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Abstract

Background: Chromosomal region that causes distorted segregation ratios is referred to as
segregation distortion locus (SDL). The distortion is caused either by differential representation of
SDL genotypes in gametes before fertilization or by viability differences of SDL genotypes after
fertilization but before genotype scoring. In both cases, observable phenotypes are distorted for
marker loci in the chromosomal region close to the SDL. Under the quantitative genetics model
for viability selection by proposing a continuous liability controlling the viability of individual, a
simplex algorithm has been used to search for the solution in SDL mapping. However, they did not
consider the effects of SDL on the construction of linkage maps.

Results: We proposed a multipoint maximume-likelihood method to estimate the position and the
effects of SDL under the liability model together with both selection coefficients of marker
genotypes and recombination fractions. The method was implemented via an expectation and
maximization (EM) algorithm. The superiority of the method proposed under the liability model
over the previous methods was verified by a series of Monte Carlo simulation experiments,
together with a working example derived from the MAPMAKER/QTL software.

Conclusion: Our results suggested that the new method can serve as a powerful alternative to
existing methods for SDL mapping. Under the liability model, the new method can simultaneously
estimate the position and the effects of SDL as well as the recombinant fractions between adjacent
markers, and also be used to probe into the genetic mechanism for the bias of uncorrected map
distance and to elucidate the relationship between the viability selection and genetic linkage.

Background

In a segregation population derived from a cross between
two inbred lines, some molecular markers often show dis-
torted segregation ratios from Mendelian expectations [1-
3]. The distortion is frequently related to gamete gene,
sterile gene and chromosome translocation [4]. So the
detection of the gene or locus, known as segregation dis-
tortion locus (SDL) mapping, is warranted. However, the
challenge encountered in SDL mapping is mainly caused

by the unavailability of phenotypic data for the underly-
ing trait. In fact, molecular markers linked to the SDL fre-
quently show segregation distortion and the degree of
distortion depends on the size and the position of SDL.
Therefore, it is possible to detect SDL by means of the dis-
tortion.

Mapping SDL is usually studied at the population level by

examining the change of gene (or genotypic) frequencies
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of markers [5]. In the past a single marker was often used
to detect the linkage between the marker and SDL [6,7]. Its
shortcomings are very similar to those of single-marker
approaches in quantitative trait loci (QTL) mapping [8].
Since the introduction of interval mapping of QTL [9],
Hedrick and Muona [10] developed a flanking-marker
analysis to estimate the fitness parameters for a viability
locus. The model of Hedrick and Muona [10] is actually a
complete recessive model. Mitchell-Olds [11] detected
one putative viability locus at a time and then scanned the
entire genome for every putative position to provide a test
statistic profile for the detection of SDL. However, his
model only test and estimate the degree of dominance.
Luo and Xu [12] extended the maximum-likelihood (ML)
method to estimate degree of dominance and selection
coefficients using an outbred full-sib family as an exam-
ple. Wang et al. [13] developed a multipoint ML method
to estimate the position and the genotypic frequencies of
SDL in an F, population. However, the efficacies of the
methods mentioned above have been seldom addressed
in simulation studies. Recently, Luo et al. [14] developed
a quantitative genetics model for viability selection. This
approach makes it possible to carry out simulation stud-
ies, to partition the selection into additive and dominant
effects and to remove the effects of non-genetic cofactors
from the analysis [14,15]. However, this approach raises
two issues. Firstly, they assumed that segregation distor-
tion didn't affect the construction of genetic linkage map.
In fact, marker segregation distortion is known to affect
the estimates for both recombination fractions in pair-
wise analysis of markers and the order of the markers on
a linkage group [16-18]. As for the genetic parameters,
then, Luo et al [14] adopted the Simplex algorithm [19] to
search for the solutions at the cost of computational con-
suming. Under the liability model proposed by Luo et al
[14], therefore, in this paper it is necessary to extend the
multipoint approach by combining the estimations of the
genetic parameters of SDL with the reconstruction of
genetic linkage maps. The new method for SDL mapping
was implemented via an expectation and maximization
(EM) algorithm rather than Simplex procedure. The
genetic factors that might affect the estimates of recombi-
nation fractions between adjacent markers would be dis-
cussed in detail. A series of Monte Carlo simulation
experiments together with a working example from the
Mapmaker/QTL software were carried out to verify our
approach.

