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Abstract

Background: Biological systems are interacting, molecular networks in which genetic variation
contributes to phenotypic heterogeneity. This heterogeneity is traditionally modelled as a
dichotomous trait (e.g. affected vs. non-affected). This is far too simplistic considering the
complexity and genetic variations of such networks.

Methods: In this study on type 2 diabetes mellitus, heterogeneity was resolved in a latent class
framework combined with structural equation modelling using phenotypic indicators of distinct
physiological processes. We modelled the clinical condition "the metabolic syndrome", which is
known to be a heterogeneous and polygenic condition with a clinical endpoint (type 2 diabetes
mellitus). In the model presented here, genetic factors were not included and no genetic model is
assumed except that genes operate in networks. The impact of stratification of the study
population on genetic interaction was demonstrated by analysis of several genes previously
associated with the metabolic syndrome and type 2 diabetes mellitus.

Results: The analysis revealed the existence of |9 distinct subpopulations with a different
propensity to develop diabetes mellitus within a large healthy study population. The allocation of
subjects into subpopulations was highly accurate with an entropy measure of nearly 0.9. Although
very few gene variants were directly associated with metabolic syndrome in the total study sample,
almost one third of all possible epistatic interactions were highly significant. In particular, the
number of interactions increased after stratifying the study population, suggesting that interactions
are masked in heterogenous populations. In addition, the genetic variance increased by an average
of 35-fold when analysed in the subpopulations.

Conclusion: The major conclusions from this study are that the likelihood of detecting true
association between genetic variants and complex traits increases tremendously when studied in
physiological homogenous subpopulations and on inclusion of epistasis in the analysis, whereas
epistasis (i.e. genetic networks) is ubiquitous and should be the basis in modelling any biological
process.
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Background

Despite tremendous progress in our understanding of the
human genome and the rapidly advancing ability to
probe genetic variation, investigation of the human
genome has yielded only modest insight into the patho-
genesis of complex human traits such as glucose levels
and insulin resistance. One possible explanation is inade-
quate modelling of complex polygenic interactions and
phenotypic heterogeneity.

First, as far as a condition or disease is monogenic in the
sense that a single gene variant is sufficient to precipitate
a condition or disease, family-based studies are powerful
in detecting causal genes or at least in narrowing down the
location of the genes on the chromosomes [1]. However,
most conditions and diseases of a major impact on public
health, such as type 2 diabetes mellitus, are complex, with
each factor presumably only contributing minimally to
the trait in the general population [2].

Although it is acknowledged, that most common diseases
are complex, the traditional Mendelian single-gene
approach is still common (see [3] for a discussion). The
implicit assumption is that a single gene, or a few major
genes, determines the outcome of a condition, even for
complex conditions. Concomitant gene-gene interaction
or epistasis is often either ignored completely or deemed
unimportant. However, epistasis is a physiological reality
in all biological systems and is thus one of the most
important features in complex conditions [4]. No gene is
an island but exclusively exerts its function through inter-
action with other genes in integrated networks [5-8]. In
fact, it can be argued that even apparently monogenic dis-
eases are not truly monogenic, but rather can be consid-
ered as complex polygenic traits caused by mutations
showing varying degrees of penetrance [9]. Ignoring the
importance of genetic and non-genetic interactions is one
of the main reasons for the rather meagre and contradic-
tory results of genome association studies [10-13].

Second, genetic studies of complex diseases initially pur-
sued the notion that the sole important phenotype to
study was the conventionally defined diagnosis of the dis-
ease. This is somewhat peculiar given that most complex
diseases are characterised by clinical heterogeneity, which
would argue against a uniform etiological cause. As this
incoherence is now widely acknowledged, genetic studies
have been broadened to include quantitative trait loci
(QTL). Although this strategy has been somewhat success-
ful, it has rarely provided insight into the complex disor-
der itself. One reason for this is that, although dynamic,
continuous traits are introduced, most genetic studies are
still performed as case-control studies and thus dichot-
omise the trait or phenotype. This approach inevitably
leads to loss of power [14]. Another issue is that study
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populations are rarely homogeneous, and although the
study population is often stratified (e.g. by gender, age or
ethnicity), this is frequently rather arbitrary in nature and
may even be irrelevant to the process studied, hence
reducing the power of the study.

Several methods have been developed to account for pop-
ulation heterogeneity and epistasis [3,15-32]. Newer
advanced clustering methods originating from computer
science have been introduced, including fractal analysis,
genetic programming and non-linear dynamics [33-37].
These latter techniques incorporate gene-gene interactions
and non-genetic variables to explain phenotypic variabil-
ity. They have the weakness as most other methods, that
they depend on genetic models and in particular on a pri-
ori defined penetrance functions of interactions. These
methods are to various extents based on coalescence the-
ory and they use of genetic data for classification mostly
in hierarchy tree-like structures, which is rather unrealistic
in natural systems [38]. An alternative is to model net-
works of interacting genes, gene products, and regulatory
structures covering the entire genome [6-8,39], but even
in mono-cellular organisms this is a daunting task and is
far from being resolved. The hypothesis is that any observ-
able phenotype of a complex biological system by neces-
sity is determined by the complexity of its underlying
biochemical organisation and the signalling network
operating within it. It is the entire network behaviour and
not a single, specific variable that determines the physio-
logical outcome.

Here we adopt a "naive" approach, focussing on resolving
physiological heterogeneity related to the metabolic syn-
drome and thus predisposition to type-2 diabetes in the
general population using structural equation modelling
(SEM) in a latent class analysis (LCA) framework. The
assumption is that all physiological processes examined
are coded for and regulated by genomic structures in an
extensive cellular and inter-cellular network and are mod-
ified by non-genetic factors to varying extents. The popu-
lation as a whole is considered to consist of a finite
amount of physiologically distinct subpopulations
defined by the state of the genetic network. The purpose
of this analysis is not to define the disease, but rather to
define subpopulations that are characterised by physio-
logically distinct metabolic entities or states that may or
may not develop into type 2 diabetes mellitus, which is
recognised to be a heterogeneous condition [40] with a
large polygenic genetic component [41]. The second step
in this study is an evaluation of the importance of resolv-
ing population heterogeneity in genetic studies by SEM-
LCA analysis.
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Methods

Population and variables

The population used is that of the Danish Inter 99 study,
which comprises all 61,301 individuals born at 5-year
intervals between 1939 and 1970 in 11 municipalities in
south-western Copenhagen County. From the original
population an age- and sex-stratified random sample of
13,016 individuals was contacted and invited to partici-
pate in the Inter 99 study of which 6,775 responded to the
invitation to participate [42].

