotype at a bi-allelic marker with
two alleles A and a. To test the association between the
marker and the disease, one can use the test statistic

o (-9’

p ’
62

where p and g are the sample frequencies of allele A in
cases and controls, respectively;

) 1 1 . . .
o =(—+— 1- is the estimated variance of
(21\]1 2N2)Po( Po)

p - 4 b, is the sample frequency of allele A in the whole

sample. Under the null hypothesis of no association, this
test statistic asymptotically follows a Chi-squared distri-
bution with one degree of freedom. To use this test statis-
tic in the first stage, we consider the affected parents of the
sampled nuclear families as cases and the unaffected par-
ents of the sampled nuclear families as controls. We pro-
pose to use the statistic T, on each of the M markers and

get a corresponding P-value for each marker. Select M,
markers with the smallest P-values, where M, is a pre-spec-

ified number, which usually is smaller than M. We will
discuss how to choose M, later. In this stage, we use only

the parental information of the nuclear families.

Stage two

Apply the searching algorithm (including the permuta-
tion procedure) to the M, selected markers to find a final
marker-set and the overall p-value of the MPDT to test the
association between the final marker-set and the trait.
Since all the calculations including searching and permu-
tation procedure are applied to the data set of M, markers,
the calculation will be much faster than that of applying
the method directly to the original M markers. If the
parental phenotypes and genotypes have sufficient infor-
mation to keep most of the disease susceptibility loci in
the selected markers and delete many noise markers in the
first stage, then the two-stage approach should be more
powerful. Otherwise, the two-stage approach may lose
power.

Other method compared

We compared the proposed MPDT (plus the searching
algorithms) with the single-marker TDT. We also com-
pared the power of the tests using (two-stage approach)
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and without using (one-stage approach) parental pheno-
types. For the single marker TDT, we search for a set of sig-
nificance markers by controlling the False Discovery Rates
(FDRs) [18], the ratio of the number of falsely rejected
null hypotheses to the total number of rejected null
hypotheses. We use the one-stage approach as an example
to explain the procedure. Calculate the TDT for each of the
M markers and denote the ordered p-values by p(y),..., p(u)-

Declare a marker significant if the P-value of the TDT at
this marker is less than a threshold ,, such that the FDR

can be controlled at a level of a. The threshold 6, is deter-
mined by &y, = max{p;) : p) < %} The marker set that

consists of all the markers associated with the trait is
called the final marker-set.

Results

We use two sets of simulation studies to evaluate the type
I error rates and the power of the proposed methods. The
type 1 error rates are evaluated for both one-stage and two-
stage approaches. For the power comparisons, we com-
pare the proposed multiple-marker approach with the sin-
gle-marker approach, and the one-stage approach with the
two-stage approach. In the simulation studies, we con-
sider nuclear families with one affected child and use L =
15, where L is the maximum number of markers con-
tained in the searched marker-sets. To identify a set of
markers, we propose two searching algorithms: CS and
SFS. The results for type I error rates and power compari-
sons by using CS and SFS are very similar. We only show
the results using the CS algorithm.

In the first set of simulation studies, we use the data sets
where the nearby markers are in Linkage Disequilibrium
(LD). For the purpose of generating genotypes with LD
between markers, we use Hudson's program (ms soft-
ware) [19] which assumes the coalescent process with
recombination to generate multi-marker haplotypes. We
follow Nordborg M, Tavare S [20] and Kimmel G, Shamir
R's [21] methods, using a mutation rate of 2.5 x 10-8 per
nucleotide per generation, a recombination rate of 10-8
per pair of nucleotides per generation, and an effective
population size of 10,000 individuals. Of all the segregat-
ing sites, only the ones with minor-allele frequency >5%
are defined as SNPs and are used in the rest of the analysis.
The simulation program produces populations from
which samples of cases and controls can be drawn.

In the second set of simulation studies, we generate the
genotypes by assuming the Hardy-Weinberg equilibrium
and linkage equilibrium. This means that we generate
each allele at each marker independently, and the minor
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allele frequency at each marker is drawn randomly
between 0.05~0.5.