Methods

Genetic model
Considering an SDL in an F, population derived from a

cross between two inbred lines, we assumed three geno-
types at this locus, AA, Aa and aq, to have genotypic values

J2a-d dand-2a-d, respectively, with a and d indi-
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cating additive and dominant effects, and an imaginary
trait, liability, invisible to the investigators but visible to
nature, controlled the viabilities of individuals. It should
be noted that the genetic variance in an F, population was

a? + d? rather than %a2 + %dz as usual. The phenotypic

value of the jth individual was described by the following
linear model,

Zi=g+e (1)

where g was the genotypic value for the jth individual,
and ¢ a normally distributed residual variable with mean
zero and standard deviation 1.0, which accounted for
polygenes that were linked to the markers and for envi-
ronmental variation [14,18]. Provided that the liability
was subject to natural selection, an individual would sur-
vive if z.> 0 and would be eliminated from the population

j
if z; < 0. Since all the sampled individuals had survived
from the viability selection, the liability of each genotype
followed a truncated distribution with a cumulative prob-

ability, G;=h (h = 1, 2, 3), with

fa=Pr(z; 20| G; =h) = ®[(2 - h)V2a +(-1)"d]

(2)
where h indexed the genotypes of the SDL, and f, was
referred to as the relative fitness of the hth genotype [14].
The expected frequencies of the three genotypes were

P = 0.25f1 _ f1
M T0.25f+0.5f2+0.25f3  fl+2f2+f3
similarly
2f> f3
Pac=F 7 aa = [ A~f L r (3)
M fi+2f2+f3 fi+2f2+f3

Mapping SDL under a liability model

We assumed that there was no crossing-over interference
among the markers on the linkage group considered, an
SDL caused segregation distortion of some or all markers
linked to the SDL, and three genotypes for each marker
had different viability coefficients. Let the order of the m
markers on a same chromosome be M;, M,,...,.M,,; x, be a
dummy variable defined as x, = 1, 0, -1 for a homozygote
of P,, a heterozygote and a homozygote of P, at the kth
marker, respectively; z, be indicator for phenotype of the
kth marker (M,); 1, (or 13,;,,) be the recombination frac-
tion between the kth and (k+1)th markers; and s, ; and s, ,
(0<s,;<+wand 0<s,,<+oofork=1,2,..,m) be the via-
bility coefficients of M,mj;, and m,,m,, relative to M, M, at the
kth marker.
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Now let an SDL locate between the kth and (k+1)th mark-
ers, and ¢, be the indicator function, taking the value of 1,
if the jth individual belonged to the hth possible genotype
in the F, population, otherwise taking the value of zero.
The parameters were Q = (pya Pag Paar ) O Q = (a, d, 5),
with Jindicating the SDL location. The distribution of ¢,
was described as

[ afy)fa £33

_ i i fis _
Pr(619) = (2a0) (00) ) ? = L 222

(=1m)

(4)
where n was sample size. The likelihood defined with
matrix notation was

n

1 m—1
@) = [ T35 [ T Hi oo 1H s [ T Hioia)el

j=1 o0=k-1 o0=k+1

1 0fy) 303
fi+2f2+f3

(5)
where ¢ = [Pr(x, = 1), Pr(x, = 0), Pr(x, = -1)], ¢' = [1, 1,

1], ' denoted transpose of a matrix or vector, and the tran-
sition probability matrix H; (1;, ., ) from marker M; to My,

for the jth individual was

Skes,277
2 - ¢ 2
(1=1) 74288041, 178 (1=17 )+ S e+1,27,

(1-r)? 25141,k (1="k)
(1’Y)()2+25Yz+1,l’k(l"'k)‘*i)ﬁl,z’lf (l’fk)Z‘*Zikﬂ,l'}z(l”’k)‘*SkH,Z”kz