Fasting levels of glucose, insulin, C-peptide, lipids and
cholesterol were analysed, and blood pressure and
anthropometric measures such as height, weight, body
mass index (BMI) and waist/hip circumference (WH)
were obtained. In addition, an oral glucose tolerance test
(OGTT) was performed in all individuals, and glucose,
insulin and C-peptide were measured at 0, 30 and 120
min. BMI and WH are included as indices of obesity. Insu-
lin resistance (HOMAres) and B-cell function (HOMA-
beta) were calculated using fasting levels of insulin and
glucose [43]. Basic variables for the study population are
summarised in Table 1.

A total of 30 single nucleotide polymorphisms (SNPs) in
21 genes previously shown to be associated with the met-

Table I: Summary of the variables in the Inter 99 study used in
the SEM-LCA analysis

Mean (SD)

Women Men
Number 3,345 3,169
Age (years) 45.8 (8.0) 46.6 (7.8)
BMI (kg/height2) 25.8 (5.1) 26.8 (4.0)
Waist-hip ratio (WH) 0.80 (0.06) 0.92 (0.06)
Systolic blood pressure 127 (18) 134 (17)
Diastolic blood pressure 80 (I1) 85 (1)
Total cholesterol (mmol/L) 54 (I.1) 5.6 (I.1)
LDL (mmol/L) 3.4 (1.0) 3.7 (1.0)
VLDL (mmol/L) 0.53 (0.28) 0.67 (0.36)
Triglycerides (mmol/L) 1.15 (1.23) 1.54 (1.39)
C-peptide 0 min (pmol/L) 577 (256) 627 (301)
C-peptide 30 min (pmol/L) 1,954 (662) 2,054 (769)
C-peptide 120 min (pmol/L) 2,394 (967) 2,245 (1,078)
Insulin 0 min (pmol/L) 41 (28) 45 (31)
Insulin 30 min (pmol/L) 281 (166) 302 (201)
Insulin 120 min (pmol/L) 228 (203) 210 (229)
Glucose 0 min (mmol/L) 5.4 (1.0) 5.8(1.2)
Glucose 30 min (mmol/L) 8.2(1.8) 9.2 (1.9)
Glucose 120 min (mmol/L) 6.3 (2.0) 6.2 (2.5)
HOMAres 1.71 (1.61) 2.00 (1.69)
U-albumin/creatine ratio (mg/mmol) 8.9 (52.4) 8.4 (60.4)

All variables except glucose at 120 min and the U-albumin/creatinine
ratio are significant different between genders (p < 0.001).
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abolic syndrome and diabetes mellitus were included in
the genetic part of this study [see Additional file 1].

The study was approved by The Ethics Committee of
Greater Copenhagen, Denmark.

Modelling heterogeneity

Heterogeneity is modelled in a latent class framework
combined with SEM. The modelling is performed by
applying a finite mixture model or LCA [44,45]. The prob-
ability structure assumed for the variables in the LCA is of
the form f(y|z) = 2.n(x|2)f(y|x,z). We are modelling the
probability density of observing y (= insulin levels) given
a set of covariates z (= glucose, C-peptide, etc.). Here
n(x|z) is the probability of having a certain set of values
for the discrete latent variable (x, "liver") given an individ-
ual's observed covariates. (x|z) is equivalent to the prob-
ability of belonging to a subpopulation and sums to 1 for
each subject. At the population level, n(x|z) reflects the
relative size of a subpopulation and sums to 1. The out-
come of this modelling is a classification of the popula-
tion sample in mutually exclusive subpopulations with
significantly distinct physiological metabolic states differ-
ing in their propensity to evolve into a clinical endpoint,
in this case diabetes mellitus. In this model, the depend-
ent or indicator variable (insulin at time points during the
OGTT) is modelled as a continuous normal distribution
f(y|x) conditional on class membership in a perfect classi-
fication. A number of known physiological risk factors for
the metabolic syndrome or type-2 diabetes were intro-
duced as independent variables in the model (see Results
section on Model building for details).

Model assumptions

All subjects are assumed to possess exactly the same basic
genetic structures, but these vary in expression because of
variability in the genome, including SNPs, deletions,
insertions and copy number variations, and due to envi-
ronmental factors. Furthermore, it is assumed that the
population consists of a mixture of subpopulations,
within which all variables are presumed to be normally
distributed and only correlated through a latent variable.
Variables may not be exactly normally distributed in a tis-
sue or organism because of asynchrony of the dynamic
processes in the cells [46], but the modelling approach
used here is robust to minor deviations from normality.
The hypothesis is that the difference in variables between
subpopulations is defined by distinct genetic variations in
the subpopulations. Genetic structures and variations are
not modelled directly, but are embedded in the latent var-
iable. The variance in measured variables included in the
model reflects the genetic variability that we eventually
want to elucidate. It should be stressed that no particular
genetic model is assumed other than that all potential
genes are part of a network common to all subjects. No
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assumptions are made for the distribution of traits in the
basic study population as such. In particular, a normal
distribution of traits in the general population is not
required; in fact, a normal distribution in the basic study
population may indicate a single physiologically homoge-
neous population, which is not expected for the metabolic
process. In addition, if traits in the basic study population
are actually normally distributed, the population may be
truly homogenous and no physiological mixture of sub-
populations would be present conditional on the trait of
interest.

The structural model (SEM) of the metabolism of glucose
and hence the metabolic syndrome is schematically
shown in Figure 1. The metabolic syndrome is conceived
as diminished glucose utilisation (uptake and processing
of glucose) in peripheral tissues caused by increasingly
inefficient action of insulin, i.e., insulin resistance evolves
in the tissues. "Increasingly" should be conceived both as
differences in insulin response between homogeneous
subpopulations determined by the subpopulation geno-
type and as a modulation of insulin resistance by non-
genetic factors. The pancreatic B-cell is the sole physiolog-
ical source of insulin for which synthesis and secretion are
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influenced by numerous substances, including glucose.
However, most of the insulin does not reach the general
circulation, as it is metabolised in its first passage through
the liver. Only 15-30% of the insulin secreted from the
pancreas actually reaches the general circulation. The
actual secretion by pancreatic B-cells can be estimated by
measuring C-peptide, which is cleaved from proinsulin
when insulin is secreted from the pancreas. C-peptide is
not cleared by the liver and therefore reflects the B-cell
activity. However, we are interested in the general meta-
bolic state of the organism and therefore the biological
activity of insulin (rather than in its production), and thus
we define insulin as the principal indicator of this meta-
bolic state. Nonetheless, the actual production of insulin
is still an integrated circuit in the metabolic pathways, and
C-peptide is therefore included into the model as a covar-
iant (Figure 1). Several metabolites other than glucose
influence the metabolic process that in turn also directly
influences the secretion of insulin from pancreatic -cells,
but complete modelling of these pathways is complicated
and computer- intensive and will be the subject of future
studies. Nevertheless, the simple model used here is very
efficient (see below), and therefore all latent variables are
modelled in one complex variable, which we name "liver"