Assessing the type | error rates

To assess the type I error rates, we generate data under the
null hypothesis of no association between trait values and
the multi-marker genotypes. In both of the two sets of
simulations, we first generate the genotypes of the parents
of each nuclear family and then each parent randomly
transmits one of the two haplotypes to the child to form
the child's genotype. We consider the sample size of 500
nuclear families and three different numbers of markers:
100, 1,000 and 100,000. For each simulation scenario, we
generate 1,000 samples to estimate the type I error rates of
the MPDT and TDT for one-stage approaches as well as
two-stage approaches by using different values of M, (the
number of markers retained in the first stage). Note that
when M, = M, the two-stage method is, in fact, the one-
stage approach. For 1,000 replications, the 95% confi-
dence interval of the type I error rate is (0.0362, 0.0638)
with a nominal level of 5%. The results are summarized in
Table 1. Table 1 shows that the type I error rates of the
MPDT and TDT are very consistent with the nominal level
of 5% for both one-stage approaches (the case of M; = M)
and two-stage approaches (M; <M). We can see that the
consistency does not depend on the value of M;. The cor-
rect type I error rates for the two-stage approach also show
that the tests used in the first stage and in the second stage
should be independent.

Simulation studies for evaluating power

For the power comparisons, we compare the proposed
multiple-marker approach with the single-marker
approach, and the one-stage approach with the two-stage

Table I: Type | error rates of the MPDT and TDT
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approach. First, we clarify the meaning of powers for dif-
ferent methods.

Power and Power Calculation
To estimate the power of the MPDT and TDT for one-stage
approaches as well as two-stage approaches, we use 100
replicated samples in both sets of simulation studies. Sup-
pose that there are M biallelic markers and among the M
markers there are m disease loci. For the MPDT (one-stage
or two-stage approaches), there is a final marker-set and
an overall p-value of the test for testing the association
between the final marker-set and the trait. Let s; and p;
denote the number of disease loci contained in the final
marker-set and the overall p-value of the test to test the
association between the final marker-set and the trait,
respectively, for the ith replicated sample. Then, the esti-
power of the MPDT is

mated given by

power = ﬁzgfsil{pim} , where Iy is an indicator
function and « is the significance level. The TDT also gives
a final marker-set that contains all the markers signifi-
cantly associated with the trait. Let s; denote the number

of disease loci contained in the final marker-set of the

TDT. Then, the estimated power is given by
1
power = —— ?0 s; . In other words, the power of the
100m <=1

MPDT is the percentage of disease loci contained in the
final marker-sets that have significant association with the
trait, and the power of the TDT is the percentage of disease
loci contained in the final marker-sets.

M M, With LD between markers Without LD between markers
TDT MPDT TDT MPDT

100 | 0.051 0.040 0.052 0.049

5 0.053 0.046 0.057 0.061

10 0.052 0.051 0.045 0.049

50 0.044 0.053 0.039 0.039

100 0.046 0.061 0.039 0.051

1,000 5 0.055 0.061 0.048 0.042

10 0.052 0.037 0.040 0.061

50 0.048 0.061 0.044 0.041

100 0.049 0.042 0.048 0.044

1,000 0.045 0.059 0.059 0.042

100,000 1,000 0.053 0.040 0.045 0.057
10,000 0.053 0.050 0.042 0.053

30,000 0.039 0.045 0.047 0.050

50,000 0.039 0.049 0.042 0.056

100,000 0.053 0.060 0.049 0.052

M is the total number of markers and M, is the number of markers retained in the first stage.
Page 5 of 10
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Table 2: Parameters of the four models
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Logistic model

Values of the parameters

Model | By =10g(2), B33 = log(5)
108% = Po + Brx; + Prazxixaxs

Model Il b= 5= py=log(2)
log% = Po + Brx1 + Baxy + B3x3

Model Ill Bi=10g(2),i= ... 6; B;= = log(3)
logé =Po+ i{ﬁixi + B7xzxg + Pexc

Model IV fi=1log(2),i=1,., 10

5 10
lOgE = Bo+ . Bix;

i=1

Power comparisons

To assess the power of the proposed method, we generate
genotype data under four different disease models. In
model I and model II, we consider two three-locus disease
models, and in model III and model IV, we consider two
ten-locus disease models. These models are similar to
those used by Millstein et al. [22] in their simulation stud-
ies. Let p = P(Affected|genotype) denote the penetrance
and x;, denote the numerical code of the genotype at the kt
disease locus. The relationship between p and genotype
codes at the disease loci is given by the logistic models:

