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Abstract
Background: Adverse pregnancy outcomes, such as preterm birth, preeclampsia and placental
abruption, are common, with acute and long-term complications for both the mother and infant.
Etiologies underlying such adverse outcomes are not well understood. As maternal and fetal
genetic factors may influence these outcomes, we estimated the magnitude of familial aggregation
as one index of possible heritable contributions.

Using the Missouri Department of Health's maternally-linked birth certificate database, we
performed a retrospective population-based cohort study of births (1989–1997), designating an
individual born from an affected pregnancy as the proband for each outcome studied. We estimated
the increased risk to siblings compared to the population risk, using the sibling risk ratio, λs, and
sibling-sibling odds ratio (sib-sib OR), for the adverse pregnancy outcomes of preterm birth,
preterm premature rupture of membranes (PPROM), placental abruption, and pre-eclampsia.

Results: Risk to siblings of an affected individual was elevated above the population prevalence of
a given disorder, as indicated by λS (λS (95% CI): 4.3 (4.0–4.6), 8.2 (6.5–9.9), 4.0 (2.6–5.3), and 4.5
(4.4–4.8), for preterm birth, PPROM, placental abruption, and pre-eclampsia, respectively). Risk to
siblings of an affected individual was similarly elevated above that of siblings of unaffected individuals,
as indicated by the sib-sib OR (sib-sib OR adjusted for known risk factors (95% CI): 4.2 (3.9–4.5),
9.6 (7.6–12.2), 3.8 (2.6–5.5), 8.1 (7.5–8.8) for preterm birth, PPROM, placental abruption, and pre-
eclampsia, respectively).

Conclusion: These results suggest that the adverse pregnancy outcomes of preterm birth,
PPROM, placental abruption, and pre-eclampsia aggregate in families, which may be explained in
part by genetics.
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Background
In the United States, 12.7% of births occur preterm (< 37
weeks) [1], approximately one-fourth of which occur due
to preterm premature rupture of membranes (PPROM)
[2]. Pre-eclampsia and placental abruption affect approx-
imately 7% [3] and 1% [4] of all pregnancies, respectively.
While many pregnancies share more than one of these
complications, together they affect a significant portion of
pregnancies and represent the most common reasons for
early delivery. Moreover, adverse pregnancy outcomes are
important causes of perinatal morbidity and mortality.
For example, placental abruption, while uncommon,
accounts for 12% of all perinatal deaths [5]. The incidence
of preterm birth [1] and placental abruption [5] have
increased over recent decades, further motivating addi-
tional study to understand susceptibility factors which
contribute to these outcomes.

Prediction and prevention of these adverse outcomes is
difficult. Etiologies underlying preterm birth, PPROM,
placental abruption and pre-eclampsia are not well under-
stood. Genetic studies are one way in which we can
attempt to better understand these disorders. Such studies
may identify genetic markers that can predict one's risk for
a particular pregnancy outcome. Genetic studies may also
identify novel proteins and/or pathways involved in the
disorder.

Both maternal and fetal genetic factors may influence
adverse pregnancy outcomes. Evidence suggests that
maternal genetic factors contribute to preterm birth [6,7],
PPROM [7-9], placental abruption [10,11] and pre-
eclampsia [12-15]. In contrast, fetal effects on these out-
comes have not been well studied. Several lines of evi-
dence suggest that fetal genetic effects may influence
adverse pregnancy outcomes. First, fetal genes that are
paternally imprinted mainly control placental and fetal
membrane growth [5]. Because the placenta and fetal
membranes likely play a role in adverse pregnancy out-
comes, fetal genes controlling these tissues may also con-
tribute. Additionally, heritability studies, which estimate
the relative portion of population variation in a trait due
to genetics, suggest that preterm birth [16] and pre-
eclampsia [17] are influenced in part by fetal genetic fac-
tors. Lastly, several studies suggest that paternity affects
risk for preterm birth and pre-eclampsia. For example,
several studies indicate that partner changes between
pregnancies reduce risk of preterm birth [18,19] and pre-
eclampsia [17,20-22]. Changes in paternity may reflect
association with long interpregnancy intervals rather than
paternity effects per se; however, for pre-eclampsia
[14,23], fathers' family history affects risk for the disorder
in their partners' pregnancies. For preterm birth, father's
family history has been shown to have only a weak asso-
ciation with risk. While an early study of a Norway birth

registry demonstrated a correlation between father and
children's gestational ages [24], a more recent and exten-
sive study of this registry suggested fathers contributed lit-
tle to no risk to preterm delivery risk [25]. Also, paternal
race has been associated with preterm birth risk [26,27].
Together, this data suggests that paternal genes expressed
in the fetus may contribute to these disorders, motivating
study of maternal-fetal influences, assessed by defining
the infant as the proband, in addition to influences that
are maternal-specific.