SEM model
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The figure illustrates the simplified model used in the present study. As explained in Methods liver symbolize a surrogate of
processes in the tissues with focus on the insulin metabolism. C-peptide denotes the secretion of C-peptide and hence insulin
from the pancreatic 3-cell. The insulin on the right side of the liver indicates the amount of insulin actually reaching the general
circulation influencing the metabolism in peripheral tissues. Most of the insulin execute its action in and is internalized by the
liver. Glucose and lipids are both metabolised in the liver, but also in many other tissues, in addition to influencing insulin pro-
duction and secretion in the pancreas. All these processes can of course be modelled, but at the moment it will impose severe
computer challenges. Nevertheless, this highly simplistic model turns out to be very efficient in the latent class analysis (see

text).
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as a surrogate for all tissues involved in glucose metabo-
lism and insulin resistance, recognising the over-simplifi-
cation this implicates. Note that no covariates are allowed
to directly affect insulin, because, although correlated to
insulin, they are not directly explanatory, but act through
cellular processes.

It is presumed that no subject transitions between classes
are possible. Only metabolic transitions from one level to
another level of the metabolic status would be within a
class, depending on the load of non-genetic factors and
within the limits defined by the class-specific genotype,
i.e., the non-genetic factors operate within the limits of a
genetic framework that physiologically cannot be
exceeded.

Data mining

SEM-LCA analysis is time-consuming and computer-
intensive. Therefore, an exploratory ordinary linear regres-
sion analysis was performed as a mean of data-mining to
select variables most correlated to insulin. The selected
variables were used in the initial building of the model.
After the basic model was developed, the remaining vari-
ables correlated to insulin or previously shown to be cor-
related to the metabolic syndrome were successively
entered into the analysis and were retained in model if
they increased its goodness of fit.

Genetic analyses

The entire study population was genotyped using the
SNPlex technique (ABI Biosystems) or Tagman chemistry
(ABI Biosystems). SNPs with unresolved ambiguities
(range 3.2 - 8.5%) were excluded from the analysis. The
minor allele frequencies ranged from 0.08% to 48.83%.
Hardy-Weinberg equilibrium (HWE) was analysed using
the exact method of Wigginton et al. [47]. The R-script
provided by Wigginton et al. was slightly modified to an
S-Plus script, including calculations of confidence inter-
vals. Two-gene linkage disequilibria (LD) were calculated
for all combinations of genes included in the study. The
methods of Weir [48] for calculating di-, tri — and quadri-
genic disequilibria were adopted.

Heritability and epistasis

The heritability of traits was calculated for each SNP [49].
For genes with multiple SNPs, i.e, angiotensinogen
(AGT), interleukin 6 (IL6), adrenergic receptor -2 (ARB2)
(each genotyped for two SNPs), and hepatic nuclear factor
40, (HNF4a; seven SNPs), heritability was calculated for
each SNP separately. Two-gene physiological epistasis was
calculated for all combinations of SNPs for each trait by
variance decomposition as previously described [50-52].
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Statistics and programmes

The exploratory data-mining procedure to select variables
included in the model, and comparisons of variables in
the classes were performed using the SPSS package v.15.0.

Structural analysis is carried out using Mplus v.4.0, which
can perform LCA and SEM in a single operation [53]. The
corrected Bayesian information criterion (BIC) was used
as the decision criterion for the best models generated.
Algorithms for calculation of HWE [47], two-gene dise-
quilibria [48], and epistasis [50-52] were all programmed
in S-Plus v.7.0 (Insightfull).

Results

Variables in the model

An exploratory linear regression analysis was performed
for the entire population and for the two subpopulations
stratified by gender. The latter is justified, as the variables
related to the metabolic syndrome and diabetes are
known to differ between genders [41] (see below). The
purpose of this analysis was to identify the variables with
most potential influence on the model indicators, i.e.,
insulin at 0, 30, and 120 min (Figure 1). Analysis revealed
that variables related to the metabolic syndrome and dia-
betes were also significantly correlated to insulin levels,
albeit to different extents (data not shown). Insulin, C-
peptide, BMI, and very low density lipoprotein (VLDL)
were included in all the regressions, and age was included
in all but one regression. Insulin at 0 min was only
regressed as a covariate for 30- and 120-min OGTT results.
Similarly, insulin at 30 min was only regressed as a covari-
ate for 120-min OGTT results. Somewhat surprisingly,
fasting glucose (at time 0) only entered two of the nine
regressions, indicating that basic glucose levels do not
influence the dynamics of insulin levels during a glucose
challenge.

C-peptide at 0 min did enter the regression at 30 min, but
not at 120 min. This may reflect two processes in C-pep-
tide (and insulin) metabolism: secretion and catabolism.
In the initial phase of the glucose challenge, insulin secre-
tion (as measured by C-peptide levels) proceeded, but in
the later phase secretion decreased, perhaps even below
fasting levels, and the decrease in C-peptide and insulin
levels mainly reflect the removal and degradation of the
peptides. This scenario may pertain to what is perceived as
normal metabolism, but collapses as insulin resistance
and B-cell dysfunction progress.

In summary, insulin as an indicator and C-peptide and
glucose as co-variates were used to build the basic model.

Structural equation modelling and Iatent class analysis
Combined SEM and LCA was initiated by including insu-
lin at the three time points as indicators without any co-
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variates. The number of classes was increased to the point
at which the adjusted BIC value did not significantly
change. Next, glucose and C-peptide were included sepa-
rately and in all combinations as co-variates. Although
glucose and C-peptide at 0 min were only significantly
associated with the indicators in a fraction of the regres-
sions, they were indispensable in the model, as assessed
by the adjusted BIC criterion (Table 2, Stage 1; AIC and
unadjusted BIC are included in the table for comparison
of goodness-of-fit statistics). This results in a basic model
with 19 classes or subpopulations for both men and
women.

The basic model was extended by including all the
remaining variables separately as co-variates. The number
of classes was varied for each variable included to ensure
that an optimum was reached. The modelling results for
the variables significantly entering the model are shown
in Table 2, Stage 2. Note that the optimum number of
classes was reduced from 19 to 18 at this stage of model
building, irrespective of the variable entering the model.
The co-variates BMI, WH, triglycerides, high density lipo-
protein (HDL), and cholesterol were then evaluated in all
combinations. In addition, variables that did not singu-

Table 2: Latent class model for women and men
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larly improved the model fit were re-tested in combina-
tion with any additional co-variate entering the model.
This process resulted in a final 19-class classification
(Table 2, Final model), in which BMI, cholesterol, and age
entered the model as covariates in addition to the basic
covariates glucose and C-peptide. The building process
was consistent in the sense that when the variable leading
to the greatest improvement in the goodness-of-fit was
included in the model, it remained in the model regard-
less which covariate was added in the next step.

