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Abstract

Background: Multitrait analysis of quantitative trait loci can capture the maximum information of
experiment. The maximum-likelihood approach and the least-square approach have been
developed to jointly analyze multiple traits, but it is difficult for them to include multiple QTL
simultaneously into one model.

Results: In this article, we have successfully extended Bayesian composite space approach, which
is an efficient model selection method that can easily handle multiple QTL, to multitrait mapping of
QTL. There are many statistical innovations of the proposed method compared with Bayesian
single trait analysis. The first is that the parameters for all traits are updated jointly by vector or
matrix; secondly, for QTL in the same interval that control different traits, the correlation between
QTL genotypes is taken into account; thirdly, the information about the relationship of residual
error between the traits is also made good use of. The superiority of the new method over
separate analysis was demonstrated by both simulated and real data. The computing program was
written in FORTRAN and it can be available for request.

Conclusion: The results suggest that the developed new method is more powerful than separate
analysis.

Background

Multitrait analysis is defined as a method that includes all
traits simultaneously in a single model [1], and can take
into account the correlation among all traits. Many meth-
ods have been developed for mapping QTL by combining
information of multiple traits. Jiang and Zeng [2] pro-

posed a maximum likelihood approach, and concluded
that joint analysis could improve the precision of param-
eter estimates and had higher QTL detecting power than
separate analysis. A multitrait least-square approach was
proposed by Knott and Haley [3] to detect QTL. It is a
method that programs easily and computes fast, and com-
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pared with separate analysis of each trait, can increase the
power to detect a pleiotropic QTL and improve the preci-
sion of the location estimate. Xu et al. [1] developed a
maximum likelihood approach for jointly mapping mul-
tiple binary traits, which is implemented via EM algo-
rithm. They found that the QTL detecting power of joint
analysis was higher than the sum of those of separate anal-
ysis. But after the QTL detecting power for separate analy-
sis was redefined more reasonably by a combined power
(see also [1]), the power of joint analysis was almost equal
to the combined power, that is, joint analysis had almost
the same power as separate analysis. For QTL parameter
estimation, joint analysis can improve the precision of the
QTL position estimates, but the QTL effects and their
standard deviations have no obvious difference. Another
class of approaches for multitrait analysis that use a
dimension reduction technique was proposed by Korol et
al. [4]. Mangin et al. [5] used this technique to analyze
independent PCA (principal components analysis) trait,
and used the PCA test values to detect QTL, which was
proved to be asymptotically equivalent to the multivariate
maximum-likelihood ratio test. However, the parameters
of this kind of methods are often too difficult to interpret
biologically. A maximum-likelihood method for multi-
trait mapping of QTL under outbred population was
developed by Eaves et al. [6], which based on identity-by-
descent (IBD) variance components model approach, and
QTL effects were treated as random.

All the joint mapping approaches mentioned above were
based on one-QTL model. Recently, Bayesian methodol-
ogy has been used for mapping QTL [7-17], and the main
advantage is that it can easily handle multiple QTL simul-
taneously. Currently, Bayesian reversible jump MCMC
(RIMCMC) has become a usual method for mapping mul-
tiple QTL. Liu et al. [7] applied the method to multitrait
mapping of QTL in outbred population under random
effect model. However, because the dimension of RJM-
CMC is variable, it is always subject to poor mixing and
hard to converge. Godsill [18] developed an effective
Bayesian composite space method for model selection
which keeps the model dimension fixed in each round of
updating, and therefore it converges faster and is much
easier to program. Yi et al. [15-17] successfully applied the
novel approach to map QTL. In this article, we extend
Bayesian composite space approach to multitrait analysis
under inbred line crosses, and use both simulated data
and real data to demonstrate the advantages and disad-
vantages of the proposed method.

Results

Simulation Study

We simulated 200 backcross individuals, and each has
marker information and phenotypic records for three
traits. One chromosome with length of 600 <M was inves-
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tigated. Twenty-one markers were put on the genome with
an average distance of 20 cM. Marker genotypes were
observed for all the individuals. Thirteen QTL were added
onto the genome, of which locus 96, 423, 487 and 584
had pleiotropic effects, and locus 250, 253 and 256, and
locus 535 and 537 were closely linked and controlled dif-
ferent traits respectively. The positions and the effects of
QTL for each trait are listed in Table 1. The population
means for all traits were set to zero. The residual (co)vari-
ances are listed in Table 2. The heritability of each trait can
be calculated as 0.728 for trait 1, 0.691 for trait 2 and
0.598 for trait 3.