While multiple lines of evidence suggest the importance
of genetic contributors in adverse pregnancy outcomes,
observing clustering of such outcomes in families is nec-
essary to assert genetic influences on a disorder. A disorder
that does not aggregate in families is unlikely to be influ-
enced by inherited factors. Hence, detecting an increased
risk for a disorder among siblings or other family mem-
bers of an individual born from a pregnancy affected by
the same adverse outcome would further support genetic
influences on these conditions. However, familial aggre-
gation is not sufficient to claim genetic influences on a
disorder. Since family members share both genes and
environment, any similarities seen in families may be
explained by genetic or shared environmental factors
(such as in utero maternal environment) or by their inter-
action.

Two standard measures of familial aggregation are
increase in risk to siblings of affected individuals, com-
pared to the population risk for the disorder, the sibling
risk ratio, λs[28], and compared to siblings of unaffected
individuals, the sibling-sibling odds ratio (sib-sib OR)
[29]. These measures have been estimated for a variety of
disorders, ranging from single locus Mendelian disorders,
such as cystic fibrosis [30], to complex disorders, includ-
ing hypertension [31], type 2 diabetes [32], and myopia
[33,34]. These familial aggregation measures have been
incompletely documented in pregnancy outcomes. When
considering mother as the affected individual, investiga-
tors have reported increased risk among first-degree rela-
tives of women affected with preterm birth [35,36],
placental abruption [11] and pre-eclampsia [14,37]; how-
ever, few of these studies have scaled the increase in risk
among relatives by the population prevalence for a given
pregnancy outcome (placental abruption [11], pre-
eclampsia [37]), as done to calculate λS. Maternal recur-
rence risk, similar in calculation to the sib-sib OR, has pre-
viously been reported for these disorders [9,38-43]. Yet,
only one study of preterm birth and PPROM [9] scaled
maternal recurrence relative to population prevalence of
the disorder and did not consider this measure as an indi-
cation of familial aggregation. λS and sib-sib OR, defining
the infant of an affected pregnancy as proband, have not
been reported for these disorders. Estimating λS, in which
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the increased risk for a disorder is scaled by population
prevalence, is particularly important, as population prev-
alence can vary by race. While there may be a significant
increase in risk among siblings or a significant maternal
recurrence risk, such a risk may reflect high population
prevalence, rather than familial effects, per se. As a result,
calculating λS may lead to different conclusions that those
made by previous reports of maternal recurrence risk.
Since individual demographic factors, such as socioeco-
nomic status or body mass index, may also contribute to
risk, we calculate sib-sib OR adjusted for important med-
ical and environmental risk factors to assess to what extent
genetic effects may account for familial aggregation.

In order to test whether genetic effects may influence these
outcomes, our analyses define the infant of an affected
pregnancy as the proband. We estimate λS and sib-sib OR
to determine whether each outcome clusters in families.

Results
Preterm birth
The population risks for preterm birth at < 35 gestational
weeks were estimated as 3.6%, 2.8%, and 7.8%, in all
races, whites and blacks, respectively. Among second-
born siblings in the sibling subcohort whose older sibling
was affected, rates of preterm birth for all races, whites and
blacks, respectively, were used to estimate the sibling risk
(see Table 1). λS and its 95% CI were 4.3 (4.0–4.6), 4.4
(4.0–4.7), and 2.8 (2.6–3.1) for all races, whites, and
blacks, respectively, indicating a significant increase in
risk to siblings of preterm birth patients compared to the
population.