Analysis of the final model was repeated five times using
different programme seeds and increasing numbers of
iterations to ensure that a global maximum in the fit was
obtained, although it is difficult to prove that the solution
of the model fit was in fact global and not local. However,
exactly the same parameters and goodness-of-fit statistics
emerged for all analyses and subject allocation in the
classes was the same in all runs. Calculating the final
model consisting of 19 classes and 12 variables took
approximately 16 h on a 4-Ghz 1-GB-RAM stand-alone
machine. The final model included insulin at all time
points as indicators, glucose and C-peptide at all time
points as covariates, and BMI, cholesterol and age. The

Indicators: Insulin levels at 0, 30 and 120 min after an oral glucose tolerance test (OGTT).
Covariates in all models: Glucose and C-peptide levels at 0, 30 and 120 min after OGTT.
Stage | Stage 2 Final model
Women
Number of classes 17 18 19 18 18 18 18 18 19
Additional covariates BMI WH TG HDLC Chol. BCagec
df2 551 583 615 746 746 746 746 746 1,188
AIC 85,626 81,531 8,472 8,330 81,487 81,473 81,411 81,490 80,962
BIC 86,322 82,870 8,.886 82,769 82,925 82911 82,849 82,928 82,694
Sample-Size Adjusted BIC 85,947 82,148 8,124 81,994 82,150 82,136 82,074 82,152 81,759
Entropy 0.876 0.868 0.859 0.872 0.862 0.873 0.872 0.871 0.879
Chi-tests:®
AIC <E-5 <E-5 <E-5 <3*E-4 <E-5 <E-5 <6*E-4 <E-5
BIC <E-5 - <E-5 - - <0.24 - <0.33
BICadj <E-5 <0.027 <E-5 - <0.75 <E-5 - <E-5
Men
df 551 583 615 746 746 746 746 746 1,188
AIC 83,973 83,840 83,792 83,643 83,792 83,726 83,688 83,722 83,226
BIC 85,237 85,181 85,210 85,084 85,233 85,166 85,129 85,162 84,962
Sample-Size Adjusted BIC 84,556 84,459 84,447 84,309 84,457 84,391 84,354 84,387 84,028
Entropy 0.886 0.883 0.882 0.888 0.881 0.881 0.884 0.884 0.898
Chi-tests:
AIC <E-5 <E-5 <E-5 <E-5 <E-5 <E-5 <E-5 <E-5
BIC <E-5 - <E-5 - <0.65 <E-5 <0.37 <0.39
BICadj <E-5 <051 <E-5 1.00 <E-5 <E-5 <E-5 <E-5

adf, degrees of freedom.

bChi-square tests. The models were compared with the immediately preceding model. The models in Stage 2 were compared to the best model in

Stage | and so on.

<BCage, BMI, cholesterol and age.

The latent class variable was regressed on all covariates (see Figure 1B). All models with higher numbers of classes have lesser goodness-of-fit
statistics and are omitted form the table.
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number of classes was 19 for both men and women and
exactly the same covariates are included in the model for
both sexes. When the number of classes was increased to
20 or more, the model deteriorated (data not shown). The
entropy measure [53] was almost 0.9, indicating a very
high rate of correct classification of individuals in classes.

Phenotype differences between classes

Classes are ordered according to an increase in insulin
resistance defined by the HOMAres index [43]. The size of
the classes and the fraction of frank diabetics identified is
shown in Table 3. All the variables included in the study
were evaluated for significant differences between gender
and between the 19 classes within each gender. Except for
glucose at 120 min, all variables were significantly differ-
ent between the genders (data not shown). Within each
gender there was a high proportion of significant differ-
ences between classes, even when the comparisons were
corrected for multiple testing [see Additional file 2]. The
differences in proportions were particularly true for insu-
lin and C-peptide, whereas the number of differences was
somewhat lower for the other variables in the model, in
particular for cholesterol.

It was anticipated that the fraction of frank diabetic cases
in the classes would increase with increasing class number
(i.e., with increasing insulin resistance). However, this
was clearly not the case, in particular not for men. A pos-
sible reason is that the HOMAres index is an inaccurate
measure of insulin resistance, as it only includes glucose
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levels at 0 min, whereas insulin does not enter in the algo-
rithm. Rather, the dynamics of glucose, insulin and C-
peptide in the OGTT have to be implemented in analysing
the metabolic status. Glucose levels in female classes 8
and 16-19 at 120 min and in class 18 at 0 min did indi-
cate impaired glucose tolerance (IGT) according to the
WHO criteria [40]. These five classes included 463 cases,
or 17.3% of the entire female population. Except for class
16, all of these IGT-classes had increasing insulin levels at
120 min in the OGTT. In addition, classes 1 and 6 also
showed increasing insulin levels at 120 min, albeit at a
modest level.

Nevertheless, the latter classes did show increasing insulin
levels concomitant with normalised glucose levels at 120
min, i.e., full compensation of insulin resistance was
obtained for these two classes (which would not be
detected by the HOMAres index). The combined insulin
resistance classes (defined as IGT or increasing levels of
insulin at 120 min after the glucose challenge) amount to
a total of 895 females, or 33.4% of the female study pop-
ulation. Only five classes, including 782 or 29.2% of the
females, showed decreasing C-peptide levels after 120
min, indicating increased secretion of C-peptide (and
hence insulin) in the remaining 70% of the female popu-
lation. On an individual level, approximately one-third of
the women had increased secretion of C-peptide (Table
4). This discrepancy between individual and class-average
gradients indicates that a substantial fraction of the classi-
fied women had not reached their final dynamic state

Table 3: Size of classes and distribution of frank diabetes type 2 (DMT2) cases in the classes

Women Men

Class Class size No DMT2 % DMT2 Class size No DMT2 % DMT2
| 140 2 1.43% 112 | 0.89%
2 93 0 0.00% 148 2 1.35%
3 163 0 0.00% 133 | 0.75%
4 243 0 0.00% 106 0 0.00%
5 233 0 0.00% 24| 4 1.66%
6 197 3 1.52% 222 | 0.45%
7 118 0 0.00% 138 25 18.12%
8 129 8 6.20% 148 0 0.00%
9 173 0 0.00% 160 0 0.00%
10 259 0 0.00% 128 3 2.34%
I 176 3 1.70% 155 2 1.29%
12 141 0 0.00% 88 0 0.00%
13 95 0 0.00% 195 36 18.46%
14 90 3 3.33% 146 16 10.96%
15 95 5 5.26% 135 2 1.48%
16 102 | 0.98% 116 3 2.59%
17 103 23 22.33% 38 0 0.00%
18 58 20 34.48% 179 39 21.79%
19 71 Il 15.49% 120 Il 9.17%
2,679 79 2.95% 2,708 146 5.39%
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Table 4: Dynamic metabolic status and gradients for insulin and
C-peptide

