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Abstract

Background: Minisatellites and microsatellites are associated with human disease, not only as
markers of risk but also involved directly in disease pathogenesis. They may play significant roles in
replication, repair and mutation of DNA, regulation of gene transcription and protein structure
alteration. Phenotypes can thus be affected by mini/microsatellites in a manner proportional to the
length of the allele. Here we propose a new method to assess the linear trend toward transmission
of shorter or longer alleles from heterozygote parents to affected child.

Results: This test (trend-TDT) performs better than other TDT (Transmission/Disequilibrium
Test) type tests, such as TDT, ,, and TDT|, under most marker-disease association models.

Conclusion: The trend-TDT test is a more powerful association test when there is a biological
basis to suspect a relationship between allele length and disease risk.

Background

Variable number tandem repeats (VNTR's) are repetitive
DNA sequences widely dispersed in the human genome.
They are highly unstable and thus display a remarkable
degree of polymorphism. They vary in length from a few
to several thousand nucleotides and vary in complexity
from simple di-, tri- and tetra-nucleotide repeats (micros-
atellites) to more complex repetitive elements (minisatel-
lites). VNTR's, mainly microsatellites, have assumed an
increasingly important role as markers in the genome and
are intensively exploited for gene mapping. But VNTR's
could be associated with human disease, not only as
markers but also directly involved in disease pathogene-
sis; indeed, several functions have been suggested for
micro- and mini-satellite DNA sequences.

If located within a coding sequence, VNTR's may alter pro-
tein structure. For example, expansions of tri-nucleotide
microsatellites are responsible for genetic diseases such as
X-linked spinal and bulbar muscular atrophy, Huntington
disease, type 1 spinocerebellar ataxia, dentatorubral-pal-
lidoluysian atrophy, and Machado-Joseph disease. These
diseases are caused by expansion of CAG triplets within
protein-coding regions [1].

VNTR's may also regulate gene transcription. Numerous in
vitro studies have shown that gene transcription may be
increased or decreased proportionally to the number of
repeated sequences (i.e. length of alleles) as illustrated in
Table 1 (for detailed review, see Kashi et al. [2]). Direct
effect of transcriptional modulation on risk of disease has
been observed. As an example, the minisatellite ILPR
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Table I: Micro/minisatellites that regulate gene transcription.
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Genes regulated VNTR localization Repeat unit Length of alleles  Transcription regulation 2  Interacting factor b
Microsatellites
EGF receptor intron | (CA), 14-21 down
metalloproteinase 9 promoter (CA), 14-23 down
Pax-6 promoter -| kb (AC),, (AG), 24-36 up
HLA-DRB intron 2 (GT),, (GA), (15-22)(4-15) down CTCF (ZNF)
NOS2A promoter -2.5 kb (CCTTT), 8-18 up
COLIA2 promoter, intron | (CA),(CG).(CA), (14-21)(6-7)(8) up
prolactin promoter (TG),, (CA), (8-15)(4-13) down
phospholipase A2 promoter -595 bp (CA), 48 down
heme oxygenase promoter -240 bp (GT), 16-38 up
CD30 gene promoter -400 bp (CCAT), 2-12 repression
Minisatellites
HRAS 3" 1 kb after polyA 28 bp repeat 30-84 up NF-kappa B
Insulin promoter -596 bp 14 bp repeat 40-157 up Pur-1
ABO gene promoter -3.6 kb 43 bp repeat 4-6 up CBF/NF-Y

aThe direction of transcription regulation is according to elongation of alleles;
b If identified, transcription factors that interact with the micro/minisatellites are mentioned.

(Insulin-Linked Polymorphic Region, (ACAGGGGTGT-
GGGG),) located 5' of the Insulin gene is implicated in
Insulin-Dependent Diabetes Mellitus [3]. To date, many
transcriptional factors have been identified and their
binding with minisatellite repeated sequences have been
demonstrated. There is increasing evidence that some
gene-disease associations are due to functional micro/
minisatellites, with the magnitude of susceptibility being
related to allele length [4-6].

