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Abstract

Background: The study of epistasis is of great importance in statistical genetics in fields such as
linkage and association analysis and QTL mapping. In an effort to classify the types of epistasis in
the case of two biallelic loci Li and Reich listed and described all models in the simplest case of 0/
| penetrance values. However, they left open the problem of finding a classification of two-locus
models with continuous penetrance values.

Results: We provide a complete classification of biallelic two-locus models. In addition to solving
the classification problem for dichotomous trait disease models, our results apply to any instance
where real numbers are assigned to genotypes, and provide a complete framework for studying
epistasis in QTL data. Our approach is geometric and we show that there are 387 distinct types of
two-locus models, which can be reduced to 69 when symmetry between loci and alleles is
accounted for. The model types are defined by 86 circuits, which are linear combinations of
genotype values, each of which measures a fundamental unit of interaction.

Conclusion: The circuits provide information on epistasis beyond that contained in the additive x
additive, additive X dominance, and dominance X dominance interaction terms. We discuss the
connection between our classification and standard epistatic models and demonstrate its utility by
analyzing a previously published dataset.

Background

The genetic dissection of complex traits is at the center of
current research in human genetics. Complex traits are
caused by multiple susceptibility genes and environmen-
tal factors, and mounting evidence from both human
genetics and model organisms suggests that epistasis (gene
x gene interaction) plays an important role [1,2].
Although the need to consider epistasis when mapping
complex trait loci has been discussed by several authors
[3-6], most statistical methods used in gene mapping, be
it case-control association studies, quantitative trait loci
(QTL) mapping, or linkage analysis, are based only on

measures of marginal effects at individual loci and do not
consider epistasis. Due to recent advances in genotyping
technology many large case-control genome-wide associ-
ation studies [7] have recently been completed, and there
has been renewed interest in two-locus disease models
and two-locus tests for association [8-11]. The application
of two-locus models also arises in expression QTL map-
ping where thousands of gene expression traits are
mapped with linkage analysis and it is imperative to study
gene interactions [12].
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Ideally, a test for epistasis between two loci A and B
should test for biological interaction, or non-independence
between the effects of locus A and locus B. Loci A and B
are considered independent if the effect of the genotype at
locus A does not depend on the genotype at locus B. This
biologically motivated concept has been formalized in a
variety of ways by different communities seeking simple,
mathematically convenient definitions. In the statistical
genetics literature the term epistasis is typically taken to
mean that the effects at loci A and B are not additive (the
"effect" of a locus is defined in terms of the statistical
model used [13]). For a further discussion on epistasis see
[14-16]. Fisher [17] considered a linear model for the con-
tribution of different loci to a quantitative trait and used
the term epistasy to describe a departure from additivity. In
linkage analysis based on variance component models, a
model without epistasis is a model in which all domi-
nance variance components are zero. In case-control asso-
ciation studies of dichotomous traits it is common to use
logistic regression, and additivity is measured in the log-
odds of disease for a genotype [18]. A new test for epistasis
was recently suggested in [10], it tests for departures from
linkage disequilibrium (LD) in the cases, which is equiva-
lent to testing for departure from additivity of the log pen-
etrance values (i.e. departure from a multiplicative model
for the two-locus penetrances). These tests all test for
departure from additivity on a particular scale, but if an
additive model is rejected they provide no information on
the type of interaction present. Furthermore, it is not clear
what the biological meaning of the interaction is.

With each of the nine two-locus genotypes we associate a
genotype value. In the case of a dichotomous phenotype the
genotype value can e.g. be the penetrance associated with
the genotype, the logarithm of the penetrance, or the log-
arithm of the odds ratio. In the case of a quantitative trait
a natural choice for the genotype value is the expected
phenotype value of individuals with that genotype (some-
times called measured genotype). We will consider epistasis
to be any deviation from additivity of the genotype values.
This is consistent with the definition of epistasis given in
[13], both for quantitative and dichotomous traits. In this
paper we provide a framework within which one can
study and classify the types of epistasis possible between
two biallelic loci. Our results are based on recent work of
[19] who provide a rigorous geometric approach to epista-
sis in the haploid case. We extend their results to the dip-
loid case, and characterize all possible patterns of physical
interactions among the 9 possible genotypes in the two
locus case, showing that there are 387 classes of models
that fall into 69 symmetry classes. We discuss the meaning
of the different types of interaction and show how the
interaction pattern can be effectively measured and visual-
ized.

http://www.biomedcentral.com/1471-2156/9/17

In genetic analysis it is common to test not only for depar-
ture from additivity, but also for whether the data fits a
particular two-locus model (e.g. recessive or dominant).
We discuss the models that are frequently used and show
how they relate to the classification given here. In order to
study a wider class of two-locus models [20] enumerated
all two-locus, two-allele, two-phenotype disease models
with penetrance values O or 1 for the nine possible pheno-
types. There are 512 such models, which can be reduced
to a list of 50 models after allowing for symmetry between
alleles, loci and affection status. We classify models with
continuously varying penetrances, overcoming the diffi-
culty they highlight in their paper, and show that in fact
their 50 models fall into 29 of the 69 symmetry classes.

We introduce the mathematical concepts used to derive
the 387 classes of two-locus models and demonstrate on
a real dataset how the shapes can be used to classify pairs
of loci and identify pairs with similar genetic effects.
Finally, we consider the two-locus models typically used
in human genetics, the 50 models from [20], and some
models with epistasis. We show that these models only
represent a small fraction of all possible two-locus mod-
els.

Results and Discussion

Shapes of two-locus models

A two-locus disease model on two biallelic loci is specified
by the genotype values of the 9 two-locus genotypes. We
consider two loci with genotypes aa, Aa, and AA, and bb,
Bb, and BB, respectively, where A and B are the suscepti-
bility alleles. The genotype values, f;; i,j = 0, 1, 2, are rep-
resented by a 3 x 3 table, where i and j refer to the number
of disease alleles at loci A and B, respectively:

|bb Bb BB

aa | foo for foa
Aa | fio fin fi2
AA | fr a1 T2

In the case of a dichotomous trait, f; can e.g. be a pene-
trance, the probability that an individual with genotype ij
will get the disease. For a quantitative trait, f; can e.g. be
the expected phenotypic value for an individual with gen-

otype ij.