Gradients©
Status  (WHO) Insulin  C-peptide
Women
Population ~ NGT2  82.5% Negatived  30.2%  65.3%
IGT® 17.5% Positive 69.8%  34.7%
Classes NGT 82.7% Negative 704%  29.2%
IGT 17.3% Positive 29.6%  70.8%
Men
Population ~ NGT  72.8% Negative 249%  55.2%
IGT 27.2% Positive 75.1%  44.8%
Classes NGT  8I1.1% Negative 81.1%  41.0%
IGT 18.9% Positive 18.9%  59.0%

aNGT, normal glucose tolerance; IGT, impaired glucose tolerance.
According to the WHO criteria (ref. 40)

bIGT, defined as glucose at 0 minutes above 6.1 mmol/l and/or glucose
at 120 minutes above 7.8 mmol/l

cGradients calculated as the differnece between the 120 min and 30
min levels.

dNegative: negative gradients; Positive: positive gradients

within the class. This difference is much less pronounced
in men (Table 4). The situation is reversed for insulin gra-
dients: 70-75% of the individuals exhibited a positive
gradient, but far fewer were included in classes with posi-
tive average gradients. It should, however, be remem-
bered, that insulin levels are the result of a complex
process of secretion and catabolism involving interaction
with the insulin receptor (particularly in the liver),
whereas C-peptide mainly reflects the secretory process.
Taken together, the results presented in Table 3 and 4
indicate that the WHO criteria for defining insulin resist-

Table 5: Hardy-Weinberg equilibria
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ance and the concept of insulin-glucose homeostasis need
to be re-evaluated. In addition, the model presented here
may be too simplistic.

Genetic analysis

HWE

A total of 30 SNPs in 21 genes were examined in the pop-
ulation sample. Among these, only the SNP termed
HNF40-3 [see Additional file 1] deviated from HWE after
correction for multiple testing in both the female and
male subpopulations (Table 5). However, after stratifica-
tion by SEM-LCA, this SNP was in HWE in approximately
75% of the classes.

Linkage disequilibrium

Two-SNP LD analysis [48] was performed within genders
before and after LCA (data not shown). There were 435
possible combinations for each gender, and 8,265 combi-
nations for each gender after LCA stratification into 19
classes. LD analysis (i.e., statistical association between
SNPs [48]) was performed in two steps: LD between SNPs
within the same gene (HNF4a, AGT, IL6, and Arf2), and
LD between SNPs that are not in physical linkage, i.e., on
different chromosomes or far apart on the same chromo-
some [see Additional file 1].

The total fraction of all possible two-SNP combinations in
LD after correction for multiple tests decreased from 4.3 %
before stratification to 1.3% and 1.4% for women and
men, respectively, after classification. The physical
unlinked SNP pairs increased from 21% before stratifica-
tion to more than 56% after classification. Although these
fractions of SNP combinations in LD seem small, they
indicate that stratification into subpopulations increases

Number Genotypes Frequence
Gene AAP Aa aa Allele A Allele a P-value?
Gender HNF4a -3 Male 2,908 1,996 629 283 0.80 0.20 8.8E-65
HNF4a -3 Female 3,052 2,111 667 274 0.80 0.20 5.2E-59
Class
Men HNF4a -3 I 138 96 25 17 0.79 0.21 5.0E-07
HNF4a -3 2 221 140 51 30 0.75 0.25 4.3E-08
HNF4a -3 3 208 142 41 25 0.78 0.22 I.1E-08
HNF4a -3 10 131 86 27 18 0.76 0.24 2.2E-06
HNF4a -3 I 85 65 12 8 0.84 0.16 8.7E-05
HNF4a -3 12 142 98 29 15 0.79 0.21 2.5E-05
HNF4a -3 15 125 95 13 17 0.8l 0.19 3.6E-11
HNF4a -3 17 185 126 41 18 0.79 0.21 2.8E-05
Women HNF4a -3 3 182 134 30 18 0.82 0.18 6.2E-08
HNF4a -3 7 90 73 10 7 0.87 0.13 4.5E-05
2Only genes with p-value below the Bonferoni corrected p-value are shown
bThe most abundant allele is arbitrary labelled A
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the number of physically unlinked genes in LD, suggest-
ing a joint influence on class membership, i.e., epistasis
(see below). Concomitantly, the number and fraction of
spurious LDs due to admixture decreased significantly.
Most LDs were di-allelic, but a few tri- and quadri-allelic
LDs were present, indicating stringent genotype-combina-
tions influencing the traits.

Interestingly, all the HNF4a polymorphisms were in
mutual LD except for HNF40-6 (data not shown) in both
genders before stratification, but most LDs were lost after
stratification, except for SNPs HNF4a-2 and HNF4o.-3. In
contrast, only a few physically unlinked SNPs were in LD
before stratification, but this number was 15-fold greater
after stratification. Only the LDs in the non-stratified gen-
der population between HNF40.-2/HNF40.-3 and Arf32-1/
ARP2-2 were recovered in almost all classes. Thus, most of
the LDs detected in the non-stratified population disap-
peared after classification, whereas several new LDs
emerged after classification. This finding may be inter-
preted as hidden epistasis in non-stratified populations,
as the SEM-LCA was based solely on physiological varia-
bles (no genes were included in the SEM-LCA analysis).
This suggests that the non-stratified but admixed popula-
tion exposes two problems: the creation of false LDs and
masking of true LDs [17].

Heritability

When the population sample was stratified according to
gender, none of the SNPs showed even a marginal effect
on any of the physiological variables (Table 6). When gen-
ders were stratified into LCA classes, a few SNPs in a few
classes showed a significant and Bonferroni-corrected

Table 6: Heritability of the traits shown in Table T1
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influence on a limited number of physiological variables,
mainly urinary-albumin and urinary-creatinine.

However, these were variables a priori not suspected to be
causative in the metabolic syndrome and were not
included in the final SEM-LCA model. For a nominal 5%
level of significance, approximately 5% of all heritabilities
were significant. This is, as expected, by pure chance and
remarkably non-significant, considering that the genes
were selected because several studies have shown that they
influence various physiological variables related to the
metabolic syndrome and type 2 diabetes mellitus [see
Additional file 1].