The Transmission/Disequilibrium Test (TDT) is a popular
method to assess the involvement of a candidate gene or
a genome region in the genetic component of a disease,
using cases and their parents. The TDT, as originally devel-
oped [7], tested the association between a bi-allelic
marker and a disease. Many authors have proposed an
extension of the TDT to multi-allelic markers, by testing
each allele separately [8,9]., by testing symmetry of the
transmitted/non-transmitted table [10,11], by testing
marginal homogeneity [12,13], or by conditional logistic
regression [14,15]. However, all these extensions consid-
ered implicitly the multi-allelic marker as a polymor-
phism without function, that is, the risk of disease was not
treated as being correlated with allele repeat length. While
this is true for most situations, there are some situations
where the multi-allelic marker under study may have a
functional effect on the studied disease, and thus this cor-
relation may be present. This may introduce new informa-
tion that can be taken into account in the test. From a
statistical point of view, increased allele length could be
understood as an increased dose of exposure to a risk fac-
tor. In contrast to case-control association studies where
one can use the classical trend-chi-square (the Cochran-
Armitage trend test) to test this hypothesis, available

extensions of the TDT to multi-allelic markers do not test
such a "dose effect" in family-based association studies.
However, case-control studies can be subject to bias pro-
duced by hidden population stratification. Therefore, a
new statistical method that can test the correlation of
allele length with disease susceptibility, and is not sensi-
tive to population stratification is needed. In this paper,
we describe a newly developed method to meet this
requirement.

Methods

Algorithm

Consider a multi-allelic marker with k alleles, which are
assumed to be coded as integers proportional to their
length. The trend-TDT statistic is based on the length of
alleles transmitted from heterozygous parents to their
affected children. Let's denote, for each heterozygous par-
ent i, t; the length of the transmitted allele, u; the length of
the untransmitted allele, and x; the difference between the
length of transmitted and untransmitted alleles (x; = t;-u;).
For family f, let nybe the number of calculated x; within the
family, and define d;as

X
Vf
Under the situation that neither the micro/minisatellite is
the cause of the disease, nor is it in linkage disequilibrium

with any disease causing genes, then the mean of d;should
be zero, and its variance is

df:

V(df) =V( X )= V(X xq) _ an(x) = V(x)

Jnft o onf nf
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Note that this d; is actually the mean of x; weighted by
square root of n, so that the variance of d;is equal between
families. Hence the test statistic

T mean(df)
S/NN

asymptotically follows the Student's t distribution with N-
1 degrees of freedom. Here S is the estimated standard
deviation of the d;, and N is the number of informative
families. In case there is a trend toward transmission of
shorter alleles, the mean(dy) will be less than 0, and vice
versa. If biological clues indicate that preferential trans-
mission of shorter alleles (or longer alleles) should be
observed, the test is one-tailed t test (H,:T < 0 or H,:T > 0);
otherwise the test is two-tailed (H;: T # 0).

The missing genotype problem is treated according to
Curtis [16]. In case both parents are missing, or, one par-
ent is missing and the affected child has the same hetero-
zygote genotype as the other parent, these families are
considered uninformative and are discarded in the analy-
sis. When only one parent is missing but the affected child
is homozygote, inclusion of such triads will lead to bias,
therefore they are also discarded [16]. In other situations,
transmission status of either allele can be inferred, and
they are used in the analysis.

Comparison with other methods

Two other methods that can be used in testing association
between disease and functional micro/minisatellites are
TDT,,, and TDTy 5. TDT,,,,, stems from the classical bi-
allelic TDT. The statistics corresponding to TDT,,,, is the
maximum chi-square value obtained over all alleles:

2
— max (Mie =) iy py
i (njetnej)
Here n,, denote the number of heterozygote parents who
transmit an allele i, and ne ; denote the number of hetero-
zygote parents who has an allele i but do not transmit it.
Individual TDT is calculated for all alleles, and the maxi-
mal value is taken as the TDT,,,,. Although the individual
TDT test follows Chi-square distribution with 1 degree of
freedom, the TDT,,, does not. Clearly, this method will
not have appropriate type I error due to the selection of
the highest Chi-square value. Several methods have been
proposed to address the multiple testing problem in TDT-
max icluding empirical p value simulation [9] and mod-
ified Bonferroni correction [8]. Since the former method
requires enormous number of repetitions to accurately
obtain a low p value, in this study, Bonferroni corrected

TDT,,,.y is used and evaluated.