2
1(1-13,) Ske1,1(1-2r+2r) Sket1,27k(1-Tk)
2. 2 2
(5141, 2) (=11 )+ 511, 0-2 42 ) (15141, 2) k(=17 )+ 511,102 +2r) - (5841, 2) 7k (1=13 )+ 1,1 (1= 2re +2r)
)2

2
"k 25k+1,17k(1=11)
f;f #2511, 17k (118 +5k41,2(1-170) *;(Z+1Ak+1,lfk(l*’k)“Ml,z("Vk

k1,207
2
Tl 254117k (1=1)+$ke41,2(1-1%

)? )2

There were several ways to find the ML estimates (MLEs)
of model parameters. We here adopted an EM algorithm
[20] and treated ¢, as missing data. We regarded das con-
stant for the moment, now the parameter set was 6 = (a,
d)'. For the EM algorithm, we needed to obtain the expec-
tation of the complete data log-likelihood function,

L =C+Z[p(¢;1 =1)Infi +p(d =1)In(2f;) + p(d3 =D 1In f5 = In(f, +2f; + f3)]

(6)

where the constant C didn't depend on the parameters of
interest, and but did depend on the viability coefficients
and map distance between adjacent markers, which could
be determined by Zhu et al [18]. The EM algorithm was
described as follows.

E-step

Provided the initial values for the model parameters, i.e.,
a(©)=0.0 and d(©) = 0.0. The posterior probabilities of ¢ =
1 were

http://www.biomedcentral.com/1471-2156/8/82

)

0
Pr(£fjp=1lzj; -2y )pg.h

p(E =1) =

=— " (7)
Zpr(fjo =1 | Zjl""’ Z]M)Pjo
0=1

where pg.g) (h =1, 2, 3) was calculated from equation (3),

and Pr(gy, = 1|zjy,...2p) (G =1, ...n; h = 1, 2, 3) the prior
probability of the hth genotype of SDL for the jth individ-
ual conditional on marker information (z;,,....z),) by

means of the multipoint method [21].

M-step

The MLEs of parameters were obtained by the Fisher-scor-
ing algorithm as it was impossible to get their explicit
solutions [22]. The & could be updated by

@1 = 40) + F1S(60) (8)

where S(#0)) was the score function, and I was the Fisher
information matrix (more details were given in Appen-
dix). And &Y would replace &9 in all subsequent estimat-
ing steps, and the procedure was iterated until the
convergence occurred. The converged (1) was the MLEs of
@in this M-step.

The E and M steps were iterated until the convergence
occurred.

The MLE for the SDL position could be obtained by exam-
ining the likelihood-ratio profile along the chromosome
as was commonly done in interval mapping of QTL [9].

Following parameter estimation, we tested an overall null
hypothesis that was no effect of SDL at the locus of inter-
est (). The null hypothesis was formulated as Hy: a =d =
0.0, which was tested using the likelihood-ratio (LR) test
statistic:

LR =-2[InL(0, O, 9) - InL(a, d, )]

Under the null hypothesis, the statistic LR approximately
followed chi-square distribution with two degrees of free-
dom.

The critical value for power calculation was determined by
computing 1,000 permutations [23], the experiment-wise
type I error was set at 5%, and the confidence interval of
an SDL location was determined by the bootstrapping
method [24].
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Simulation model

We simulated one chromosome of 100 cM (or 50 cM)
long covered by m evenly spaced codominant markers (m
= 6, 11 or 21) and put a single SDL at position 25 cM
(another SDL was put at position 75 cM if necessary). The
dominance ratio of the SDL was denoted by dr = d/a.
Given the broad heritability (h2) and dr, the additive and
dominant effects could be obtained using numerical algo-
rithm [25]. Based on the method described in Luo et
al.|14], all genotypes of both distorted markers and SDL
for each individual in an F, population were simulated.
All simulations were replicated 100 or 1000 times
depending on the purpose of the analyses. Empirical
power was calculated by counting the number of runs in
which test statistics were greater than the critical values
[26].