Individuals whose older sibling was affected by preterm
birth were also at significantly higher risk compared to
individuals whose older sibling was unaffected (see Table
1). This increase in risk persisted after adjusting for known
risk factors. Adjusted OR with 95% CI were 4.2 (3.9–4.5),
5.1 (4.6–5.7), and 3.3 (2.9–3.7) for all races, whites and
blacks, respectively.

PPROM
The population risks for PPROM were estimated as 0.8%,
0.6% and 1.9%, in all races, whites and blacks, respec-
tively. Among second siblings in the matched sibling sub-
cohort whose older sibling was affected, rates of PPROM
were used to estimate sibling risk (see Table 2). λS and its
95% confidence interval were 8.19 (6.50–9.88), 6.75
(4.59–8.91), and 6.40 (4.66–8.14) for all races, whites,
and blacks, respectively, indicating a significant increase
in risk to siblings of PPROM patients compared to the
population.

Individuals whose older sibling was affected by PPROM
were also at significantly higher risk compared to individ-
uals whose older sibling was unaffected (see Table 2). This
increase in risk persisted after adjusting for known risk fac-
tors. Adjusted OR with 95% CI were 9.6 (7.6–12.2), 8.5
(6.0–12.1), and 8.9 (6.4–12.5) for all races, whites and
blacks, respectively.

Placental abruption
Population rates of placental abruption were estimated as
0.8%, 0.7%, 1.0%, in all races, whites and blacks respec-
tively. Among second siblings in the matched sibling sub-
cohort whose older sibling was affected, rates of placental
abruption were used to estimate risk to siblings (see Table
3). λS and its 95% confidence interval were 3.95
(2.63–5.27) and 4.93 (3.18–6.68), for all races and
whites, respectively, indicating a significant increase in
risk to siblings of placental abruption patients compared
to the population.

We found that individuals whose older sibling was
affected by placental abruption were also at significantly
higher risk compared to individuals whose older sibling
was unaffected (see Table 3). This increase in risk persisted
after adjusting for known risk factors. Adjusted OR with
95% CI: 3.8 (2.6–5.5) and 5.0 (3.4–7.4) for all races and
whites, respectively. Blacks did not show a significant
increase in risk to siblings of placental abruption births

Table 1: λS and sib-sib OR (with 95% CI) for preterm birth.

All races White Black

Population: preterm birth 9759 6232 3354
Population: N 268103 220728 42899
Population risk 0.036 (0.035–0.037) 0.028 (0.027–0.029) 0.078 (0.075–0.081)
Siblings: sibpairs with both siblings affected 1020 514 489
Siblings: sibpairs with first sibling affected 6522 4181 2210
Sibling risk 0.156 (0.147–0.165) 0.123 (0.113–0.133) 0.221 (0.204–0.238)
λS 4.3 (4.0–4.6) 4.4 (4.0–4.7) 2.8 (2.6–3.1)
Sib-sib unadjusted OR (95% CI) 5.6 (5.2–6.0) 5.7 (5.2–6.3) 3.6 (3.2–4.0)
Sib-sib adjusted OR (95% CI)# 4.2 (3.9–4.5) 5.1 (4.6–5.7) 3.3 (2.9–3.7)

#Adjusted for mother < 20 years old, mother < 12 education, Medicaid (index of low SES), no prenatal care, mother BMI < 20 kg/m2, cigarette 
smoking
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either compared to the population (λS = 1.64
(0.04–3.24)) or compared to siblings of births unaffected
by this disorder (unadjusted OR: 1.4 (0.5–3.7), adjusted
OR: 1.2 (0.4–3.9)).

Pre-eclampsia
Population rates of pre-eclampsia were estimated as 3.2%,
3.1%, and 4.1%, in all races, whites and blacks, respec-
tively. Among second siblings in the matched sibling sub-
cohort whose older sibling was affected, rates of pre-
eclampsia were used to calculate sibling risk (see Table 4).
λS and its 95% confidence interval were 4.51 (4.24–4.78),
4.52 (4.21–4.83), and 4.11 (3.59–4.63) for all races,
whites, and blacks, respectively.

We found that individuals whose older sibling was
affected by pre-eclampsia were also at significantly higher
risk compared to individuals whose older sibling was
unaffected (see Table 4). This increase in risk persisted
after adjusting for known risk factors. Adjusted OR with
95% CI were 8.1 (7.5–8.8), 9.0 (8.2–9.8), and 5.8
(4.9–7.0) for all races, whites and blacks, respectively.