Epistasis

Pre-LCA analysis

To examine epistatic effects on the physiological variables
that characterise the metabolic syndrom and type 2 diabe-
tes, logistic regression analysis was performed on both
genders prior to LCA stratification for all two-SNP combi-
nations. The variance components of the analyses that
were significant after correction for multiple testing
(including the summary variables HOMAres and HOMA-
beta) are shown in Table T3 [see Additional file 3]. In
men, 180 two-SNP interactions did not influence any
physiological variable, whereas 85 two-SNP interactions
influenced all variables.

The numbers for women were 208 and 70, respectively.
Combined for women and men, 165 two-SNP interac-
tions did not influence any traits in either gender group,
and 40 two-SNP interactions influenced all variables in
both genders, which seems to suggest the existence of gen-
der-specific interactions. Between 87.6% and 92.3% of

Heritability
Class Trait Gene Number2 Additive Total F-test p-value
Gender Noneb
Women 5 HOMAbeta IL6-2 223 0.01 0.10 48.83 <IE-16
9 Triglycerides AP2(3 163 0.15 0.54 20.25 <IE-16
17 U-albumin AGRP 100 0.31 0.33 15.06 2E-6
17 U-alb/crea AGRP 100 0.32 0.34 15.17 2E-6
19 Ins30 PPAR 71 0.08 0.47 17.45 IE-6
Men 5 U-alb/crea HNF4a-1 236 0.02 0.08 13.52 3E-6
8 Triglycerides AGT-| 141 0.11 0.25 17.28 <IE-16
13 Triglycerides ARB3 190 0.01 0.10 23.35 <IE-16
15 U-alb/crea HNF4a-1 129 0.04 0.13 14.37 2E-6
15 U-albumin HNF4a-| 129 0.05 0.13 14.15 3E-6
16 U-albumin HNF4a-1 113 0.16 0.35 17.96 <IE-16
16 Triglycerides HNF4a-2 112 0.13 0.29 14.76 2E-6
17 U-albumin PGCI 37 0.21 0.96 19.72 2E-6
19 U-albumin AGT-| 119 0.12 0.25 29.41 <IE-16
19 U-alb/crea AGT-2 119 0.11 0.24 288l <IE-16
aNumber of individuals included in the test
bNumber of heritabilities detected for any trait
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the possible two-SNP combinations between different
genes were involved in epistatic interactions termed Real
epistasis in Table T3 [see Additional file 3] for both gen-
ders, in which the epistatic variance accounted for almost
half of the genetic variance.

The single-gene multilocus genotypes HNF4a4, ARP2,
AGT and IL6 were explanatory of genetic variances even if
single-locus SNPs were only explanatory in a few sporadic
cases (Table 6). Nearly half of the genetic variance was
accounted for by epistasis; the remaining genetic variance
could be explained by two-gene additive and dominance
variance.

Interestingly, all the functional SNPs (coding amino
acids) were always included in the haplotypes of the
HNF4a gene. This was also true for the AGT and ARB2
genes. In the case of IL6, the two promotor SNPs were
included for all the physiological variables examined, sug-
gesting that they are both necessary in regulating IL6
expression.

Post-LCA analysis

The total number of possible two-SNP epistatic effects
after classification into 19 subpopulations was 7,269 in
women and 7,268 in men, or 87.9% of all possible inter-
actions. Two-gene combinations in which one or both
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genes was monomorphic were excluded, as no interaction
could be calculated. Combinations in which one or both
genes was not in HWE were also excluded, as this was a
prerequisite for the variance decomposition [52]. Of the
two-SNP combinations included close to one-quarter sig-
nificantly influenced at least one physiological variable in
at least one gender-specific class after correction for mul-
tiple testing. On average, almost 10% of the phenotypic
variances were accounted for by separate two-gene inter-
actions across all physiological variables and all classes.
The total genetic variance ranged from 0% to 66.8%, and
the epistatic variance ranged from 0% to almost 40% of
phenotypic variance.

The most striking results were that: (1) a few classes did
not show any interactions at all for any physiological var-
iable; and (2) stratification into subpopulations increased
the genetic variance tremendously. The average total
genetic variance increased by 30- to 35-fold compared to
the non-stratified study population (Table 7). The small-
est increase was more than 10-fold and the largest increase
was more than 100-fold. This indicates that destructuring
of the physiologically mixed population into more homo-
geneous subpopulations revealed masked genetic effects
beyond simple two-gene effects. The epistatic effect
amounted to approximately 50% on average of the total
genetic variance.

Table 7: Summary of average of two-gene genetic variance (mean) as the fraction of total phenotypic variance stratified into

subpopulations by LCA.

The significance level for inclusion of cases corrected for multiple comparisons is 6.1E-06

Class Average genetic variance
Minimum Average Maximum  Fraction
Women Total variance 29 97 270
LCA/non-LCA2 104 346 965
Additive variance 9 29 78 29.6%
LCA/non-LCA 117 388 1,102
Dominant variance 6 19 50 19.3%
LCA/non-LCA 104 332 864
Epistasis 14 50 153 51.1%
LCA/non-LCA 105 378 1,143
Number of interactions 2,188
Fraction of possible 26.5%
Number of interactions/trait 156
Men Total variance 39 97 430
LCA/non-LCA 118 299 1,357
Additive variance 9 29 118 30.0%
LCA/non-LCA 97 296 1,226
Dominant variance 7 17 57 18.5%
LCA/non-LCA 102 270 857
Epistasis 19 50 257 51.5%
LCA/non-LCA 124 329 1727
Number of interactions 2,042
Fraction of possible 24,7%
Number of interactions/trait 146

ancrease in average genetic variance in the classes relative to the genetic variance before stratification in to classes by LCA.
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Analysis of epistasis was performed using corrected signif-
icance levels corresponding to the 30 SNPs studied. How-
ever, as the number of SNPs will be increased in future
studies, the adjusted significance levels will dramatically
decrease, which poses the question as to whether truly
epistatic effects will still be detected. When the epistasis
analysis was corrected for multiple testing corresponding
to analysis of 30 SNPs (as performed above), the original
number of nominally significant two-SNP interactions
was reduced to 70%. Surprisingly, further correction for
multiple testing corresponding to analysis in a 20-mil-
lion-SNP scenario - the assumed number of SNPs in the
human genome [54] - only reduced the number of signif-
icant interactions to 60%. (Table 8). This decrease was
mainly due to a loss of significant interactions detected in
the non-stratified population. Remarkably, the number of
interactions not detected in the non-stratified population
but detected after stratification was rather high when the
significance level for 30 SNPs was used (22.3%, Table 8),
which increased to almost one-third when the signifi-
cance level for the 20-million-SNP scenario was used. This
is due to the concomitant decrease in the significance level
on excluding interactions due to the assumption of HWE
in the analysis of epistasis [52]. Taken together, the non-
stratified populations were prone to falsely excluding sig-
nificant epistasis. In contrast, the false discovery rate for
non-stratified populations was very low (Table 8). It is of
course expected that many more and probably new inter-
actions will be detected when the number of genotyped
SNPs is increased, including interactions with the SNPs
included in the present study and interactions between
SNPs hitherto not known to be associated with glucose
metabolism or diabetes. In particular, it is expected that
interactions with other genes or SNPs will be detected for
the SNPs that did not show any interactions in the present
study (TCF1 and HNF4a-6). TCF1 and HNF4a-6 were
included in the present study because they have been
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shown to be associated with the metabolic syndrome and
diabetes [see Additional file 1], and hence must be part of
an interacting network (provided that the detected associ-
ations are not false; see the discussion below).