Results

Effects of various factors on SDL mapping

In this simulated experiments, the effects of sample size,
SDL heritability and marker interval length on SDL map-
ping were studied, respectively. The performance of the
proposed method was evaluated by statistical power, aver-
age and standard deviation of estimates with 100 repli-
cates. All parameters and results were listed in Table 1. The
results showed the general behavior of QTL mapping, i.e.,

http://www.biomedcentral.com/1471-2156/8/82

the estimate for each parameter was very close to its corre-
sponding true value, the power and the precision for SDL
mapping increased with the increase in sample size and
SDL heritability, respectively. However, marker interval
length had slight effect on the power under the three levels
studied.

Mapping multiple SDL

Similar to the interval mapping procedure of Lander and
Botstein [9], the single-locus model for SDL mapping was
used to search for multiple loci. Eleven markers were
evenly placed on a simulated chromosome of length 100
cM. Two SDL each with a 0.5 dominance-ratio and a 0.15
heritability were respectively located at positions 25 cM
and 75 cM on the simulated chromosome. One hundred
independent simulation runs were performed for a sam-
ple size of 200. The results were listed in Table 2. Both loci
were identified at almost 100% power. The results from
simulation experiments demonstrated that the new
method based on single-SDL model may be considered as
an approximate approach to search for multiple loci if the
SDL are sufficiently separated by markers.

A working example
As a demonstration of the proposed method in this paper,
we re-analyzed a sample dataset (the source filename:

Table I: Results of segregation distortion locus (SDL) mapping under the fitness and liabilty models (100 replications)

Sample Interval Broad Dominanc  Power (%)  Positions SDL effects Frequencies of genotypes
size length (cM) heritability e ratio (cM)
Additive  Dominant P D ae P o
True value / 25.00 0.2124 0.1062 0.2880 0.5412 0.1708
100 10 0.05 0.50 24 42.16 0.2011 0.1243 0.2809 0.5485 0.1706
(30.55) (0.1094) o.11ol) (0.0716) (0.0807) (0.0551)
200 10 0.05 0.50 55 30.06 0.2143 0.1134 0.2871 0.5440 0.1689
(19.33) (0.0988) (0.0994) (0.0499) (0.0573) (0.0386)
300 10 0.05 0.50 63 28.48 0.2097 0.1068 0.2851 0.5454 0.1695
(15.68) (0.0791) (0.0804) (0.0345) (0.0372) (0.0262)
True value / 25.00 0.1679 0.1679 0.2634 0.5656 0.1710
200 10 0.05 1.00 53 0.1664 0.1701 0.2672 0.5649 0.1679
(21.58) (0.0991) (0.1007) (0.0434) (0.0557) (0.0386)
True value / 25.00 0.2476 0.2476 0.2689 0.5944 0.1367
200 10 0.10 1.00 90 24.44 0.2584 0.2681 0.2676 0.6017 0.1307
(7.75) (0.0916) (0.0922) (0.0372) (0.0405) (0.0251)
True value / 25.00 0.3162 0.3162 0.2729 0.6170 o.110l
200 10 0.15 1.00 99 25.47 0.3066 0.3111 0.2711 0.6181 0.1108
(6.66) (0.0861) (0.0873) (0.0349) (0.0400) (0.0274)
True value / 25.00 0.3132 0.1566 0.3046 0.5590 0.1364
200 20 0.15 0.50 92 27.17 0.3270 0.1634 0.3007 0.5723 0.1270
(13.32) (0.0984) (0.1023) (0.0393) (0.0432) (0.0260)
200 10 0.15 0.50 9l 26.85 0.3248 0.1642 0.3086 0.5615 0.1300
(12.25) (0.0961) (0.0987) (0.0364) (0.0442) (0.0285)
200 5 0.15 0.50 93 25.81 0.3127 0.1603 0.3037 0.5674 0.1289
(10.62) (0.0923) 0.0911) (0.0375) (0.0450) (0.0263)
The standard deviations are in parentheses. The same is true for the later Tables.
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Table 2: Results of two segregation distortion loci (SDL) mapping under the fitness and liability models (100 replicates and 200