In order to investigate the performance of our approach,
two methods were used to analyze the simulated data. The
first method was the proposed multitrait analysis; the sec-
ond is single-trait analysis. In single-trait analysis, we use
the method 1 of [16], for the proposed method was a
direct extension from it. In both multitrait analysis and
single-trait analysis, the prior variance and degree of free-
dom of the residual error was set to zero, because no prior
information was available. The prior expected number of
QTL I, was 3 and the maximum number of QTL L, equaled
to the number of marker intervals (30). Therefore, the
prior inclusion probability of the model indicator variable
equaled to 0.1. For both methods, the MCMC ran for
1000 cycles as burn-in period (deleted) and then for addi-
tional 20,000 cycles after the burn-in. The chain was then
thinned to reduce serial correlation by one observation
saved every 10 cycles. The posterior sample contained
2000 (20, 000/10 = 2000) observations for the post-
MCMC analysis.

The estimates of the QTL parameters for multitrait analy-
sis and separate analysis are listed in Table 1 and Table 2.
The results showed that there were no clear differences of
the two methods in the estimates of the QTL positions,
QTL effects and the corresponding standard deviation.
Both methods can estimate QTL positions and effects, all
closed to the true values.

Figure 1 and 2 respectively show the profiles of the poste-
rior probability of the QTL positions and the 2log,BF sta-
tistic for multitrait analysis, and Figure 3 and 4 for
separate analysis. From these figures, we found that both
profiles of the posterior probability of QTL positions and
the 2log,BF statistic for multitrait analysis are generally
higher than those for separate analysis. Moreover, two
additional QTL located at 483 and 245 were detected by
multitrait analysis. These suggested that multitrait analy-
sis may be more powerful than separate analysis.

Real data analysis
We applied the new method to analyze the data from the
North American Barley Genome Mapping Project [22].
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Table I: QTL Parameters and their estimates obtained from the simulated data

Trait No. True parameters Estimates of joint analysis Estimates of separate analysis
Position Effect Proportion Position Effect Position Effect
Trait | | 26 3.05 0.348 23 2.59(0.394) 23 2.58(0.368)
2 96 -1.10 0.045 Missed -- Missed --
3 250 2.40 0.215 246 2.10(0.315) 247 2.13(0.357)
4 387 -2.00 0.150 386 -1.84(0.392) 387 -1.74(0.385)
5 487 0.88 0.029 483 1.03(0.311) Missed -
6 537 -1.40 0.073 537 -1.32(0.395) 539 -1.32(0.418)
7 584 1.93 0.139 590 2.03(0.380) 590 2.09(0.466)
Trait 2 | 96 0.85 0.032 Missed - Missed -
2 253 -3.25 0.473 254 -3.26(0.405) 254 -3.22(0.305)
3 423 2.40 0.258 422 1.93(0.313) 419 1.871(0.346)
4 487 -1.35 0.081 Missed - Missed -
5 535 0.98 0.043 Missed - Missed -
6 584 1.58 0.112 588 1.51(0.376) 586 1.81(0.379)
Trait 3 | 42 2.53 0.430 42 2.26(0.286) 38 2.39(0.354)
2 96 -0.75 0.038 Missed - Missed -
3 256 0.85 0.049 245 1.09(0.210) Missed -
4 423 -2.10 0.030 422 -2.44(0.215) 422 -2.48(0.274)
5 511 1.25 0.105 502 1.37(0.219) 501 1.37(0.281)
6 584 -1.10 0.081 586 -1.02(0.250) 583 -1.17(0.255)

Standard deviations are in parentheses.

The DH population included 150 lines (n = 150), each of
which was genotyped for 223 codominant markers. These
markers covered ~1500 cM of the genome along seven
linkage groups with an average marker interval of ~7 cM.
Eight traits, grain yield, lodging, height, heading data,
grain protein, alpha amylase, diastatic power, and malt
extract, were investigated in this project. Agronomic traits
were measured in 16 areas, and malting quality traits in 9
areas. In our research, only three traits were studied, grain
yield, height, and alpha amylase, and only the records in
Crookston and Minnesota were used.