108& = Bo + Brx1 + Brazxxax3,
108& = Bo + Bix1 + Byxy + Baxs,

6
logﬁ = Po + 2 Bixi + B7x7x5 + Bgxoxyo, and
=1

p 10
log——= By + Y Bix;

1-p i=1
for model I, 11, 111, and 1V, respectively. The values of coef-
ficients (except for f3,) are given in Table 2. x;, is coded by
an additive coding scheme i.e. x;,= 0, 1, or 2 correspond-
ing to genotype a,4;, A4, or AA, at the kth disease locus,
where A, is the high risk allele. The value of £, can be
determined by the values of the other parameters and
population prevalence. We use three different values of
population prevalence: 5%, 10%, and 20%. In our simu-
lation studies, we assume that the frequency of the minor
allele (high risk allele) at each disease locus is between 0.1
and 0.33. The four models represent different interaction
structures. Model II and IV represent additive effects,

while Model I and III represent additive as well as interac-
tion effects.

We generate genotypes at 100,000 markers for each indi-
vidual. To generate multi-marker genotypes of parents
and the affected child in each nuclear family, we use a
reject/accept procedure. Using the case of genotypes with
LD as an example, for each parent, we randomly choose
two haplotypes with replacement from the haplotype
population generated by Hudson's ms program to form
the multi-marker genotype of each parent. Then, each par-
ent randomly transmits one of the two multi-marker hap-
lotypes to the child to form the child's multi-marker
genotype. Let G denote the multi-marker genotype of the
child at the disease loci and let f, = Pr(affected|G) denote
the penetrance that can be calculated from a given disease
model. Then, the child is affected with a probability of f..
If the child is affected, we will retain the family. Other-
wise, we will discard the family.

In our simulations, we vary the value of M;, the number
of markers retained in the first step, from 1,000 to
100,000. The results of M; = 100,000 are the results of the
one stage approaches. The power comparisons of the
MPDT and TDT for one-stage and two-stage approaches
with different prevalence, different LD patterns, and dif-
ferent models are given in Figure 1, Figure 2 and Figure 3.
Comparing the MPDT with the TDT, the figures show that
the multi-marker method, MPDT, is consistently more
powerful than the single marker method, TDT, in all the
scenarios we considered. The power comparisons of one-
stage and two-stage approaches are more complicated. If
there is no LD between markers, by carefully choosing M,
the two-stage approaches are more powerful than the one-
stage approaches for both MPDT and TDT. However, in
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Power

1 10 20 30 40 50 100
M1 (in thousands)

0.9 1
0.8 T
0.7 T
0.6 [
0.5
0.4 [
0.3 T
0.2
0.1 [

Power
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M1 (in thousands)

Power comparisons using the population prevalence of 0.05. TDT and MPDT denote the two tests based on the first set of
simulation studies, generating genotypes with LD between markers; TDT_indep and MPDT _indep denote the two tests based
on the second set of simulation studies, generating genotypes by assuming the Hardy-Weinberg equilibrium and linkage equilib-

rium.

the more realistic situation where there is LD between
markers, which approach is more powerful depends on
the value of the prevalence. When the prevalence is no less
than 10%, the two-stage approach may be more powerful
than the one-stage approach. Otherwise, the one-stage
approach is more powerful. Our conclusion of the power
comparisons between the one-stage and two-stage
approaches is different from that of Steen et al.'s which
says that when M, is smaller than 10, for all the cases they
considered, the two-stage approach is much more power-
ful than the one-stage approach for a quantitative trait.
The difference between our results for a qualitative trait
and Steen et al.'s for a quantitative trait is not surprising.
If the prevalence is small, 1% for example, the affected
parents are probably only little more than 1% among all
the sampled parents. Suppose we have sampled 1000 par-

ents. The test T, used in the first stage is based on a case-
control study with ~10 cases and ~990 controls. Since
there are too few cases, the test T, should have limited
power. When the value of the prevalence increases, the
power of the test T, will increase, and then the two-stage
approach may have some advantages over the one-stage

approach.