In an additive model, the genotype values can be written
as a sum of the effect at each locus, f; = a; + B, where ¢;is
the effect associated with having i disease alleles at the first
locus, and g is the effect associated with having j disease
alleles at the second locus. An epistatic model is any non-
additive two-locus model. To study epistasis we consider
the interaction space, which is the space of all two-locus
models modulo the space spanned by all additive two-
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locus models. The interaction space is spanned by a set of
linear forms in the {f;} called circuits. There is a circuit for
each set of 3 collinear points, and for each set of four
points in the plane such that no three of the points are col-
linear, resulting in a total of 86 circuits. The coefficients in
the linear form are such that the sum of the points in the
circuit, when scaled by these coefficients, is zero. For
example, the circuit arising from the points f;, fo;, f,0, and

fais
-3fo0 + 4fo1 + f20- 2120
since
-3-(0,0)+4-(0, 1) +(2,0)-2-(1,2) = 0.

Every circuit with four points can be seen as a contrast
between two pairs of genotype values and measures a spe-
cific deviation from additivity. For example, the above cir-
cuit is positive if 4fy; + fo,0 = 3fy0 + 2f;, and negative
otherwise. For some circuits this contrast has a simple
interpretation, e.g. the circuit arising from f,,, f,; and f,, is
foo - 2fo1 + foo- It compares the genotype value f,, (for gen-
otype aa/Bb) to the average of the genotypic values f,,and
fo, (for genotypes aa/bb and aa/BB), i.e. it measures devia-
tion from additivity at locus B in individuals with geno-
type aa at locus A.

To more easily interpret the meaning of the circuits we
perform a change of coordinates. In quantitative trait
genetics the phenotypic value is often decomposed into
additive (f,and f;) and dominance (5, and &,) main effects
atloci A and B respectively, and four epistatic effects, addi-
tive x additive (1,,), additive x dominance (1,), dominance
x additive (I,,), and dominance x dominance (Ipp). We will
use the same notation here to decompose the genotype
values into main and epistatic effects. We write the two-
locus model as

‘ aa Aa AA
b | f=fo—fo+tlan frdi=fo—Iap [+fu—fo—Im
Bb | f—f,+d,—Ipy f+d,+8,+Ipp f+f,+d,+Ip,
BB f—fa"‘fb—IAA ]?+da+fb+IAD J;+fa+fb+IAA

where
4-=foo+for+fao+ o
4-fy=Ffoo+ for-fa0* f22
4-fy,=foo~for + fr0+ f22

4-6,= oo+ 2fo1-foa - oo+ 2f21- f22

http://www.biomedcentral.com/1471-2156/9/17

40 =foo + 2f10-fr0-for + 2f12-f2
4-1ys=foo-forfro+ 22
4-1xp=foo~ 2fo1 + for - fa0 + 2f21 - f22
4-Ipa=foo- 2f10+ fa0~ for + 2f12- f22
4-Ipp = foo~ 2fo1 + for - 2f10+ 4f11- 2f12+ foo- 2f21 + f2

Note that with this choice the additive effect is scaled so
that the contribution is -f,, 0, and f, for genotypes aa, Aa,
and AA respectively, and similarly for the second locus.
This is a simple linear transformation of the genotype val-
ues which can be used both for penetrances and pheno-
typic means. The space of all two-locus models has
dimension 9 and the interaction space has dimension 6. A
natural choice of a basis for the interaction space is given
by the interaction coordinates (5, 8, Iys Iap, Ipas Ipp) Where
0, and &, measure within-locus interaction and I,,, Ip,
I and I, measure between-loci interaction.

A full list of the 86 circuits in the new coordinates is given
in Appendix B. Although the circuits are fully specified by
the six interaction coordinates they do contain important
information on the type of interaction present. The cir-
cuits measure interesting contrasts and the new parame-
terization allows us to interpret them. For example, circuit
C30 = 20, - 29, measures the difference between the domi-
nance effects, circuit ¢, = -2, + 21, measures the differ-
ence between the dominance effect at the first locus and
the additive x dominance interaction, etc. The sign of a cir-
cuit specifies whether the type of epistasis measured by
the circuit is positive or negative, and its magnitude meas-
ures the degree of interaction. The circuits contain
detailed information on the interaction in a model and to
fully describe the pattern of interaction we can consider
the sign pattern of all 86 circuits, however, this leads to a
very large number of categories. For a more useful classifi-
cation of all two-locus models according to the type of
interaction present we consider the triangulation induced
by the penetrances. The connection between a triangula-
tion and the circuits will be discussed further below.

The mathematical definition of a triangulation is given in
Appendix A but an informal description is provided here.
We represent the 9 genotypes by 9 points in the plane on
a 3 x 3 grid and the genotypic values by heights above
these points. If the values come from an additive model it
is possible to fit a plane through the height points. For any
non-additive model we consider the surface given by the
upper faces of the convex hull of the heights. Intuitively
this is the surface formed if we were to drape a piece of stiff
cloth on top of the heights and consider its shape. Any
departure from additivity in the model becomes apparent
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in this surface. The triangulation, or shape, of a model is
obtained by projecting these upper faces (the "creases" in
the surface) onto the xy-plane.