In the analysis, the prior expected number of QTL was
taken as 3 for each trait, then the maximum number of
QTL was calculated as L, = 3 + 3 </}, or L, = 8. Therefore,
the prior inclusion probability of the model indicator var-
iable equals to 0.375. To reduce the model space, we
assumed each chromosome contain at most one QTL,

except that the 7th was divided into two parts at the mid-
dle point and each part contains one QTL, for the results
of other analysis (IM, CIM) always show signals of two
QTL on 7th chromosome for some traits. Also two meth-
ods, multitrait analysis and Bayesian single-trait analysis
(method 1in[16]), were used to analyze the real data. The
MCMC ran for 5 x 104 cycles after the first 2000 was dis-
carded. The chain was thinned by every 10 cycles one
observation being saved, which yielded 5000 samples for
posterior Bayesian analysis.

Figure 5 and Figure 6 show the profiles of 2log,BF statistic
with real data by multitrait analysis and separate analysis.
The profiles of Figure 5 are generally higher than that of
Figure 6. For trait 1 (grain yield), no QTL was detected by
separate analysis (Figure 6a), while eight QTL were
detected by multitrait analysis (Figure 5a); for trait 2
(height), three QTL located on chromosomes 1, 2, and 7
were detected by separate analysis, however by multitrait

Table 2: The true values and their estimates of residual error (co)variance obtained from the simulated data

Trait True value Estimates of joint analysis Estimates of separate analysis
Trait |  Trait2  Trait3 Trait | Trait 2 Trait 3 Trait | Trait 2 Trait 3
| 10.00 3.20 -2.85 13.95 (1.301) 2.90 (1.004) -1.33 (0.943) 14.49 (1.213) - -
2 10.00 2.80 11.58 (1.042) 3.07 (1.117) 12.13 (1.219) -
3 10.00 8.94 (1.307) 8.61 (1.433)
Standard deviations are in parentheses.
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The profiles of the posterior probability for multi-
trait analysis using the simulated data. The profiles of
the posterior probability obtained from multitrait analysis
using the simulated data: (a) for trait |; (b) for trait 2; (c) for
trait 3. The true locations of the simulated QTL are indicated
with an arrow ().

analysis, not only much stronger signals of these three
QTL, but also four additional QTL on chromosome 3, 4,
5 and 6 were detected; for trait 3 (alpha amylase), two
additional QTL located on chromosome 1, 3 were
detected by multitrait analysis. The results of real data
analysis also supported the conclusion that multitrait
analysis was more powerful than separate analysis.

Discussion

The selection of hyper-parameter of the QTL effect is
important in Bayesian analysis, which can influence the
efficiency of the model selection. For example, with Baye-
sian shrinkage method [14], the hyper-parameter is a var-
iable and assigned a special distribution so that no model
selection is need. In Bayesian composite space approach,
the updating of model indicator variables is closely
dependent on QTL effects, but the selection of hyper-
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Figure 2

The profiles of Bayes factors for multitrait analysis
using the simulated data. The profiles of the Bayes fac-
tors (rescaled as 2log,BF and negative values are truncated as
zero) obtained from multitrait analysis using the simulated
data: (a) for trait I; (b) for trait 2; (c) for trait 3. The true
locations of the simulated QTL are indicated with an arrow
(T). The horizontal line indicates the critical value.

parameter is not much strict as Bayesian shrinkage analy-
sis. Many approaches have been proposed for selection of
hyper-parameter, and our method is only an extension of
the approach of Yi et al. [15]. Moreover, we followed the
approaches developed by Yi et al. [15] to obtain the prior
probability for model indicator variables. However, we
didn't investigate the influence of different prior probabil-
ity on the results, because the proposed method is very
computationally intensive. In addition, we suggested to
use CIM-based multitrait analysis [2] to obtain the prior
of variance-covariance of residual, but if prior informa-
tion is not indeed known, we may take the noninforma-

tive prior [19], p(Z,) = ;" . In this simulation study, the

noninformative prior is used and proved to be able to
bring a precise estimate for variance-covariance of residual
error.
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The profiles of the posterior probability for single
trait analysis using the simulated data. The profiles of
the posterior probability obtained from separate analysis
using the simulated data: (a) for trait |; (b) for trait 2; (c) for
trait 3. The true locations of the simulated QTL are indicated
with an arrow (T).