We have also compared the Proportion of Non-Disease
Loci (PNDL) contained in the final marker-set of the
MPDT and TDT. Let fi (ti) denote the number of non-dis-
ease loci (total loci) contained in the final marker-set, and
pi as the overall p-value of the test, to test the association
between the final marker-set and the trait, respectively, for
the ith replicated sample. Then, the estimated PNDL of
the MPDT is given by
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Let F; (T;) denote the number of non-disease loci (total
loci) contained in the final marker-set of the TDT. Then,
the estimated PNDL of the TDT is given by

100
i fi

100, °

iz Ti
When there is no LD between markers, the PNDLs of both
the TDT and MPDT are very close to the nominal level
0.05 for different values of M,, prevalence and difference
disease models. However, when there is LD between

PNDL = (2)

PNDL = (3)

markers, the PNDL of the MPDT is much larger than that
of the TDT. In this case, the MPDT has an average PNDL
of 0.6 and the TDT has an average PNDL of 0.3. We need
to note that when there is no LD between markers, the
PNDL is the same as the FDR, but when there is LD
between markers, the PNDL is different from the FDR. The
FDR is defined as the proportion of falsely rejected loci
(no LD with disease loci) in the final marker-set, but the
PNDL is the proportion of non-disease loci in the final
marker-set. Noting that the null hypothesis is no associa-
tion with the disease (no LD with disease loci), non-dis-
ease loci in the final marker-set may have LD with the
disease loci, and thus may not be the falsely rejected loci.
Based on the above discussion, when there is LD between
markers, although the PNDL of the MPDT is much larger
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than that of the TDT, we can not say that the FDR of the
MPDT is larger than that of the TDT.

When there is LD between markers, we further define the
FDR by changing f;and F;in equation (2) and (3) to be the
number of markers that have no LD with the disease loci
(the absolute value of LD measure D' less than 0.05) in
the final marker-set. Using this definition, the FDRs of the
MPDT and TDT are both near 0.05.

Discussion

In this article, we proposed a multi-marker test, the
MPDT, to analyze family-based data from genome-wide
or region-wide association studies. The MPDT can com-
bine information from multiple unrelated markers, while
haplotype-based methods [5-12] can only combine infor-
mation from nearby markers. Thus, the MPDT is more
appropriate for searching for a set of susceptibility loci

across the whole genome. By using simulation studies, we
are able to demonstrate that the proposed multi-marker
method, MPDT, consistently outperforms the single-
marker method, TDT.

One remaining question in the MPDT is choosing the val-
ues of L, the maximum number of markers contained in
the searched marker-sets. In our simulation studies, we
use L = 15. If one has a prior knowledge of the number of
disease loci, the value of L can be set to be that number.
Otherwise, we suggest choosing L between 10 and 30. A
large value of L increases computational burden, while a
small value of L may limit the power.

If parental phenotypes are available, we proposed a two-
stage approach. In the first stage a screening test based on
parental phenotypes is used to select SNPs, and in the sec-
ond stage the MPDT is performed to search for a set of sus-
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ceptibility loci from the selected SNPs. Comparing a one-
stage approach with the corresponding two-stage
approach, the more powerful one depends on population
prevalence and M;, the number of SNPs selected in the
first stage. Our simulations show that only if the popula-
tion prevalence is very high (>10%), then the two-stage
approach may outperform the one-stage approach.
Another question needed to be pointed out is choosing
the value of M,. In our simulation studies, we varied M,
from 1% to 100% of the total number of markers, M. The
results show that 10% to 20% of the total numbers of
markers are good choices for M,. In general, we need fur-
ther investigations on choosing the optimal value of M,.

In this article, we proposed two searching algorithms: CS
and SFS. Theoretically, if all the disease loci have detecta-
ble marginal effects, CS should be more powerful than
SFS. If the disease loci can be divided into two groups: the
first group consisting of loci with detectable marginal
effects and the second consisting of loci with weak mar-
ginal effects, but having strong interaction effects with the
loci in the first group, SFS should be the more powerful
one. However, our simulation studies showed that the
two methods have similar power in all the cases that we
considered. Thus, we suggest using CS in practice because
CS is much easier computationally than SFS.
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