A visual representation of a two-locus model is given in
Figure 1. The data comes from an example that will be dis-
cussed further later. The genotype values, relative to the
value of aa/BB, are listed in Panel (a). Panel (b) shows the
classical visualization of this table, where each line corre-
sponds to one row in the table. In Panel (c) there is a bar-
chart of the data, and the corresponding shape is shown
in Panel (d). There is clearly epistatic interaction in the
model in Figure 1, as the genotypes aa/bb, aa/Bb, Aa/bb,
and AA/BB have much higher means than the remaining
5 genotypes. The shape shows the four planes of the upper
convex hull of the heights. It includes a plane through the
genotypes Aa/bb, aa/Bb, and AA/BB, which is given by the
middle triangle in the picture, and three planes corre-
sponding to the outer three triangles. Although the classi-
cal visualization in Panel (b) of Figure 1 contains
complete information on the relative genotype values it is
hard to grasp what types of interactions occur just by
glancing at the figure. The bar-chart is a very good visual
representation of the 9 values, however, any comparison
between two different datasets based on bar-charts would

http://www.biomedcentral.com/1471-2156/9/17

be not only tedious, but hard to define. Some information
is lost by considering only the shape of the model, but
since it summarizes the epistasis that is present, the shape
enables us to easily compare and classify different models.

We used TOPCOM [21] to compute all possible triangula-
tions, or shapes, and found that there are 387, however,
many are equivalent when we account for symmetry. By
symmetry we mean i) the interchange of locus 1 and locus
2, or ii) the interchange of two alleles at one or both loci.
These same symmetry conditions were used in [20]. After
accounting for symmetry, there are 69 shapes (see Figure
2). We classify all two-locus models according to which of
the 387 (or 69) triangulations they belong to.

A sign pattern for the circuits specifies a model shape, but
the converse is not true. Thus considering the shape of a
model, rather than the sign pattern of the 86 circuits, gives
a coarser model classification, but it provides a very useful
description of the type of epistasis in the model. A shape
contains information about the signs of some of the 86
circuits. Every group of points in a circuit can be triangu-
lated in exactly two ways [22] corresponding to the type of
epistasis. If a model shape has a line connecting the points

bb Bb
aa | 145.6 157.1
Aa | 123.1 29.6
(a) AA | 186 16.5

BB Aa
0
33.2 M
83-9 <b> bb Bb BB

(c)

Figure |

Example of epistasis. Example of epistasis in QTL data. The data is on chicken growth [24]. (a) The phenotypic means of the
two-locus genotypes, (b) a wiggle plot of the data, where each line corresponds to a row in the table, (c) bar plot of the data,

(d) the two-locus shape.

Page 4 of 15

(page number not for citation purposes)



BMC Genetics 2008, 9:17 http://www.biomedcentral.com/1471-2156/9/17

Figure 2
Symmetry classes. Shapes. The 69 symmetry classes of the shapes of two-locus models.

Page 5 of 15

(page number not for citation purposes)



BMC Genetics 2008, 9:17

then for some circuit,

(i 1) and (i o)
¢ =(arfj, +asfi)j,) = (Osfiy, +b2fry,), the pair f;

and fi are the "winners", ie.
12]2

aifij, +asfi i, 2bif +byf,, - Similarly, if there is no
line connecting the points (i, j;) and (i,, j,), and it is not

possible to add one without crossing an existing line seg-

ment, then there is some circuit such that f; ; and f; ;

are the "losers". For example, in Figure 1, there is a line
between (1, 0) and (0, 1) and fy; + f10= foo + f11, and also

2fo1 + 2f102 3fo0 + f2o-

Note that the model shape gives information about the
types of interaction present in the model, but does not
reveal the magnitude of the interaction (for that we need
the actual value of the circuits). For generic models we
always get a triangulation of the 3 x 3 grid, but for some
models the resulting shape is not a triangulation but a
subdivision, where not all cells in the shape are 3-sided
(this happens e.g. when many of the genotype values are
identical). These coarse subdivisions are not counted in
our 387 models, however each coarse subdivision is
refined by two or more of our models. The model shape
provides information that is complementary to that given
by the values of the interaction coordinates. Looking at a
specific triangulation or subdivision tells us which way
some (but not all) of the circuits are triangulated, thus giv-
ing information about interaction for that particular
model, in particular the triangulation allows us to identify
the dominating interactions. Consider e.g. the example in
Figure 1. Although there is additive x additive interaction
present (I,, = 210.9), and the circuit c,, = 41, is clearly
positive, the corresponding line between (0, 0) and (2, 2)
is not included. This is because this interaction is domi-
nated by other types of interaction. The two circuits with
the largest values are c;; and c;,. The first of these contrasts
fo1 and f,, with f, and f;, and thus the line between (0, 1)
and (2, 2) is included in the triangulation, the second con-
trasts f;, and f,, with f,, and f,; and thus the line between
(1, 0) and (2, 2) is included.

It is useful to have a notion of when two shapes are "close"
or "similar". We say that two shapes are adjacent if one
can move from one to the other by changing the sign of
one of the 86 circuits (note that most sign changes do not
result in a move between shapes). Out of 387 shapes, 350
are adjacent to 6 other shapes, 16 are adjacent to 7 other
shapes, and 21 are adjacent to 8 other shapes. We define
the distance between two shapes as the minimum number
of circuit changes that are necessary to get from one to the
other. In the set of 387 shapes the maximum distance
between two shapes is 9, and around 70% of all pairs of

http://www.biomedcentral.com/1471-2156/9/17

shapes are distance 4 to 6 apart. Two-locus models which
fall into adjacent model shapes share many of the same
two-locus interactions, and in general the shorter the dis-
tance between two shapes, the more similar the genetic
effects. For a further discussion on the shapes of genetic
models see [23].

Each shape divides the 3 x 3 grid into 2 to 8 triangles (the
numbers in each category are 2, 11, 38, 68, 96, 108 and 64
out of 387). Each shape corresponds to a subspace of 9-
dimensional space and the volume of this subspace meas-
ures how much of the parameter space the shape inhabits.
We obtained an estimate of this by generating 1,000,000
random vectors of length 9 and calculating the shape that
each of them falls into. The model shape for a 9-vector is
conserved under shifting and scaling so it suffices to con-
sider vectors in [0, 1]° and each of the 9 numbers were
drawn uniformly at random from the interval [0, 1]. The
fraction of observations that fell into shapes which divide
the grid into 2, 3, 4, triangles, etc., was 6.4%, 17.2%,
28.3%, 24.9%, 15.0%, 6.1% and 2.0%, very different
from the fraction of shapes in each category, which is
0.5%, 2.8%, 9.8%, 17.6%, 24.9%, 29.9% and 16.5%.
Two-locus models where one, or a few, genotype values
are larger than the remaining values induce shapes which
contain fewer triangles. However, if the genotype values
show only slight deviations from falling on a plane (i.e. &,
Sy Ly Lnps Ipas and Iy are small), the surface is not dom-
inated by a few genotypes and the resulting shape will be
more subdivided.