TDT,

max

http://www.biomedcentral.com/1471-2156/8/75

TDT; 5 corresponds to the classical bi-allelic TDT com-
puted on collapsed long alleles vs. collapsed short alleles.
In this case, the traditional TDT statistics can be used:

(b—0)?
b+c

where b is the number of parents that transmit the long
allele but not the short one, and ¢ is the number of parents
that transmit the short allele but not the long one. It
should be noted that some of the heterozygote parents are
not counted in the computation if both of their alleles
belong to the long allele pool or short allele pool. The spe-
cific problem of this approach is the choice of the thresh-
old between "long" and "short" alleles; here we choose
the first allele (from shortest to longest) whose cumula-
tive allele frequency is greater than 0.5, so that roughly
half of the alleles are long alleles and another half the
short ones. We note however that in some cases there be
relevant biological data which might suggest a more
appropriate threshold.

DT, s =

The cut-of thresholds to reject Hy hypothesis used in these
two methods are the same as trend-TDT.

Type | error computations

In order to assess and compare the type I error rates of
each of the three tests, we simulated 200 trios (case and
both parents) with disease-unrelated microsatellite geno-
types. The total number of alleles of this marker is set to
10, with equal allele frequencies. Simulations are per-
formed 1,000,000 times. The proportion of times that cal-
culated p-value is equal to or less than an expected value
is plotted against this expected value, in minus logarithm
scale. For a correct test statistic, this curve should be
exactly the line "y = x". For a test with higher type I error
rate, the curve will be bellow the line "y = x", and for a
conservative test, the curve lies above.

Modeling genotyping errors

The most common genotyping errors in microsatellites
were simulated to evaluate their effects on type I error rate
of the trend-TDT test. These errors include confusing
homozygote and adjacent-allele-heterozygote genotypes
in allele banding pattern scoring [17], false homozygotes
due to the preferential amplification of shorter alleles over
longer alleles (short allele dominance), false homozy-
gotes due to priming site mutations (null allele), offspring
gaining one more repeat unit in one of the alleles (micro-
satellite mutation), and randomly mis-scoring an allele as
its adjacent allele due to binning error. In simulation,
each of these genotyping error rates was moderately
higher than what is usually discovered in real data [18].
The microsatellite was simulated with 10 equally distrib-
uted alleles, without association with disease. Type I error
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rates were then calculated as the proportion of times
trend-TDT yielding significant results (p < 0.05) from
1,000,000 simulations on 200 trios.

Power computations

Power can be estimated by generating samples with a
determined pattern of marker-disease association, and by
calculating the proportion of these simulations that the
null hypothesis is correctly rejected. Here in this paper, we
assume a significance level of 0.001. Following this
design, we evaluate the power of the trend-TDT and com-
pare it with the power of two other TDT tests: TDT,,,, and
TDT, .

The powers of the three tests were evaluated under differ-
ent patterns of marker-disease association, parameterized
in terms of relative-risk, and under different kinds of
multi-allelic markers in terms of the number of alleles and
allele frequencies. The different models are presented in
Table 2. In these models, the maximum relative risk for
any single allele size is always equal to 3, and the preva-
lence of the disease is fixed at 10%. Calculation of geno-
type-wide penetrance is based on multiplicative model.
All estimates of power were based on 10,000 generated
tests on 200 trios, unless otherwise specified.