Discussion
We hypothesized that siblings of individuals who were
products of pregnancies affected by one of several adverse
outcomes, preterm birth, PPROM, placental abruption
and pre-eclampsia, would be at increased risk for the same
outcome. λS and sib-sib OR values significantly greater
than one indicate that risk to siblings of adverse preg-
nancy outcome births is elevated compared to the popu-
lation rate and to the rate in siblings of unaffected
individuals, respectively. None of the 95% CI for λS or sib-
sib OR values overlap with one, with the exception of pla-
cental abruption in blacks. The lack of evidence for famil-
ial aggregation of placental abruption in blacks may be
explained by the rarity of the event and the relatively small
racial subgroup (see Table 3). These data suggest that
genetic and/or environmental risk factors shared among
siblings affect these disorders.

Estimates of sib-sib OR are consistent with previous stud-
ies of maternal recurrence risk in the Missouri birth certif-
icate database [38,39], and of maternal recurrence risk
scaled to the population prevalence for preterm birth [9].
Our estimate of λS is noticeably smaller than the maternal
recurrence risk, scaled by population prevalence of
PPROM estimated in [9] (OR (95% CI): 20.6 (4.7, 90.2)).

Table 2: λS and sib-sib OR (with 95% CI) for PPROM.

All Races White Black

Population: PPROM 2105 1311 763
Population: N 254740 211308 39190
Population risk 0.008 (0.008–0.008) 0.006 (0.006–0.006) 0.019 (0.018–0.020)
Siblings: sibpairs with both siblings affected 88 37 49
Siblings: sibpairs with first sibling affected 1300 883 393
Sibling risk 0.068 (0.054–0.082) 0.042 (0.029–0.055) 0.125 (0.092–0.158)
λS 8.2 (6.5–9.9) 6.8 (4.6–8.9) 6.4 (4.7–8.1)
Sib-sib unadjusted OR (95% CI) 10.8 (8.6–13.5) 8.8 (6.3–12.4) 8.8 (6.4–12.1)
Sib-sib adjusted OR (95% CI)# 9.6 (7.6–12.2) 8.5 (6.0–12.1) 8.9 (6.4–12.5)

#Adjusted for mother < 20 years old, mother < 12 education, Medicaid (index of low SES), no prenatal care, mother BMI < 20 kg/m2, cigarette 
smoking

Table 3: λS and sib-sib OR (with 95% CI) for placental abruption.

All races White Black

Population: placental abruption 2050 1579 428
Population: N 268002 220641 42888
Population risk 0.008 (0.008–0.008) 0.007 (0.007–0.007) 0.010 (0.009–0.011)
Siblings: sibpairs with both siblings affected 34 30 4
Siblings: sibpairs with first sibling affected 1124 851 245
Sibling risk 0.030 (0.020–0.040) 0.035 (0.023–0.047) 0.016 (0–0.032)
λS 4.0 (2.6–5.3) 4.9 (3.2–6.7) 1.6 (0.0–3.2)
Sib-sib unadjusted OR (95% CI) 4.1 (2.9–5.8) 5.4 (3.8–7.9) 1.4 (0.5–3.7)
Sib-sib adjusted OR (95% CI)# 3.8 (2.6–5.5) 5.0 (3.4–7.4) 1.2 (0.4–3.9)

#Adjusted for mother < 20 or > 35 years old, mother < 12 education, Medicaid (index of low SES), no prenatal care, mother BMI < 20 kg/m2, 
cigarette smoking, insulin-dependent diabetes mellitus, chronic hypertension, hydraminos/oligohydraminos
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This difference likely reflects the larger and population-
based cohort used in our study, in contrast to [9] in which
relatively small groups of PPROM (n = 114) and normal
term (n = 208) deliveries were selected from a hospital
population.