individuals)
SDL Power (%)  Position (cM) a d D an D ae D w
I True value / 25.00 0.3996 0.1998 0.3176 0.5726 0.1098
Estimate 9% 29.13896)  0.4014(0.1097)  0.2018(0.1184)  0.3289(0.0376)  0.5653(0.0425)  0.1058(0.0268)
2 True value / 75.00 0.3996 0.1998 0.3176 0.5726 0.1098
Estimate 94 66.75(11.30) 0.4037(0.1064) 0.2053(0.1031) 0.3275(0.0411) 0.5544(0.0450) 0.1181(0.0267)

sample.raw) in the MAPMAKER/QTL software [27]. It
consisted of 333 F, individuals from a cross between two
inbred lines in tomato. Each plant was genotyped for 12
marker loci that were divided into two linkage groups.
Single-marker chi-square test showed that 5 and 2 markers
on the first and second linkage groups deviated from Men-
delian segregation ratios, respectively (data not shown).
Given the reconstructed linkage maps using the method
of Zhu et al.[18], 1000 simulated datasets without segre-
gation distortion were simulated and used to determine
the critical value [23]. The confidence interval of a SDL
location was determined by the Bootstrap method [24].

The map distances between consecutive markers were cal-
culated twice with and without considering SDL. The
former was corrected map distance obtained from the
method of Zhu et al. (2007) [18]; and the latter was uncor-
rected one using the Mapmaker/EXE 3.0 software [27].
The results were listed in Table 3. The results showed that
the corrected map distances differed from the uncorrected
ones when there were distorted markers. The genetic rea-
son of these inconsistencies would be discussed in the fol-
lowing section. Using the proposed method here, a total
of four SDL were mapped (Table 4, Fig 1). Two SDL were
on the first linkage group and the others on the second
one. The genetic parameters for the four SDL were listed
in Table 4. The results showed that the distortion was
stronger for the first linkage group than for the second one
(Fig 1). It resulted in a maximum difference between the
corrected and uncorrected map distances for the first
marker interval on the first linkage group. Moreover, two
linked SDL on the second linkage group also gave rise to
two big differences (Table 3). As compared to a single

SDL, therefore, linked SDL had a larger effect on the esti-
mate of map distance.

Effect of genetic model of SDL on the estimation of map
distance

In this section, our purpose was to make clear the genetic
reason for the inconsistencies between corrected and
uncorrected map distances when there were distorted
markers. Six evenly spaced codominant markers were sim-
ulated on a single-chromosome segment of length 50 cM.
Two linked SDL with locations at positions 10 and 20 cM
(exactly the 2nd and 3rd marker loci) were simulated on
the simulated chromosome. One hundred simulation
runs were performed for a sample size of 300. Each of
datasets was analyzed twice by the method of Zhu et al.
(2007) [18] and the Mapmaker/EXE 3.0 software [27].
The former was corrected map distance and the latter
uncorrected one. For an additive-dominant model, all
genetic parameters and the results were listed in Table 5.
Results showed that uncorrected map distance was under-
estimated for most cases, overestimated for opposite
dominant effects, and unbiased for all negative additive
effects. The results from the real dataset analysis above
partly confirmed the result that opposite dominant effects
of the two linked SDL on the second linkage group (Table
4) gave rise to the overestimation (Table 3). For an epi-
static model, all genetic parameters and the results were
listed in Table 6. Results showed that uncorrected map
distance was underestimated for most situations, overesti-
mated for negative additive-by-additive or negative domi-
nant-by-dominant effects, and unbiased for additive-by-
dominant effect. As we expected, corrected genetic dis-
tances were unbiased when considering SDL (Table 5 and
6). Hence, corrected linkage maps were recommended to