We will further discuss how the shapes can be used to
characterize the type of interaction in a dataset using an
example on QTL mapping in chicken.

Two-locus models

In this section we study a number of model classes that are
often used in genetic analysis, and the shapes that they
induce. We show that each of the model classes restricts
the analysis to a small subset of all possible two-locus
models. Furthermore, because these models are very spe-
cific, they limit the types of interaction that can be mod-
eled and only represent a small fraction of the 69 shapes.

A two-locus penetrance model can be defined by specify-
ing single locus penetrance factors, (¢, ¢, @,) and (S,
S, B,), and combining them in one of three ways,

multiplicative : f;; = a; - b;,

additive : f;; = min(a; + b;, 1),
heterogeneous : f;; =a; + b; —a; - b;.
The penetrance factors are typically chosen from a reces-
sive (0, 0, @), dominant (0, &, @) or additive (0, /2, )
model. For an additive two-locus model with additive
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penetrance factors, the interaction coordinates &, 8, I,4,
Lips Ipa Ipp are all zero and the circuits all vanish. For all
additive two-locus models I, = I,, = I, = I, =0, but &,
and ¢, depend on the penetrance factors. The heterogene-
ous model is often viewed as an approximation to the
additive model because if the same penetrance factors are
used, the models give very similar penetrances. However,
in terms of the type of interaction that can be modeled,
the multiplicative and heterogeneous models are very
similar. In Table 1, we list the values of the interaction
coordinates for some common multiplicative models. If
we consider the corresponding heterogeneous models,
the single locus dominance terms, &, and &, have the
same value, as listed in the table, and the interaction
terms, I 4, Iyp, Ips and I, all have the same absolute
value but opposite signs. The shapes induced by these
models are shown in Figure 3. Note that only 8 shapes can
be induced and 6 of the 8 shapes are not generic models
(they are subdivisions rather than triangulations of the 3
x 3 grid).

In [20] a classification of all two-locus disease models
with 0/1 penetrance values is given. Although this classifi-
cation is useful to generate data under various scenarios
and to study general properties of two-locus models, it
cannot be used to classify observed data. This class of
models is much larger than the class of disease models
discussed above, yet they only cover a small part of all
two-locus models. The 50 models represent only 29
unique subdivisions, and only 10 out of those 29 are
among the 69 model shapes, see Figure 4.

Multiplicative

rec-dom

rec-rec
rec-add
add-add

Heterogeneous

rec-rec rec-dom

rec-add

add-add
Figure 3

http://www.biomedcentral.com/1471-2156/9/17

Table I: Classical two-locus models. The table lists the values of
the interaction coordinates for multiplicative two-locus models.

The parameters are y= (2, - 2)(52 - /o), 1= (%t @) (br - fo), and

1= (22~ %) (fo + So)-

One-loc 9, S Ian lap Ipa Iop
rec-rec -m /4 17,14 14 -y -y 14
rec-add 0 -1, 14 0 0 -y
rec-dom -m,/4 17,14 V4 ¥ -y -y
dom-dom -m /4 1,14 14 14 14 ¥
dom-add 0 N 14 14 0 0

add-add 0 0 % 0 0 0

In population genetics and in the study of quantitative
traits, two-locus models are classified according to the
type of epistatic effects. Four commonly studied patterns
of epistasis are additive x additive, additive x dominance,
dominance x additive and dominance x dominance. In an
additive x additive model two double homozygotes, aa/bb
and AA/BB, have higher phenotypic mean (or fitness)
than expected, but the other two, aa/BB and AA/bb, have
lower phenotypic mean than expected. A numeric repre-
sentation of the four types is given in Figure 5 and the cor-
responding shapes are also shown. If these epistatic effects
are added to a fully additive two-locus model, the result-
ing shape will be the one shown in Figure 5. However, the
epistasis observed in real data is seldom purely of one type
and although e.g. dominance x dominance epistasis is
present in the data, the resulting shape can be different. If
the dominance terms, ¢, and J,, are non-zero, the result-
ing shape will be the dominance x dominance shape, with

dom-dom

dom-dom dom—adzd

Shapes of two-locus models. Two-locus models. The model shapes for multiplicative and heterogeneous two-locus models.
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7 7R :

Figure 4

Subdivisions. 0/] models. The subdivisions for the 50 Li and Reich 0/l penetrance models.

the possible addition of one or both of the horizontal and
vertical lines through the middle of the shape (depending
on the magnitude of the dominance terms). A model with
both additive x dominance and dominance x additive inter-
action can fall into one of three shapes. If either the addi-
tive x dominance or the dominance x additive interaction is

much stronger than the other, the corresponding shape
will dominate. If the magnitude of both types of interac-
tion is similar, the resulting shape will be the shape shown
in Figure 1 or any rotation thereof. Thus from the shape
we can often infer what type of interaction is the strongest
in the data.
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1 0-1 1 0-1
000 -1 01
-1 01 1 0-1
add x add add x dom

Figure 5

http://www.biomedcentral.com/1471-2156/9/17

1-11 -1 1-1
000 1-1 1
-1 1-1 -1 1-1
dom x add dom X dom

Shapes of two-locus models. Epistastic models. The tables list the genotype values associated with four epistatic models
and below each table is the shape induced by a model with purely add % add, add * dom, dom X add or dom * dom interaction.