The utility of these measures lies primarily in establishing
familial aggregation of a disorder, a prerequisite to claim-
ing genetic influences on any trait. Yet, λS values may also
be used to make tentative assessments of future genetic
studies. The magnitude of λS values may reflect the mode
of genetic etiology, influencing future studies' design. For
example, for complex disorders, to which multiple genetic
and environmental factors likely contribute, reported λS
values range from 1.3–75, with peaks at 3–4 and 10–15
[31]; in contrast, monogenic Mendelian disorders show λS
values an order of magnitude higher or more (eg. cystic
fibrosis λS ~500 [30]). Thus, moderate values for λS, such
as those reported for the adverse pregnancy outcomes
studied (see tables 1, 2, 3, 4), are consistent with complex
genetic and environmental etiologies. Among complex
disorders, λS has been used to estimate the ability of a
study to detect specific genes [44]. However, large values
of λS do not necessarily predict linkage [31,45] or associa-
tion [46] studies' success. Additionally, measures that
reflect the strength of a genetic effect detected either by
linkage, λS calculated with respect to a specific locus, or by
association, genotype relative risk, γ, which measures the
ratio of disease risks between individuals with and those
without the susceptibility genotypes, have only an indi-
rect correlation with λS[46]. Moderate λS values may cor-
respond with high γ values (eg. rheumatoid arthritis [46])
and vice versa. While limitations in interpreting λS values
exist, disorders with similar λS values to the adverse preg-
nancy outcomes reported here have had specific genes
mapped (eg. hypertension, obesity [31]), suggesting that
identification of specific genes influencing these condi-
tions may be possible.

While the increased risk to siblings may be explained in
part by shared genetics, some evidence suggests that mul-
tiple interacting environment factors can account for
familial clustering [47]. Hence, the clustering of multiple
non-genetic risk factors in families may account for these
results. In order to distinguish genetic from other familial
risk factors, we calculated sib-sib OR unadjusted and
adjusted for important known environmental risk factors.
Overall, the elevated risk to siblings persists after adjust-
ment for such factors. While there may be important non-
genetic factors affecting each outcome for which we have
not accounted, we believe these results suggest that
genetic influences may contribute to each of the adverse
pregnancy outcomes studied.

Interestingly, λS and sib-sib OR estimates in blacks are
generally smaller than those for whites. For PROM and
pre-eclampsia, the 95% CI for λS and sib-sib OR estimates
for the two racial groups overlap; however, these CI do not
overlap for preterm birth or placental abruption. Hence, it
is difficult to determine to what extent family clustering of
these outcomes may differ among races. Differences in the
magnitude of λS and sib-sib OR estimates between blacks
and whites may be explained in part by the higher popu-
lation prevalence for blacks compared to whites for each
outcome studied (non-overlapping 95% CI, see tables 1,
2, 3, 4), which may reflect higher overall rates of genetic
and/or environmental risk factors in this population.

The Missouri database provides many of this study's
strengths. The large number of first recorded siblings in
the population cohort (n = 267,472) and matched sib-
pairs in the sibling cohort (n = 163,826) provides a large
sample size from which to estimate λS and sib-sib OR.
Additionally, because this database represents a popula-
tion cohort of births, rather than births selected based on
any particular pregnancy outcome, biases due to ascer-
tainment and overreporting, which can inflate λS values
[48], should be minimal.

Table 4: λS and sib-sib OR (with 95% CI) for pre-eclampsia.

All races White Black

Population: pre-eclampsia 8600 6749 1736
Population: N 267840 220505 42861
Population risk 0.032 (0.031–0.033) 0.031 (0.031–0.031) 0.041 (0.039–0.043)
Siblings: sibpairs with both siblings affected 1070 821 233
Siblings: sibpairs with first sibling affected 7384 5869 1400
Sibling risk 0.145 (0.137–0.153) 0.140 (0.131–0.149) 0.166 (0.146–0.186)
λS 4.5 (4.2–4.8) 4.5 (4.2–4.8) 4.1 (3.6–4.6)
Sib-sib unadjusted OR (95% CI) 9.2 (8.5–9.9) 10.0 (9.1–10.9) 6.7 (5.7–7.9)
Sib-sib adjusted OR (95% CI)# 8.1 (7.5–8.8) 9.0 (8.2–9.8) 5.8 (4.9–7.0)