Some classes did not show any two-gene interactions at
all. This is summarised in Table 9 using the significance
level for a 20-million-SNP study for the three dynamic
components in the model (glucose, insulin, and C-pep-
tide). One class for each gender (class 18 in women and
class 17 in men) did not show any interactions at all for
any genes. Several other classes did not show any interac-
tions, particularly for insulin at 0 and 120 min. If only
these traits were investigated, it could be falsely concluded
that none of the genes are involved in the metabolic proc-
ess in these classes. However, it is assumed that all sub-
jects possess the same genetic network, but in these
particular classes none of the genes, or rather their poly-
morphisms, influenced the variance of the metabolic
process defined by the traits, suggesting that hitherto
undetected polymorphic genes define the physiological
state in these classes.

Discussion

This study used LCA to stratify a random population sam-
ple into physiologically homogeneous subpopulations
with respect to the metabolic state of the participants by
defining the metabolic process in a multivariate SEM. The
most important conclusion emerging from this study is
that LCA-SEM very efficiently defines metabolic substates
and allows detection of epistasis and genetic variance. In
contrast, analysis of single-gene polymorphism has very
limited power to detect QTL. Only a small fraction of the
single gene-variants (or SNPs) showed any influence on
the physiological variables examined in this study (Table
6), even though the SNPs were previously implicated in
the metabolic syndrome [see Additional file 1]. In addi-

Table 8: Detected interactions in genders before and after SEM -LCA.

Significance level

0.0017 2.5E9

| Detected in both gender and LCA 245 56.3% 196 45.1%
2 Not detected in either gender or LCA 6l 14.0% 68 15.6%
3 Detected in both LCA but not in any gender 97 22.3% 133 30.6%
4 Detected only in gender 2 0.5% 2 0.5%
5 Detected in one LCA and in gender 23 5.3% 23 5.3%
6 Detected in one LCA but not in gender 7 1.6% 13 3.0%
Full agreement between both gender and LCA (1+2) 306 70.3% 264 60.7%
Detected in one or both LCA but not in gender (3+6) 104 23.9% 146 33.6%
Actual number of possible interactions 378

SNPs with no interactions (equivalent for both scenarios): TCFI HNF40.-6

Number of interactions between the 30 SNPs included in this study at two Bonferoni corrected significance levels corresponding to a 30 SNP study
(0.0017) and to a future 20-million-SNP scenario (2.5 E-9). Percentage indicates the fraction of possible number of interactions for 30 SNPs (i.e.,

435)
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Table 9: Genes and classes with no interactions (20 million SNP significance level)

Women Men
Genes with no interactions in any classes and any traits: TCFI, HNF40-6 TCFI, HNF40.-6, MCHRI
Classes with no interactions at 0 minutes:
Insulin 13,14, 16, 17, 18 4,12, 16, 17,19
C-peptide 13, 16, 18, 19 4,17
Glucose 18 17
Classes with no interactions at 30 minutes:
Insulin 7, 18 17
C-peptide 18 17
Glucose 18 17
Classes with no interactions at 120 minutes:
Insulin 7,13, 16,18, 19 12, 17,19
C-peptide 18 17
Glucose 18,19 7,17

tion, most of the (few) detected heritabilities concern var-
iables reflecting kidney status that are not considered
causative in the development of insulin resistance and are
most likely spurious associations. Low replication rates in
single-gene association studies have been reported in a
recent survey of association studies [10]. A major reason
for the low replication rate is that variations in genes
affecting polygenic traits or conditions are likely to have a
low marginal impact on the trait that is therefore difficult
to detect, particularly in small samples. The concept of
polygenic traits implies that single-gene effects depend on
other genes, and consequently may not be detected in sin-
gle-gene analysis except in the "lucky" instances for which
the genetic "background" is the "right" one (see e.g. [5,55]
for additional real-data examples). This does not indicate
that gene variants with no detectable marginal effects in
this study are not important.

They are still part of the genetic-metabolic network.
Rather, the low replication rate reflects the challenge of
single-gene studies in complex conditions and stresses
that epistatic and network analysis needs to be the main
framework when studying polygenic traits in homoge-
nous populations or subpopulations. This conclusion is
supported by a the recently published genome wide asso-
ciation study for 7 major diseases, including 2,000 cases
each and 3,000 controls [11]. Only slightly more than a
handful of SNPs or genes related to diabetes were
detected, of which several had been detected in previous
studies. The somewhat disappointing result of that study
is, however, very important, as it may mark the limit of
what can be obtained by traditional genetic approaches, at
least in outbred populations. These issues are well recog-
nised, but the computer power and software needed for
analysis of epistasis in genome wide association studies
are generally not available at present.

It is commonly argued that statistically significant genetic
association can be falsely inferred by subdividing a study
population. However, the low replication rate in single-
gene association studies [10], could be interpreted as a
consequence of comparing global subdivided popula-
tions: the differences between different populations are
the consequence of the specific full-genome genotype that
has evolved in each particular population. Therefore, cau-
tion should be observed when concluding that studies
that cannot be confirmed in other populations, are "spo-
radic" and therefore should be dismissed. On the con-
trary, it may be that these non-replicated studies disclose
real associations. This scenario will extend to the further
stratification of a particular population based on physio-
logical models, as applied in this study, as most or all nat-
ural stratified populations are not genetically
homogeneous. System biological approaches [56] includ-
ing network models will be needed to elucidate the true
nature of the genes and their interactions.

In a network model it is not implicitly assumed that the
various stages of the metabolic disease process evolve as a
linear process. Rather, several routes in the network with
different impacts on the metabolic process are possible
and are in fact the only plausible interpretation of real
biological systems [39]. This notion is supported in the
present study by the non-linear increase in diabetic cases
in the ordered classification presented in Table 2.
Although simple in concept, network models are
extremely complicated, not just because of the number of
genes involved, but also because of the complex regula-
tions of genes by non-coding regions of the genome, and
not least because of the interactions and interdependence
of cellular functions in multicellular organisms.