The proposed multitrait analysis is based on Bayesian
composite space approach, while other popular model
selection approaches such as Bayesian shrinkage method
[14] and Bayesian SSVS method [23] are also very easily
extended, and the details will be demonstrated in another
paper. We used BC and DH population as examples to
demonstrate the efficiency of the method. The new
method can be modified to be applied to other experi-
ment designs, such as RIL, F2 design, etc. In addition, we
only take the main effect into account, while the epistatic
effect also can be included into the model. In that case, the
model should be written as:

D p

Yi=bo+ D ®Xyb,+ D @ X Xy Wy, e,
q=1 41<4>

where ¢ is main effect, g, and ¢, is two interacting QTL,

and w,, is (1 x m) column vectors of epistatic effect

q;
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The profiles of Bayes factors for single trait analysis
using the simulated data. The profiles of Bayes factors
(rescaled as 2 log BF and negative values are truncated as
zero) obtained from separate analysis using the simulated
data: (a) for trait I; (b) for trait 2; (c) for trait 3. The true
locations of the simulated QTL are indicated with an arrow
(T). The critical value is given as horizontal line.

between QTL ¢, and g,. Certainly, the implementation

will be complicated and quite time-consuming, but never-
theless, the extension is feasible and expected to be very
efficient for mapping interacting QTL.

In this paper, we have not given a test procedure to distin-
guish closely linked and pleiotropic QTL which cause the
genetic correlations between each trait. There have been
some of literatures about it, and generally, the likelihood
ratio (LR) statistic [1,2] and Bayesian factor (BF) statistic
[7] always have been used to solve the problem [7]. In our
multitrait analysis, although the LR testing procedure in
[2] is completely applicable, it is not optimal, because it is
based on single-QTL model. Also Bayesian approach can
be used for such testing, but the computing time is a big
factor of concern. Hopefully, an efficient and fast
approach will be developed that could solve the problem
nicely.
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The profiles of Bayes factors for multitrait trait anal-
ysis using real data. The profiles of Bayes factors (rescaled
as 2 log,BF and negative values are truncated as zero)
obtained from multitrait analysis using the real data: (a) for
trait |; (b) for trait 2; (c) for trait 3. The dotted vertical lines
on the horizontal axis separate the chromosomes. The criti-
cal value is given as horizontal line. On the x-axis, inner tick
marks represent markers.

Conclusion

Bayesian composite space approach [18] is an effective
method for model selection. Yi [16] firstly used it for QTL
mapping and proved it to be effective for mapping multi-
ple QTL. In this article, we extended this novel statistical
method to multitrait mapping of QTL. Compared with
separate analysis, joint analysis is optimal, because the
parameters are updated by vector or matrix and the corre-
lation information between multiple traits can be made
good use of. The powerful of the proposed multitrait
method also be proved by both simulation experiments
and real data analysis, and they all showed that the multi-
trait analysis tends to give higher statistical power than the
single trait analysis.
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The profiles of Bayes factors for single trait analysis
using real data. The profiles of Bayes factors (rescaled as 2
log.BF and negative values are truncated as zero) obtained
from separate analysis using the real data: (a) for trait |; (b)
for trait 2; (c) for trait 3. The dotted vertical lines on the
horizontal axis separate the chromosomes. The critical value
is given as horizontal line. On the x-axis, inner tick marks
represent markers.