#Adjusted for mother < 20 or > 35 years old, mother < 12 education, Medicaid (index of low SES), no prenatal care, mother BMI < 20 kg/m2, 
cigarette smoking, insulin-dependent diabetes mellitus, chronic hypertension
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However, using a birth certificate database like this one
also presents several limitations. First, complications of
labor and delivery and maternal and infant medical con-
ditions recorded in such databases may be underreported
[49]; as a result, population and/or sibling risk for a par-
ticular disorder may be underestimated, potentially bias-
ing our results. For example, the relative rarity of placental
abruption in the population makes concordant sibships,
particularly in blacks, rare, thereby reducing sample sizes
for risk estimates for this disorder. Additionally, gesta-
tional age estimates contained in birth certificate data-
bases are based primarily on the date of the last menstrual
period, which may be recalled inaccurately or misclassi-
fied due to postconceptional bleeding [49], potentially
influencing estimates of preterm birth and PPROM preva-
lence in this dataset. We also acknowledge that each of the
categories of preterm birth that we analyzed may in them-
selves be rather heterogeneous. For example, initiation of
spontaneous labor may result in preterm birth in each of
the categories, though for some etiologies, particularly
pre-eclampsia, iatrogenic delivery could contribute signif-
icantly. Our utilization of a more rigorous definition of
preterm birth at less than 35 weeks should minimize the
contribution of iatrogenic delivery. A final important lim-
itation to this database is the limited amount of informa-
tion on race. Maternal race is self-reported and possibly
subject to population stratification and/or admixture.
Additionally, information on paternal race is incomplete,
further affecting the accuracy of infants' reported race.

The Missouri database also does not document relation-
ships between mothers; as a result, similar calculations
cannot be made to estimate familial clustering when the
mother of an affected pregnancy is considered the
proband. Moreover, the database contains little informa-
tion on fathers, making it impossible to distinguish full
from half siblings in most sibships. Because we cannot
distinguish siblings that share both maternal and paternal
factors from those that share maternal factors only, we
cannot assess to what extent the increased risk can be
attributed to factors unique to the fetus, rather than those
shared with its mother. Due to these limitations, we can-
not examine the relative importance of maternal versus
fetal genetic effects, studied by Wilcox et al. [25] and Cnat-
tingius et al. [17], for preterm birth and preeclampsia,
respectively. Cnattingius et al. [17] reports 20% of varia-
tion in preeclampsia risk is due to fetal genetic effects and
the combined effect of fetal genetic factors and couple
effects are as important as maternal genetic effects. In con-
trast, Wilcox and colleagues [25] report only a weak asso-
ciation between father's family history and risk for
preterm birth (RR (95% CI): 1.12 (1.01–1.25)), which
became nonsignificant at earlier gestational ages (RR
(95% CI): 1.06 (0.77–1.44). From this trend, the authors
conclude that fetal genes may contribute to normal labor,

but, not preterm delivery [25]; however, Wilcox and col-
leagues [25] have relatively few early preterm offspring of
early preterm mothers (n = 91) and fathers (n = 39) from
which risk was estimated, and do not stratify based upon
race/ethnicity. Similarly, a recent study [50] suggested that
paternal genetics contributed little to gestational age, but
could not refute the possible role of maternally-inherited
genes expressed in the fetus. Hence, while paternally-
inherited genes may contribute little to preterm birth or
other disorders, maternally-inherited genes expressed in
the fetus may still be important. Because of our study's
limitations, we may be detecting effects due to shared
uterine environment, shaped in part by maternal genes,
rather than maternally-inherited genes in siblings. Hence,
fetal genetic effects may make contributions of lesser mag-
nitude than maternal genetic factors, with fetal genetic
factors having a more prominent role in certain etiologies
of preterm birth.

Conclusion
We have observed familial aggregation of preterm birth,
PPROM, placental abruption and pre-eclampsia. Overall,
siblings are at increased risk for each outcome, even after
adjusting for important known environmental risk fac-
tors. While the influence of shared unmeasured environ-
mental risk factors on sibling risk cannot, and should not,
be discounted, we hypothesize that maternal and/or fetal
genetic influences account for some of the increased risk
to siblings observed. Moreover, though it is difficult to
determine to what extent fetal and maternal effects over-
lap in these analyses, we postulate that fetal genetic factors
may contribute to these disorders and suggest that they are
studied further.