Table 3: The uncorrected and corrected map distances in the real data analysis

Linkage group | Linkage group 2
Map distance | 2 3 4 | 2 3 4 5 6
Corrected 5.29 14.93 11.60 12.77 14.58 6.24 18.88 24.04 17.13 27.69
Uncorrected 4.18 15.01 11.88 12.19 14.76 6.38 18.88 24.04 18.12 28.69

Uncorrected and corrected map distances were calculated by Mapmaker/EXE 3.0 software (Lander et al 1987) and DistortedMap software (Zhu et

al 2007), respectively. The same is true for Tables 5 and 6.
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Table 4: Results of segregation distortion loci (SDL) mapping in a real data analysis

Li . Confidence Nearest . B Dominance ~ A A .
inkage group Position (cM) interval (95%)  marker to SDL a d ratio D aa D ae P o Selection types
I 2 I~ TI75 1.4628 -0.1669 -0.11 0.5249 0.4598 0.0153 Zygotic
41 27~44 T508 0.6792 0.0874 0.13 0.3992 0.8280 0.0728 Zygotic
2 84 57~90 T209 -0.0164 0.3133 -19.10 0.1842 0.6229 0.1929 Zygotic
109 85~127 TI7 0.4969 -0.3184 -0.64 0.4347 0.3853 0.1800 Zygotic

be used for further QTL or SDL analysis unless there was
strong evidence to believe that all markers presented typi-
cal Mendelian segregation.

Discussion

For SDL mapping, most researchers concentrate their
attention upon detecting and testing either the selection
coefficients or the degree of dominance under the fitness
model [7,10,11]. Luo et al.[14] pioneered in the develop-
ment of SDL mapping under a liability model. Zhu et al.
[18] proposed a new method for the reconstruction of
linkage maps with distorted, dominant and missing mark-
ers. Under the liability model, we developed a method to
simultaneously estimate the position and the effects of
SDL as well as the recombination fractions between adja-
cent markers. This approach remains the merits of Luo et
al.[14] but differs from others in several aspects. Firstly, it
combines the detection of SDL with the reconstruction of
marker linkage map. The position and the effect of SDL
can be estimated along with the selection coefficient and
the degree of dominance. Then, the proposed method
may be used to elucidate the relationship between the via-
bility selection and genetic linkage. Thirdly, the likelihood
function is involved in the distribution of genotypes of

201
N\ ~

LR statistic:
]

S
J—

Marker position (cM)

Figure |

The likelihood-ratio (LR) score profile for segrega-
tion distortion loci mapping against the tomato
genome. The tomato genome derived from Mapmaker 3.0
software (Lander et al. 1987) was composed of two linkage
groups.

SDL rather than that of marker genotypes in the previous
studies [11,28]. Finally, we adopted an EM algorithm
rather than the Simplex procedure to estimate the genetic
parameters. Of course, we should notice one common
assumption of the mentioned-above approaches that
marker segregation distortion is caused by some genetic or
viability reasons. For genetic reason, there are two differ-
ent mechanisms for segregation distortion, one at the
gametic level and the other at the zygotic level. In both
cases, observable phenotypes are distorted for marker loci
in the chromosomal region close to the SDL. Thus the two
mechanisms are included in our proposed method.
Although we have no way to distinguish them in SDL
mapping, the results from the genotype and allele tests
[29] for the marker closest to the SDL can be used to infer
the presence of zygotic or gametic viability selection in an
F, population but not in backcross, double haploid and
recombinant inbred line populations. Moreover, it should
be noted that genetic linkage between distorted markers
has been carefully discussed in Wu et al. (2007) [30].