Classification of epistatic effects

Model organisms such as yeast, mouse or chicken are fre-
quently used in genetic analysis, and several recent studies
have shown that epistatic effects contribute greatly to
observed genetic variability. When pairs of interacting loci
have been found, using either QTL mapping, linkage anal-
ysis, or association analysis, it is of interest to describe the
epistasis in the data. If many pairs of interacting loci have
been found, it is of interest to identify pairs with similar
genetic effects. This classification can be based on finding,
for each pair, the model which best fits the data, out of the
classical two-locus models. However, many datasets do
not fall into any one of these classes (e.g. more than one
type of epistasis can be present in the data). Another
option is to base the classification on visual inspection,
but that can be inaccurate and very time consuming, espe-
cially since in most applications the two alleles at a locus
are interchangeable, so one would have to consider many
rotations of the 3 x 3 data matrix.

We propose classifying observations according to the
shape that they induce, and measuring the similarity of
the genetic effects observed in two different datasets by
the minimum distance between their induced shapes.
This allows us to quickly and automatically identify obser-
vations with similar genetic effects. Here we only consider
the shape of a model for classification but a more robust
classification, outside the scope of this paper, could be
obtained by testing which circuits are non-zero and con-
sidering the shape induced after circuits which are not sig-
nificant have been set to zero. This would help in reducing
mis-classification due to measurement error in the data
and in particular this would reveal whether the data
comes from an additive (or near additive) model.

In a study of growth traits in chickens, [24] measured var-
ious growth and body weight variables on 546 chickens

from an F, cross between two lines, a commercial broiler
sire line and a White Leghorn line. The alleles at each
locus are labeled with B and L, according to which line
they came from. A method for simultaneous mapping of
interacting QTLs was used to do a genome-wide analysis
of five growth traits which identified 21 QTL pairs with a
significant genetic effect. Some of the 21 QTL pairs were
associated with more than one growth trait, resulting in
30 combinations of traits and QTL pairs. For each trait
and QTL pair the phenotypic means of each of the nine
two-locus genotypes were estimated using linear regres-
sion (see Table 2 in [24]). They noted that the standard
models for epistasis do not adequately describe the types
of interaction present in their data, and classified the QTL
pairs into groups with similar genetic effect by visual
inspection. They identified 4 general classes of models in
this dataset, and classified 16 out of the 21 QTL pairs into
one of these classes (when a QTL pair was associated with
more than one trait the observations from both traits were
considered to be in the same class). The classes are H)
some of the homozygote/heterozygote combinations are
lower than expected, B) the phenotype value associated
with the genotype BB/BB is lower than expected, A) the
data fits an additive model, by visual inspection, L) there
is a set of genotypes with a high value, a set with a low
value associated with it, and the value associated with the
genotype LL/LL is between the two, and U) the 5 QTL pairs
which did not fit into any of the four classes were left
unclassified.

We computed the shapes of the 30 observations and
found that 23 of the 387 shapes occurred, or 16 out of 69
up to symmetry. The data are shown in Figure 6. For each
observation we show a bar-chart of the phenotype means
and the corresponding shape. The point in the upper left
corner of the shape corresponds to the genotype BB/BB,
and the point in the lower right corner corresponds to LL/
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BL -

4 (B)

Figure 6

Example. Example of observed epistasis. A visual representation of the 30 trait/QTL pairs. The phenotype average for each
genotype is given by the heights of the bars, the corresponding shape is also given, and the trait (A-E) and QTL pair (1-21)
listed. Under each panel we list the cluster it falls into (1—4) and the group given by [24] (A, B, H, L, U).
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LL. Although in most applications one would consider the
two alleles at a locus to be interchangeable we do not here,
since they come from different chicken lines. To group
together observations with similar genetic effects we clus-
tered the shapes based on the pair-wise distances between
them, using complete linkage hierarchical clustering.
There are four main clusters in the resulting dendrogram
(not shown). Under each panel in Figure 6 we list which
cluster it falls into, and in parentheses we list which group
it belongs to according to [24]. The observations are
ordered based on the hierarchical clustering with observa-
tions in the same cluster listed together and observations
within each cluster listed according to the distance
between them, as far as possible. For four observations we
switched the order of the first and second locus, compared
to the order in [24], in order to minimize the distance to
the closest observation. Within a cluster, the distance
between the shapes in side-by-side panels is typically one
but occasionally two. Many of the observed shapes are
adjacent to more than one other shape, so two shapes that
are not adjacent in Figure 6 may still be close. Consider
the last row in Figure 6. In all five panels the values of the
genotypes BB/BL, BL/BB and LL/LL dominate the shape,
resulting in a central triangular plane. The value at BB/BB
varies considerably but does not affect the shape. The
shape that each of the observations fall into is, however,
affected by the values of BL/LL and LL/BL. When they are
relatively high an additional partition is added in the
shape. Recall from the previous section that this shape is
observed when there is both additive x dominance and dom-
inance x additive interaction in the data. The shapes in the
second-to-last row indicate strong dominance x dominance
interaction (compare to the shape given in Figure 5). In
the last two observations in the row, dom x dom is the
strongest interaction, whereas the first three also show
strong add x dom interaction.

The visual classification corresponds very well to the clas-
sification based on shapes. All observations labeled H fall
into clusters 1 and 2 (which are close to each other in the
dendrogram) and all observations labeled B fall into clus-
ters 3 and 4. The observations in group A (additive model)
fall into two different clusters. An additive model has no
shape (one can fit a plane through the points) but due to
measurement error in real data this will not be the case.
Note that 3 of the 5 observations in group A induce shapes
which are very subdivided, as can be expected when there
are no genotypes with very high values which dominate
the shape. The observations in group U, which were pre-
viously unclassified, have now been grouped with the
observations they are closest to. Two QTL pairs (4 and 6)
were grouped together in category L. The two observations
on QTL pair 6 are in cluster 4 and the observation on QTL
pair 4 in cluster 1.