Modeling non-functional markers

Situations when VNTR markers are associated with a dis-
ease, without linear correlation between allele length and
disease risk, are also modeled. In this model, the VNTR
marker has 10 alleles, with allele frequencies equally dis-
tributed. Relative risks are assigned proportional to allele
length, then before each repeat of the simulation, this rel-
ative risk vector is permuted. Empirical power is calcu-

Table 2: Alleles frequencies and allelic relative risks in power
simulation.

Designation Allele length Notes
| 2 3 4 5 6
Allele
Frequencies
Fé.eq 116 1/6 1/6 1/6 1/6 1/6 Equalallele
frequencies.
Fé.rd A5 20 .10 .40 .10 .05 Randomizedallele
frequencies.
F6.bi A0 .10 30 .30 .10 .10 There exist two
major alleles.
Relative Risk
RR(lin) I 14 18 22 26 3 RRsincrease
linearly along with
allele length.
RR(thr4) § | | | 3 3 3 RRsincrease

above a threshold
of allele length.

§ the number in the bracket denotes the first allele with higher risk.

http://www.biomedcentral.com/1471-2156/8/75

lated to compare the performance of the statistics before
and after permutation, based on 10,000 repeats of simu-
lations on 200 trios.

A computer program for the trend-TDT, TDT,,, and
TDT, s test is written and can be downloaded [19].

Results

Type I error

As shown in Figure 1, the curve for both trend-TDT and
TDT, s are very close to the diagonal line, showing correct
type I error rates in simulation. After Bonferroni correc-
tion, the type I error rate of TDT,,,, is nearly correct,
although it is still a little conservative. As shown in Table
3, genotyping errors lead to slightly inflated type I error
rates for trend-TDT.

Power

The power of the three tests, trend-TDT, TDT; g and TDT-
max O11 simulated trios are plotted in Figures 2, 3, 4. Figure
2 presents the power of the tests under different VNTR/
STR models, which vary in terms of the number of alleles
at the VNTR (4, 6 or 10 alleles with equal allele frequen-
cies). In each of these models, the relative risk associated
with each allele increases linearly with the length of the
allele. The trend-TDT is clearly the most powerful test in
all situations. An increase in the number of alleles resulted
in decreased power for all tests; however, the trend-TDT
was the least sensitive to this effect. Figure 3 presents the
behavior of the tests under different sets of allele frequen-
cies, assuming a linear relative risk model of the simulated
functional VNTR. It can be seen from the figure that the
power is higher when the allele frequencies are equally
distributed, and is lower when some major alleles exist.
This is probably related to the fact that overall heterozy-
gosity (and thus informativeness of the sample) is maxi-
mized with equal allele frequencies. Nevertheless, the
simulations indicate that the trend-TDT is the least sensi-
tive to the distribution of allele frequencies and is the
most powerful for association detection among the three
methods.

The behavior of the tests under different marker-disease
association models is presented in Figure 4. These models
are defined so that relative risks increased linearly
("RR(lin)") or uniformly above a threshold ("RR(thr3)",
"RR(thr4)", "RR(thr5)"), according to the increase in
VNTR length. The assumed marker is a microsatellite with
six equally frequent alleles. In the threshold models, the
thresholds for higher relative risk are set to allele 3
("RR(thr3)"), allele 4 ("RR(thr4)"), or allele 5
("RR(thr5)"). As shown in Figure 4, the trend-TDT is the
most powerful method under the linear model, while
under threshold models, the relative performance
depends on where the threshold is. When the threshold is
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Table 3: Simulated genotyping errors and resultant type | error rates.

Error Models § Mistypes in total genotypes (%)

Misinheritance in mistyped trios (%)

Type | Err. (p £ 0.05) Rate (95% C.I.)