There are two primary routes by which selection can affect
the extent of linkage disequilibrium [31]. The first is a
hitchhiking effect, in which an entire haplotype that
flanks a favored variant can be rapidly swept to high fre-
quency or even fixation [32]. The second way in which
selection can affect linkage disequilibrium is through epi-
static selection for combination of alleles at two or more
loci on the same chromosome [33]. This selection form
leads to the association of the particular alleles at different
loci. The major difficulty in linkage disequilibrium-based
mapping is to quantify the relationship between recombi-
nation fraction and linkage disequilibrium measurement.
Our analyses are confined to exclude the factors that influ-
ence linkage disequilibrium except linkage and selection.
We first combine the viability selection with quantitative
genetics model, and then explore the relationship
between genetic modes of the viability genes and the esti-
mates of the recombination fraction. The simulation stud-
ies indicated that most of the genetic modes of the
viability genes at the two linked SDL may result in under-
estimation of genetic distance. We hope that the tentative
attempt will make for elucidating the genetic relationship
between viability selection and genetic linkage.
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Table 5: Effect of genetic modes of two linked SDL on the estimates of map distances under the additive-dominant model

Estimates of map distances (cM)

a d, a, d, Method The Ist interval The 2nd interval The 3rd interval The 4th interval The 5th interval
05 00 05 00 Corrected 10.13(1.25) 9.88(1.02) 10.22(1.51) 10.06(1.50) 10.27(1.53)
Uncorrected 9.99(1.43) 7.27(1.38) 10.00(1.52) 9.91(1.48) 10.16(1.52)
05 00 -05 00 Corrected 9.92(1.41) 9.89(1.21) 9.92(1.52) 10.08(1.51) 10.01(1.59)
Uncorrected 10.01(1.43) 7.20(1.22) 10.01(1.53) 10.17(1.51) 10.07(1.59)
-0.5 00 -05 00 Corrected 10.32(1.58) 10.48(1.53) 9.96(1.33) 10.01(1.75) 10.09(1.59)
Uncorrected 10.41(1.57) 10.65(1.55) 10.11(1.35) 10.07(1.75) 10.10(1.59)
00 05 00 05 Corrected 9.99(1.60) 10.18(1.12) 10.04(1.42) 9.97(1.51) 9.98(1.51)
Uncorrected 10.03(1.60) 6.28(1.13) 10.08(1.44) 10.02(1.53) 10.01(1.51)
00 05 00 -05 Corrected 10.16(1.62) 10.05(1.27) 10.09(1.49) 9.81(1.47) 10.24(1.36)
Uncorrected 10.16(1.72) 15.64(1.97) 10.09(1.59) 9.81(1.48) 10.24(1.36)
00 -05 00 -05 Corrected 10.14(1.33) 9.94(0.95) 10.38(1.50) 10.08(1.38) 10.09(1.63)
Uncorrected 9.98(1.53) 6.58(1.17) 10.02(1.56) 9.92(1.34) 10.06(1.62)

a, and a, (d, and d,) are the additive (dominant) effects of the two SDL.

In addition, it will be interesting and challenging to com-
bine the SDL analysis with QTL mapping to see what the
effects of distorted markers has on the results of QTL map-
ping. While doing this, one may take a risk of detecting
false QTL not due to their genetic effects on the quantita-
tive traits but due to violation of the Mendelian segrega-
tion law. It will be a great breakthrough in quantitative
genetics area if we can develop a method to separate the
effects of viability loci from the effects of QTL [14]. By rea-
son of the complexity of the combined analysis, the
related investigations will be discussed separately else-
where.

Conclusion
Our results suggested that the proposed method can serve
as a powerful alternative to existing methods. Under the

liability model, the new method can simultaneously esti-
mate the position and the effects of SDL as well as the
recombination fractions between adjacent markers, and
also be used to probe into the genetic mechanism for the
bias of uncorrected map distance and to elucidate the rela-
tionship between the viability selection and genetic link-
age.
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Table 6: Effect of genetic modes of two linked SDL on the estimates of map distances under the epistatic genetic model