http://www.biomedcentral.com/1471-2156/9/17

The power to detect epistasis depends on the model shape
In the previous sections we have discussed how to visual-
ize and classify interaction, however, the first step in a
two-locus analysis is typically to identify pairs of loci with
statistically significant interaction. We now ask whether
(and how) the power to detect interaction depends on the
true model shape. To fully answer that question it is nec-
essary to perform a thorough simulation study which is
outside the scope of this paper, but we have performed a
preliminary analysis with the goal of comparing the rela-
tive power to detect interaction under different model
shapes. We considered three different situations: QTL
mapping, association analysis using logistic regression,
and association analysis using an LD based measure for
interaction. We consider the power to detect interacting
loci as a function of only the true model shape although
the power will also depend on the minor allele frequency
at the two loci, the sample size in the study, the number
of genotyped markers, and the prevalence of disease/phe-
notypic mean in the population. In two-locus QTL map-
ping, the phenotype is typically modeled as a function of
the genotype using a linear model. If y is the phenotype,
the model is

y = fHfoxatfy-xp+d, xu,+d,xp
Hpp - Xpxp +1ap - XpgXp +1Ipy - XpXpy + Ipp - X peXpp + &

where the coefficients of the model are the coordinates f,

fu for 0w S Lia Inps Ips and Ipp, and ¢is Gaussian. The x.
are dummy variables; x, takes the values -1, 0, and 1 for
individuals with genotypes aa, Aa, and AA, respectively,
and x,, takes the value 1 for individuals with genotype A,.
The variables x; and xg;, are defined similarly. To test for
epistasis, the fit of this model is compared to an additive
model where I, = I,,=Ip, = I)p = 0. The test statistic for
a likelihood ratio test is minus twice the difference
between the log-likelihood of the additive and the full
model. This is equivalent to testing if the circuits ¢, = ¢g =

Cy=Cn=0.

In case-control association studies the penetrances of the
genotypes are not observed, only the counts of cases and
controls that have each genotype. To study the shape of a
two-locus disease model we can fit a full two-locus model
using logistic regression and obtain the fitted log odds-
ratio for each genotype, which can then be used to obtain
an estimate of the penetrances. The model is:

108[1f1]]c”) = );+fa'xA+fb'xB+da'xAu+db'bi+IAA'xAxB
1

+lap - X% +Ipa - Xa¥py + Ipp - X puXps + &
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where the f;; are penetrances and the dummy variables x.
are defined as above. By using logistic regression the log-
odds scale is chosen as the scale of interest, and additivity
on that scale corresponds to no interaction. A likelihood
ratio test for epistasis compares the fit of the full model to
an additive model where I, = I, = Ip, = Ipp = 0. This test
is equivalent to testing ¢, = ¢g = ¢y = ¢;( = 0 where the cir-
cuits are obtained by replacing f;; with log(f;/(1 - f;))).

Recently [10] proposed a new test to detect unlinked inter-
acting disease loci. They use an LD based interaction
measure, [ = hoohy; - hoihyo where hy;is defined as the pen-
etrance of a haplotype h;; (hy, is the haplotype ab, h, is aB,
etc.). The haplotype penetrance depends on the two locus
penetrances as well as the allele frequencies. It is easy to
show that the interaction measure, I, vanishes if ¢, = ¢g = cq
= ¢, = 0 when the circuits are calculated using the log pen-
etrance values. In other words, this interaction measure
tests for multiplicative penetrances.

We generated 50, 000 random vectors of length 9. For the
QTL analysis we fixed the population mean of the pheno-
type, fixed the allele frequencies of A and B, and then nor-
malized each random vector to give the desired
population mean. For each vector we generated 10 data-
sets, each with sample size 300, and fit both the full
model and an additive model (note that for all of the
models the 6 interaction coordinates are non-zero so the
tests all have the same degrees of freedom). We used the
average likelihood ratio statistic as an indicator of the
power to detect interaction for that particular model. For
each random model we then recorded which of the 387
model shapes it fell into and for each shape looked at
maximum of the likelihood ratio statistic. In the first
panel of Figure 7 we show the maximum for each shape.

QTL mapping

Assoc. Logistic regr.

http://www.biomedcentral.com/1471-2156/9/17

These maxima are highly variable between shapes, indi-
cating that some types of interactions are easier to detect
than others. We also observed that there is a strong asso-
ciation between large values of the likelihood ratio test
statistic and the number of polygons a shape divides the
square into.

We also generated case-control data from an association
study. The random vectors were normalized so that they
all give the same population prevalence of disease. In the
middle panel of Figure 7 we have plotted the maximum of
the likelihood ratio test statistic as a function of the shape
induced by the penetrances. The test measures deviation
from additivity on a log-odds scale, so the difference
between the different shapes is relatively small. When the
shape is calculated based on the log-odds the results are
the same as before. Finally, in Panel 3 of Figure 7 we plot
the maximum absolute value of the interaction measure I.
This test measures deviation from additivity on a log scale,
yet the results seem to be more similar to the QTL map-
ping case.

Conclusion

The multitude of terms used to describe gene interactions
are a testament not only to the importance of describing
and classifying gene interaction, but also to the fact that
even in a two-locus model the types of interactions that
can and do occur are diverse and difficult to classify. Most
examples of gene interactions that are observed in real
data do not fall into any one of the categories typically
used to describe interactions. Our approach overcomes
this limitation and provides a complete classification of
all two-locus models with continuous genotypic values
into 69 (or 387) classes. The shape of a two-locus model
reveals information about the types of gene interaction

Assoc. LD statistic

MLMMM .
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shape

Figure 7
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Power to detect association. Power to detect association. The plots show the maximum value of the likelihood ratio test
statistic observed for randomly generated data from each of the 387 shapes.

Page 12 of 15

(page number not for citation purposes)



BMC Genetics 2008, 9:17

present and provides a visual representation of epistasis.
By comparing an observed shape to the shapes of standard
epistatic models we see which type of interaction is
strongest in the data. Moreover, the values of the individ-
ual circuits listed in Appendix B provide a complete
description of the epistasis in a two-locus system. The
observed shape can differ from the true underlying model
shape due to noise in the data. Rather than assign an
observation to a shape based on the observed genotype
values, one could test which circuits are significantly dif-
ferent from zero and use only those circuits to obtain the
shape.