0.50
0.90
2.70
0.90
0.15
0.17
L 5.23

-Z'nmUﬁw:D

27 .0504 (.0499—.0508)
59 .0502 (.0498—.0506)
59 .0502 (.0497—.0506)
59 .0500 (.0496—.0505)
41 .0499 (.0495-.0503)
88 .0502 (.0498-.0507)
57 .0506 (.0502-.0511)

§ A: mis-scoring genotype (x,x) as (x,x+2); B: mis-scoring genotype (x,x*+2) as (x,x); C: short allele dominance; D: binning error; E: priming site

mutation (Null allele); F: microsatellite mutation; ALL.: all of above.

close to the shortest or longest allele, the trend-TDT per-
formed much better than TDTL/S. When the threshold is
exactly in the middle, which is most favorable to TDTL/S,
the TDTL/S is better. However, in this case both the trend-
TDT and TDTL/S have high power and the difference is
very small (Figure 4). If the threshold can be inferred by
biologic knowledge of the gene under study, then using
the known threshold will lead to much higher power in
TDTL/S than the trend-TDT (Figure 4). Under most cir-
cumstances, TDTmax performed the worst among the
tested methods (Figure 2, 3, 4), with the only exception

-log(frequency)
N

1} —e—trend-TDT
—=TDT L/S
—a—TDT_max

TRUE

------- p=0.05

O 1 1 1

0 1 2 3 4
-log(p)
Figure |

Type | error rates for trend-TDT, TDT,, ., and TDT,
s- X axes is the expected p value in minus logarithm scale, Y
axes is the observed frequencies that the calculated p value is
equal to or less than the expected p value, in minus logarithm
scale. The line "TRUE" is the expected curve for a correct
test, which should be exactly the line "y = x".

that in the RR(thr3) model in Figure 4, TDTmax is better
than TDTL/S.

When markers are associated with the studied trait, but
without a specific trend, the power of TDT, ,, remains
unchanged, while the power of both the trend-TDT and
TDT, s decrease markedly (Figure 5). Notably, the trend-
TDT and TDT, still have some power for association
detection. In-depth study of each replicate of the simula-
tion found that the power depends on the trend of the
increase/decrease of the relative risk vector: in the most
extreme cases where the trend is almost zero, the power of
these two tests are equal to type I error rates; however,

0.8 r

power

0.4

0.2

F4.eq F6.eq F10.eq
Dtrend-TDT B TDT_L/S @mTDT_max

Figure 2

Power of the TDT tests under different number of
alleles. Disease risk linearly increases along with the allele
length. All allele frequencies are set to equal. Number of alle-
les are 4, 6 and 10, respectively.
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0.8

0.6

power

F6.eq F6.rd F6.bi
@trend-TDT m TDT_L/S @ TDT_max

Figure 3

Power of the TDT tests under different sets of allele
frequencies. Disease risk linearly increases along with the
allele length, i.e. RR(lin) in Table 2. Number of alleles is set to
6. The allele frequencies are equal (F6.eq), random (F6.rd), or
uneven, where two major alleles exist (F6.bi).

because in most cases, the trend is not zero, the power of
trend-TDT and TDT; s remain above the type I error level.

Discussion

Performance of the tests

As expected, when the relative risks increase proportion-
ally with allele length, the trend-TDT is always more pow-
erful than the other tests, irrespective of the number of
alleles or their frequencies. When the RRs increase accord-
ing to a threshold model, the performances of TDT, 5 and
trend-TDT depend on the threshold. TDT;  is more sensi-
tive to the threshold and less powerful when the threshold
is close to the longest or shortest allele. When the thresh-
old is close to medium allele length, TDT; g performs
slightly better than the trend-TDT, but both are quite pow-
erful in this situation. The TDT, ,, performs the worst in
most situations studied here. This may be because both
trend-TDT and TDT, s use the information on the correla-
tion between allele length and disease risk that is present
in the generated disease model.