Methods
Study design
A protocol was approved by the Missouri Department of
Health and Senior Services and by Washington University
School of Medicine to analyze the state's maternally
linked birth-death certificate database. We analyzed this
database to assess the recurrence risk for a discrete group
of adverse pregnancy outcomes, including preterm birth,
preterm premature rupture of membranes (PPROM), pla-
cental abruption, and pre-eclampsia, in maternally-linked
siblings. Births to the same mother were linked by a
unique identifier called a sibship number, described else-
where [51]. Full siblings and half-siblings resulting from
pregnancies in the same mother were not distinguished.
All protected health information with personal identifiers
was removed before distributing the data for analysis.

This analysis was restricted to births that occurred
between 1989 and 1997, since births that occurred before
1989 lacked complete medical and social histories. Fetal
deaths occurring at < 20 weeks gestation, multiple gesta-
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tion pregnancies and individuals with no maternally-
linked siblings recorded in the database were excluded
from this analysis. After excluding such cases, the remain-
ing cohort consisted of 473,881 births, of which 383,812
(81.2%) were white and 81,889 (17.3%) were black.
267,472 births (220,728 (82.5%) white and 42,899
(16.0%) black) were the first maternally-linked sibling in
the database and used to estimate the population preva-
lence for each outcome.

A second cohort of matched siblings was constructed from
this dataset to analyze sibling risk for each outcome. The
two oldest siblings born to the same mother during the
study period were included. The dataset was not restricted
to parity 0 and parity 1 women, in order to be as unbiased
as possible in estimating risk for siblings and providing
the best index of population prevalence. Additional sib-
lings born to the same mother were excluded to simplify
the statistical model. This cohort comprised of 327,652
matched siblings, of which 265,947 (81.2%) were white
and 55,555 (17.0%) were black. Second-born siblings
whose older sibling was affected by a particular outcome
were used to estimate sibling risk for λS and sib-sib OR.

Definitions
Preterm birth is defined by the World Health Organiza-
tion as delivery < 37 weeks [52]. To avoid inclusion of
borderline gestational ages which may introduce misclas-
sification bias, we defined preterm birth as delivery < 35
weeks in this study. Information from the last menstrual
period and clinical data were used to calculate the best
estimate of gestational age. PPROM was defined as births
delivered < 35 weeks complicated by premature rupture of
membranes. For PPROM, births complicated by pre-
eclampsia, insulin-dependent and other diabetes, or
eclampsia were excluded from analysis due to the poten-
tial for these births being delivered for medical reasons.
First-born sibling and second-born sibling refer to the two
oldest siblings recorded in database.

Statistical analysis

λS was calculated as the frequency of an outcome in the
individuals whose older sibling was affected with the dis-
order in the sibling cohort divided by the frequency of the
outcome in first siblings in the larger cohort. 95% confi-
dence intervals (CI) for sibling risk, population risk and
sibling risk ratio were calculated by standard procedures
for a binomial variable.

Sib-sib OR was calculated as the odds of a child being
affected with a particular adverse outcome, given that
their older sibling was affected, divided by the odds of a
child being affected with a particular adverse outcome,
given that their older sibling was unaffected. Sib-sib OR
were adjusted for known medical and environmental risk
factors for the outcome to most conservatively estimate
residual familial effects on risk. For preterm-birth and
PPROM, OR were adjusted for: mother's age < 20 years
old, mother < 12 years of education, recipient of state-
funded assistance (an index of low socioeconomic status),
no prenatal care, mother's body mass index (BMI) < 20
kg/m2, and cigarette smoking during pregnancy. In addi-
tion to these risk factors, pre-eclampsia ORs were cor-
rected for: mother's age > 35 years old, insulin-dependent
diabetes mellitus, chronic hypertension. ORs for placental
abruption were corrected for hydraminos/oligohydrami-
nos in addition to the risk factors listed above.

Frequencies for λS and logistic regression analyses for the
sib-sib OR were performed using Stata 9 [53]. Each calcu-
lation was made for preterm birth, PPROM, placental
abruption, and pre-eclampsia in all races (including indi-
viduals whose race was neither black nor white), as well as
stratified by black or white race. λS and sib-sib ORs calcu-
lated by race compare siblings of affected individuals des-
ignated as black or white to the siblings of unaffected
individuals of the same race or the population prevalence
for that race.
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