Two-locus models are frequently used to generate simu-
lated datasets that form the basis for studies of the power
of single-locus and two-locus methods. These can then be
used e.g. to choose between exhaustive two-locus searches
or two-stage two-locus analyses. There are many exam-
ples, both for linkage analysis and association analysis,
where the results and ensuing recommendations depend
on the models, and types of gene interactions, that are
considered [8,9]. With our complete classification it is
possible to generate data from each model class (while
varying parameters such as population prevalence and
allele frequencies) and subsequently a more thorough
analysis than previously possible can be performed.

As observed in [24] "there are no striking similarities with
a Mendelian pattern of digenic epistasis" in the QTL
example and we found many types of nontrivial interac-
tion, including models which cannot easily be described
using existing models. The fact that our classification is
purely mathematical lends it strength, since we can
describe all possible models and categorize them accord-
ing to the relative genotypic values. It can easily be
extended to three or more loci. It remains to be seen
whether all of the 69 types occur in nature. Our results
also provide a formalism for identifying types of epistasis
that may play a role in determining genetic variability in
populations [25], but we do not address these implica-
tions in this paper.
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Appendix A: Polyhedral subdivisions
Our classification is based on the theory of regular polyhe-
dral subdivisions.

Definition 1 A polyhedral subdivision of a point set A is a
decomposition of conv(A), the convex hull of A, into a finite

http://www.biomedcentral.com/1471-2156/9/17

number of bounded polyhedra, such that the union of these pol-
yhedra is conv(A), and the intersection of any two polyhedra is
a common face of each (possibly the empty face).

A polyhedral subdivision where all the polyhedra are sim-
plices is called a triangulation. We can construct a regular
polyhedral subdivision of a point set A using the follow-
ing construction: Assign to every point g;in A a 'height’, h;.
Then lift each point in A to its specified height by forming
the new point set

A= {(aihi)}aca-

Take conv( A ), and consider its "upper faces", that is, the
faces whose outward-pointing normal vector has its last
coordinate positive. Project each upper face onto conv(A),
by dropping the final coordinate of each point. In this
manner, we obtain a polyhedral subdivision of A. Note
that some points of A may not be used in this subdivision.

Remark 2 In the construction of an induced subdivision there
is some ambiguity as to the whether to project with the lower or

upper faces of conv( A). Both conventions are common-
place. We chose to use the upper faces in order to stay con-
sistent with literature on induced subdivisions and gene
epistasis [19].

If the set of heights {h;} is sufficiently generic, then the
subdivision induced by the heights will be a triangulation.
We will only consider regular subdivisions and triangula-
tions, thus we will use the term "subdivision" to mean
"regular polyhedral subdivision", and "triangulation" to
mean "regular triangulation". For more on polyhedral
geometry see the book [26].

Appendix B: Circuits
€1 =-20,+ 21,y

¢y =-20,-2Ipp
c3=-29,-2l,p
Cq=-20+ 2Ip,
Cs=-26,-2Ipp
Ce=-20,-2Ip,

Cr=Iyp+ Iip+Ips+Ipp
Cg=Iypn-Inp+Ips-Ipp

Co=Iypn-Inp-Ipa+Ipp
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C€10= Iaa+ Iap-Ipa-Ipp
€y =-28,-28,+ 21, - 210
C1y=-28,-28,- 2L, - 21,

Cr3= 2L, + 21,
Cig=2Ipn-2Ip,
Ci5= 2044+ 2],
C16= 2044~ 214p
Cr7 =4y
Crg=-20,+Ipa+Ips-Ipp+ Iyp
Cr9=20,+ Iyp+ Ips+ Ipp- Iyp
€20=-20,+ Ina-Ips-Ipp-Inp
C31=20,+ Iyp-Ipp+ Ipp + Iyp
Cop=-20y+ Ipg+Ips-Ipp+Ixp
Cy3=-28-Ina+ Ipa-Ipp-Iap
C24=-28+Ipa-Ipa-Ipp-Iap
€5 =28 - Iya-Ips-Ipp + Lap
Crg=-20,+ 214,
Cy7=20,+ 2l 4
Cog =20+ 2lpp
Cp9 =20y~ 2lp4
C30=20,- 206,
C31=20,+ 2L 04 + 2Ips + 2Ipp
C3p=-20,+ 2y + 21, - 21
C33=20,+ 21,4 - 21, + 21,
Cag=-28,+ 21, - 21, - 2L,
Cys =28, - 20,4 - 21 + 21,
C36= 20+ 2p4 + 2Ipp + 21,p

C37=-20,+ 2 0 + 21, + 214

http://www.biomedcentral.com/1471-2156/9/17

C35=20,+ 2Iy0 + 2Ip, - 214
C39=-20y+ 2I44- 2Ip + 21,
Cao= 20+ 2Iyp + 2Ip, - 214
Cy1=-20,+ 2Ip04- 2Ipp- 214
Cay=-28,- 2Ly + 20, - 20,
Cy3=20,+ 2144 - 21, + 215
Cyq=-20+ 2y + 21, + 21,
Ca5 =20+ 2lzp - 2Ip,s - 2y
Cag=-28,+ 2L, - 20, - 21,
Cy7=-26,+ 4l + 21,
Cag =28, + 4L, - 21,
Cao=-28,+ 4, - 21,
Cso=26,+ 4L, - 21,1,
Cs1=-20,- 4,0+ 2Ip,
Csp=20,+ 4l + 21,
Cs3= 20+ 4lgu + 21,
Coq=-20,+ 4l + 2,
Cs5=-20,+ 20, + 21, + 214
Cs6=20,-20,+ 2Ip, + 21,
Cs7=20,- 26+ 2Ip,- 214

Csg=20,-20,- 2Ip,+ 21,p

Co9=20,+ 20, + 4l 4+ 2Ip, - 21 4p
Coo=-26,- 28, + 4Ly, - 21, - 2L,
Ce1=-20,-20,+ 4Ly, + 21, + 21,
Cor=-28,-28,- 4L, + 21, - 2L,
Cos=20,- 48, - 2,4 - 215, + 2L,
Coq=40,- 20+ 2Iyp + 21, - 214