Choice of the tests

Based on these results, we do not recommend the TDT,
for any situation when there could be a relationship
between allele length and disease risk. Whether to use
trend-TDT or TDT ;s depends on prior knowledge of the
functional relationship between allele length and gene

http://www.biomedcentral.com/1471-2156/8/75

0.8 r

0.6 -

power

0.4 |

0.2

RR(in) RR(thr3) RR(thrd) RR(thr5)

Etrend-TDT ®TDT_L/S
ETDT_max OTDT_L/S_kn

Figure 4

Power of the TDT tests under different marker-dis-
ease association models. RR(lin) designates the linear
model, and RR(thr#) the threshold model, where # denotes
the first allele with higher risk (Table 2). Number of alleles is
set to 6, with equal allele frequencies, i.e. F6.eq in Table 2.
"TDT_L/S" is the TDT, s method using medium allele length
as threshold, "TDT_L/S_kn" is the TDT, ;s method when the
threshold is known and is used in the test. Power is calcu-
lated from 10,000 simulations on 150 trios, using significant
criteria 0.001.

function. When the threshold model is biologically true,
and this threshold can be inferred by biologic knowledge
of the gene under study, then TDT) is a better choice.
Under all other situations, trend-TDT is recommended.
When the threshold model is true but it is not clear where
the threshold is, trend-TDT should be used, since by using
TDT, s, one either has a multiple testing problem by trying
different thresholds, or alternatively has less power for the
test by using the median allele length only, which could
be wrong biologically. Even when the true threshold is
close to the median allele length, the difference between
trend-TDT and TDT, s is so small that it could be ignored.
In other situations when a VNTR is associated with a dis-
ease without trend, trend-TDT and TDT, s are not as pow-
erful, therefore other TDT methods should be used.

Another potential transmission/disequilibrium based test
that could take into account the phenotypic response
trend toward longer or shorter alleles is conditional logis-
tic regression [20,21], using a continuous variable for the
allele length rather than a categorical one. Preliminary
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1 -
O Not permuted
B Permuted
0.8 -
0.6 -
o
=
o
o
0.4
0.2 -
0 ] [ ]
trend-TDT TDT_L/S TDT_max
Figure 5

Power of the TDT tests before and after permuting
relative risk vector. The disease model is linear relative
risk of VNTR with 10 alleles.

simulations indicate that this test is not as powerful as the
trend-TDT test (data not shown); nevertheless, condi-
tional logistic regression could be more beneficial, since it
can incorporate various genetic risk models, include other
genetic or environmental risk factors, and provide esti-
mates of the risk of the disease conferred by the functional
micro/minisatellite. Therefore, both methods might be
used depending on the particular study circumstances.

Impact of genotyping errors

Given that genotyping errors may lead to increased type |
error rates of TDT tests, several modified TDT statistics
were proposed for analysis of single nucleotide polymor-
phisms [22-26], since it is much easier to model genotyp-
ing errors in bi-allelic markers than in multi-allelic
markers. It was expected that genotyping errors would
also increase the type I error rate of the trend-TDT test.
However, simulation has shown that, with reasonable
typing error frequencies, the type I error rates were inflated
only slightly. The reason might be that genotyping errors
in multi-allelic markers can be efficiently detected by
Mendelian-inheritance analysis when parental data are
available [27]. It should be noted that the extent of type I
error is a function of the typing error frequencies, the
number of alleles, the allele frequencies, and sample size
[23,28]. Thus, if genotyping errors are observed in a subset
of a larger sample of pedigrees (e.g., over 500 affected off-
spring), statistical methods to address genotyping errors
in TDT analysis should be considered to confirm that sig-

http://www.biomedcentral.com/1471-2156/8/75

nificant results are not false positives due to undetected
genotyping errors. To further eliminate genotyping errors
in real data analysis, it is recommended that siblings of
the patients are genotyped and/or closely adjacent mark-
ers are genotyped, so that more typing errors can be
detected as either Mendelian inconsistencies in the former
or haplotype double crossovers in the latter.

Conclusion

In summary, we have developed a new statistical test, the
trend-TDT test, appropriate for those situations when a)
parental data are available; and b) there are multiple alle-
les at the marker locus hypothesized to be associated with
the disease of interest; and, most importantly, c) there is a
biological basis to suspect a relationship between allele
length and disease risk.
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