Estimates of map distances (cM)

i i1 iy iy Method The Ist interval The 2nd interval The 3rd interval The 4th interval The 5th interval
05 00 00 0.0 Corrected 9.91(1.40) 9.94(1.35) 10.10(1.59) 9.90(1.50) 9.98(1.33)
Uncorrected 9.91(1.40) 9.20(1.35) 10.10(1.59) 9.90(1.50) 9.98(1.33)
0.5 00 00 00 Corrected 9.74(1.60) 10.40(1.20) 10.18(1.39) 9.48(1.45) 10.10(1.31)
Uncorrected 9.86(1.62) 14.64(2.02) 10.33(1.50) 9.61(1.46) 10.16(1.32)
00 05 00 00 Corrected 10.13(1.39) 9.97(1.37) 10.01(1.66) 10.08(1.57) 10.21(1.69)
Uncorrected 10.17(1.39) 9.95(1.37) 10.05(1.67) 10.09(1.57) 10.21(1.69)
00 -05 00 0.0 Corrected 10.20(1.56) 10.05(1.52) 10.20(1.52) 10.05(1.58) 10.18(1.59)
Uncorrected 10.21(1.57) 10.05(1.53) 10.19(1.53) 10.03(1.59) 10.18(1.59)
00 00 00 05 Corrected 9.98(1.64) 9.24(1.37) 10.14(1.55) 9.73(1.42) 10.08(1.57)
Uncorrected 10.00(1.64) 7.25(1.38) 10.15(1.55) 9.73(1.43) 10.08(1.57)
00 00 00 -05 Corrected 10.02(1.39) 10.09(1.30) 10.02(1.10) 9.97(1.37) 10.23(1.44)
Uncorrected 10.01(1.59) 12.89(1.90) 10.01(1.30) 9.97(1.47) 10.23(1.44)

ij1» 15 (iy;) and iy, are additive % additive, additive X dominant and dominance * dominance epistatic effects of the two SDL, respectively, and the

additive and the dominant effects for the two SDL are set up at zero.
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Appendix: Fisher-scoring algorithms for
obtaining MLEs of parameters

The Fisher-scoring algorithm can be used to estimate
parameters in the M-step of EM algorithm. Let 8= (a, d)T.
The newly estimated 6 can be expressed by the score-func-
tion vector S and the Fisher information matrix I,

M =g 4 I;ie(olseze(o)

where S = 6lnL/66 = (dlnL/da, 6lnL/od)T is score function,
and

2 2
E 0 lr21L E 88 lanL
B 92InL _ da add
960 azlnL 821nL
ddda od?

is Fisher information matrix.

More specifically, the score function and the Fisher infor-
mation index of the expected complete data log-likeli-
hood can be derived using

y2In(f3) _ dIn(f1+2/5+f3) }
20

20

o Z[W =) 200D 4 g, <) 0B 4, <1
=

_ 2[ wgpn =1 o(f1) , w(#2=D) 3(2fp) , W($j3=1) 9(f3) _a(f1+2f2+f3)/20 ]
1 a0 2f, a0 f3 90 fi+2f2+f3

:Z[ o w(tjp=1) ofj  a(f1+2f2+f3)/90
h=1

= fj 00 fi+2f2+f3

Let tg,= N2 (2-h)a + (-1)hd forh=1,2,3

_(Zjh—uh)2
afih - _ jo de 2 dz
36 Jor ) 260 sh
_(zl'h—uh)2 2
! (Zjh—pn)” || up
- e 2 dl -
NP 2 I 2 20
-l e _(O-u)® |y
27w 2 20
2
=L exp| oM %kn
NP 2 | 06

with a‘uh =J2(2—-h) or (-1) when @ = a or d corre-

spondmgly. Hence
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R (—V2(2-h)a-(-1)"a)?
E)lnL:[ Zw(fﬁ]h n ]2(2 n, 5
P T hvafatfs e T €
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j=1 h=1

The second partial derivatives are more messy but a gen-
eral form was found as

L NN 1% 1 o ofy 1 2(fi+2f2+13)
w2 I G 290 on) eaps o

. 1 A(f1+2f2+f3) A(f1+2f2+f3)
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