In the present study, maximum information on the meta-

bolic process was collected for the entire study popula-
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tion, including a number of dynamic physiological
variables, whereas crude clinical endpoints were excluded
as being too simplistic and prone to losing essential infor-
mation [14]. Using this approach, we found that C-pep-
tide and glucose describe the metabolic process in the
model to a large extent, as reflected by the high entropy
measure (Table 2). One of the most surprising findings in
the SEM-LCA analysis is that VLDL, triglycerides, HDL and
blood pressure did not enter into the model, despite con-
trary findings in the initial, univariate regression analysis
and even though decreased HDL and increased triglycer-
ide and blood pressure are generally accepted characteris-
tics of the metabolic syndrome [40,41]. In addition, WH
circumference is not a covariate in the model, although
this is a measure of visceral fat, which is thought to be of
major importance in developing insulin resistance.

Instead, BMI entered as a general measure of fat content.
One probable reason for the discrepancies is that previous
studies have been performed on selected populations
(i.e., diabetics) whereas our approach has been to con-
sider the metabolic state (rather than the metabolic syn-
drome). Thus, we consider it to be a strength that our
population study targets a "normal" population, which in
fact contain (at least) 18% insulin-resistant subjects and
4.2% with undiscovered diabetes mellitus. One interpre-
tation of these results is that the variables excluded (most
notably triglycerides and HDL) are in fact not causative,
but inaccurate proxies for the actual underlying causative
agents, such as free fatty acids [57], leptin [58], and other
biochemical and hormonal substances involved in meta-
bolic regulation of the variables excluded.

The complexity of the network is indicated by the differ-
ences in gene variants that characterise the physiological
variables in the classes. First, MCHR1 only contributes to
phenotypic variance in one class for women (class 5), and
not at all for men [see Additional file 4]. Second, several
gene variants contribute to the variance in only a few
classes. And third, there is a notable difference between
women and men in the classes in which genes exclusively
contribute to the variance. That is not to say that the gene
variants not influencing phenotypic variance in a class are
not part of the network.

Rather, in a particular class, the influence of a gene variant
is overridden or neutralised by other interactions in the
metabolic network to a point that is undetectable by the
variables included in the model, or the genes are mono-
morphic in the class. It should be remembered that the
model is a whole-body model: genes may be expressed in
different tissues participating in different cellular net-
works, as well as expressing the epistatic effect across tis-
sues.
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All the genes (or SNPs) included in this study (except per-
haps TCF1 and HNF40.-6) seem to be part of a genetic net-
work or of sub-networks, as they are involved in epistatic
interactions related to the metabolism of glucose and
insulin, although the network or subnetworks cannot be
exactly defined at the moment. TCF1 and HNF4a-6 did
not show interaction with any of the SNPs included in this
study. This, however, does not exclude the possibility that
these transcription factors are embedded in a network. In
the case of the HNF4a-6 SNP, six other SNPs in the
HNF40 gene do show extensive epistatic action, so the
gene is included in the network even if the HNF4a.-6 SNP
is functionally neutral. As for the TCF1 SNP examined,
one obvious explanation for the lack of interaction is that
the SNP is functionally neutral. Another reason may be
that TCF1 is the sole representative of a subnetwork of the
general network related to glucose and insulin metabo-
lism and no interaction per se would be detectable. Meta-
bolic networks most probably follows a small-world
scale-free distribution of interactions [59,60], implying
that between-gene correlation rapidly declines with inter-
gene distance in the network [61,62]. Then, even if TCF1
is embedded in a subnetwork including other genes, it
may be too distant in the subnetwork for any interactions
to be detectable. If this is the case, it would be very diffi-
cult or even impossible to detect higher-order interactions
by simply extending the variance decomposition as car-
ried out here for two-gene interactions to higher-order
interactions (apart from the problem of dimensionality
rapidly reducing the power of any study). The solution to
this problem is not simple and may include - among
other approaches - incorporation of network theory and
applications, extensive genotyping, and experimental
confirmation of chemical and physiological interactions.
Of course, a gene or a SNP may erroneously be found to
be associated with a trait or condition for several reasons
(e.g., admixture), but this does not seem to be the case for
TCF1, as mutations in this gene are the cause of one form
of maturity onset of diabetes in the young, MODY3 [63].

A strength of our approach is that allelic, genetic and trait
heterogeneity, genetic admixtures, and phenocopies do
not present an obstacle, because these entities are implicit
in the SEM-LCA modelling framework. Allelic and genetic
heterogeneity and genetic admixture (see, e.g., [64,65] for
a review of the latter) are incorporated in the network
model and are modelled by the latent variable. This
includes genetic factors, as well as the interactions of
genes and their products in the cell and regulatory struc-
tures in the genome. Trait heterogeneity is resolved by
LCA. Phenocopies are basically the phenotypes of interest
not explained by the factors or variables chosen for inclu-
sion in a study. In the SEM-LCA context, phenocopies
have no meaning, because the phenotype in question is
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defined in a common structure defined for all variants of
the phenotype by all genetic and environmental factors.

The major difference between the approach adopted here
and most of the study designs generally implemented (see
papers cited in the Background) is that no genetic model
is assumed other than that the genetic network shared by
all participants is the basic structure of all biological proc-
esses. This does not mean that gene variability cannot or
should not be included in the modelling. On the contrary,
the ultimate purpose is to define the genetic network or
networks, and genetic factors should be included in the
modelling when they are solidly identified. This calls for
various physiological, biochemical and cellular studies to
eventually define the exact role of a gene and the nature of
its regulation, which most probably is beyond the reach of
classical associations studies. In recent years, several new
approaches have been presented to elucidate complex
biological structures [33-37,66-73].

These dynamic data mining and machine learning proce-
dures include neuronal networks, genetic and evolution-
ary programming, and genetic algorithms, among others.
These techniques are exciting, but are still in their infancy
for complex biological systems, and have to be developed
further.

Conclusion

Any subject in a population will belong to different sub-
populations, depending on the physiological process
being studied, which is simply the consequence of inde-
pendent segregating chromosomes and random mating.
The extent of this gene-mixing process is of course modi-
fied by chromosomal linkage of genes, recombination,
mutation (of any kind), migration, and selection, and to
what extent random mating is in fact random. However,
for every new generation the chromosomes during meio-
sis can be picked in 223 ways, meaning that the combina-
tions in two merged meiotic cells run into the billions, far
exceeding the human population. Of course, the variabil-
ity is far from that number, but even in small networks the
number of combinations is still daunting [39]. However,
it has been shown, at least in unicellular organisms, that
molecular networks are highly modular, so that most
genes only participate in few circumscribed networks [38].
This seems to be a general biological principle. If it holds
true for multicellular organisms, the complexity may be
manageable, in particular if homogeneous physiological
entities are defined as in the approach presented here.
Then it should be possible to model networks beyond
two-gene interactions, including non-coding regulatory
structures [74].
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