Cos=-40,+ 20, + 2144 + 2Ips + 214
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Coo=28,- 468, - 2L, + 2 - 21,
Co7=20,-46,+ 21, - 21, - 21,
Cog=40,-20,+ 21, - 21, + 21,y
Co9=20,- 40+ 25+ 2Ip, + 21,
Cr0=40,-20,- 21,4+ 2Ips + 21,p
C1=40,-20,+ 4l + 21, - 41,
Crp=40,-20,- 4l 4+ 2Ips + 414
Cr3=40,-20,+ 4l - 2Ips + 41,
Cr0=20,-46,- 4l s+ 4lp, - 214
Cr5=-20,+ 40, + 4lps + 4lp,- 214p
Cr6=-40,+ 20, + 4l 5 + 2Ip, + 41,
Cr7=20,- 40+ 4l p + 4, + 214
Crg=28,- 48, + Al - 4l - 21,
Cr9=-40,- 28,- 2Ip, - 4lpp
Cgo=-20,- 46,- 4Ipp + 21,
Cg1=-40,- 26, + 21, - 4l
C3y=-28,- 48 - 4lpp - 21up
Cg3=-20,- 20+ Iys+ Ips-3lpp+ Iup
Cgq=-20,- 28y~ Iya+ Ipa-3Ipp - Ixp
C5=-28,- 28y + Iya- Ips- 3Ipp - Lxp

Cg6= 20,20y~ Ipp-Ips-3lpp+ Ixp

Acknowledgements

The authors thank Bernd Sturmfels and Lior Pachter for helpful discussions
and the two anonymous reviewers whose comments greatly improved this
paper. |.B.H. was supported by grant 512066 (LSHG-CT-2004) from the
European Union FP6 programme.

References

I
2.
3.

Clark A, Wang L: Epistasis in measured genotypes: Drosophila
P-element insertions. Genetics 1997, 147:157-63.

Storey J, Akey ), Kruglyak L: Multiple locus linkage analysis of
genomewide expression in yeast. PLOS Biology 2005, 3(8):.
Carlborg O, Haley C: Epistasis: too often neglected in complex
trait studies? Nat Rev Genet 2004, 5:.

Wade M: Epistasis, complex traits, and mapping genes. Genet-
ica 2001, 112-113:59-69.

No

21.

22.

23.

24.

25.

26.

http://www.biomedcentral.com/1471-2156/9/17

Hoh J, Ott J: Mathematical multi-locus approaches to localiz-
ing complex human trait genes. Nature Rev Genet 2003,
4:701-709.

Moore J: A global view of epistasis. Nature Genetics 2005, 37:.
Hirschhorn J, Lohmueller K, Byrne E, Hirschhorn K: A comprehen-
sive review of genetic association studies. Genet Med 2002,
4:45-61.

Marchini J, Donnelly P, Cardon L: Genome-wide strategies for
detecting multiple loci that influence complex diseases.
Nature Genetics 2005, 37(4):413-417.

Evans D, Marchini ], Morris A, Cardon L: Two-stage two-locus
models in genome-wide association. PLOS Genetics 2006,
2(9):1424-1432.

Zhao |, Jin L, Xiong M: Test for interaction between two
unlinked loci. Am | of Hum Genet 2006, 79:831-845.

Pérez-Enciso M: Multiple association analysis via simulated
annealing (MASSA). Bioinformatics 2006, 22(5):573-580.

Brem R, Kruglyak L: The landscape of genetic complexity acre-
oss 5,700 gene expression traits in yeast. PNAS 2005,
102(5):1572-1577.

Cordell H: Epistasis: what it means, what it doesn't mean, and
statistical methods to detect it in humans. Hum Mol Gen 2002,
11(20):2463-2468.

Wade M: A gene's eye view of epistasis, selection and specia-
tion. J Evol Biol 2002, 15:337-346.

Phillips P: The language of gene interaction.
149:1167-1171.

Cheverud J, Routman J: Epistasis and its contribution to genetic
variance components. Genetics 1995, 139:1455-61.

Fisher R: The correlations between relatives on the supposi-
tion of Mendelian inheritance. Trans R Soc Edinburgh 1918,
52:399-433.

Gauderman W: Sample size requirements for association
studies of gene-gene interaction. Int | of Epidemiology 2002,
155(5):478-484.

Beerenwinkel N, Pachter L, Sturmfels B: Epistasis and shapes of
fitness landscapes. Statistica Sinica 2007, 17(4):1317-1342.

Li W, Reich J: A complete enumeration and classification of
two-locus disease models. Hum Hered 2000, 50:334-349.
Rambau J: TOPCOM: Triangulations of point configurations
and oriented matroids. Proc Int Congress of Mathematical Software,
ICMS 2002.

Ziegler G: Lectures on Polytopes Volume 152. Springer, New York, NY;
1995.

Beerenwinkel N, Pachter L, Sturmfels B, Elena S, Lenski R: Analysis
of epistatic interactions and fitness landscapes using a new
geometric approach. BMC Evolutionary Biology 2007, 7(60):.
Carlborg O, Hocking P, Burt D, Haley C: Simultaneous mapping
of epistatic QTL in chickens reveals clusters of QTL pairs
with similar genetic effects on growth. Genet Res 2004,
83:197-209.

Turelli M, Barton H: Will population bottlenecks and multilo-
cus epistasis increase additive genetic variance? Evolution
2006, 60(9):1763-1776.

Deloera JA, Rambau J, Santos F: Triangulations: Applications, Structures,
Algorithms. Springer to appear .

Genetics 1998,

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 15 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9286676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9286676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16035920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16035920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15266344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15266344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15793588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15793588
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16414961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16414961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15659551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15659551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9649511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7768453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7768453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17433106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17433106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17433106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15462413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15462413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15462413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17089962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17089962
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Shapes of two-locus models
	Two-locus models
	Classification of epistatic effects
	The power to detect epistasis depends on the model shape

	Conclusion
	Authors' contributions
	Appendix A: Polyhedral subdivisions
	Appendix B: Circuits
	Acknowledgements
	References