Methods

Multivariate linear model

Consider n individuals derived from a backcross popula-
tion crossed from two inbred lines with observations on
some densely distributed codominant markers and on m
quantitative traits. Supposed that the maximum number
of QTL is p, the phenotypic value y,; of individual i for kth
trait can be described by the following multivariate linear
model:

P
Vii = bro +Z7/ijkijbkj + € (1)
=1

fori=1,2,..,nandk=1,2, .., m where y,;is model indi-
cator variable, indicating the jth QTL of kth trait included
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(1) or excluded (0) from the model; b, is population
mean; by, is QTL effect; x;,;; is QTL genotype, if QTL geno-
type is homozygote x,; = 1, otherwise -1; ¢, is residual
error and assumed to follow multivariate normal distribu-
tion. If we denote equation (1) by matrix, it can be
expressed as:

P
yi=bo+ Y ®X;b; +e;, 2)
j=1

fori=1,2, .., n wherey,= [y1; Vair --r Vil Po=[b10 P20
coor byo] Ty by = [byj, byjo .. by)T, €= [€y; €51 -..) €] 7. They are
all (1 x m) column vectors. Equation (3) is QTL genotype
matrix and Equation (4) is model indicator matrix, they
are all (m x m) diagonal matrix.

Xy 0 - 0

=5 m ©)
0 0 X i
vi; O 0

o (®)
0 o0 Y

Prior specification

The prior distribution of each QTL effect vector b;is mul-

tivariate normal distribution, p(b;) ~ N(0, Z B ), where

Yz is the and We take

. hyper-parameter,

-1
ZB], = I:X.]TZQIX.j:I -n, which is simply an extension

from Bayesian single trait analysis [15]. The importance of
the choice of the hyper-parameter will be discussed later.
In a large backcross population and under the definition

of x,,; (-1 or 1), ZB]_ can be simplified as ZB]- =Z%,. The
prior of the covariance matrix of residual error follows

Inverse Wishart distribution, ¥, ~ Wishart(v, S2),

where, v,and S? are prior degree of freedom and covari-
ance matrix of residual error, respectively, and can be
obtained from other method, such as CIM based multi-
trait analysis [2], etc. The prior distribution of population
mean b, is normal distribution with mean and variance
equal to those calculated by phenotypic values. The prior
probability distribution of QTL position 4;is uniform dis-
tribution with bounds of two flanking markers, p(4;) = 1/

http://www.biomedcentral.com/1471-2156/9/48

d;, where d; is length of the interval where jth QTL is con-
fined. Assuming that epistatic effect is absent, the prior
inclusion probability for jth effect can be expressed as p(;
=1) =1 - I,/L,]VN (see also [15]), where I, is the prior
expected number of main-effect QTL, and could be
roughly estimated with the use of standard genome scans;
N is the number of possible main effects for each QTL and
equal to 1 in BC family [15]; L, is the upper bound of QTL

number, and equals to the number of marker interval in
our simulation study, while in another approach sug-
gested by Yi [15]L,, is taken as 3 + 3 - \/I;,, which causes the
model reduce [15].

space  to dramatically

Joint posterior density

The observable variables include phenotypic values,
y={y;}iu; and marker information, m = {m;}"} =1
The unobservable variables include population mean,
by = {byo}ie1 ; QTL effects, b= {b}%_, ; QTL genotypes,
X ={X;}{ ;- ; model indicator variables, ® = {®}"_, ;
(co)variance of residual error, £, and QTL positions,
A = {Ay}id oy - Let @ be the vector of hyper-parameters, ©
= {by, b, %, A, X, ®}, then the joint prior density of the
unobservable variables is denoted by p(©|6). The joint

posterior probability of ©, given the observable variables
y and m, can be expressed as:

p(©ly, m) = p(©6) -p(y, m|©), (5)

where, p(y, m|O) is the likelihood and can be written as:

p(y, m[©) = p(y|©) - p(m|©), (6)

where p(y|©) is multivariate normal density, and p(m|®)
can be derived from a Markov model [14].

MCMC sampling

MCMC algorithm generates samples from Markov chains
which converge to the posterior distribution of parame-
ters, without the constant of proportionality being calcu-
lated. From these posterior samples, summary statistic of
the posterior distribution can be calculated. MCMC algo-
rithm proceeds as follows:

a. Initialize all parameters with values in their legal
domain.

b. Update the population mean b,,.

Page 7 of 11

(page number not for citation purposes)



BMC Genetics 2008, 9:48

c. Update the QTL effects vectors {b j}?:l .

d. Update the variance-covariance matrix %, of the residual
error.

e. Update the QTL genotype indicator matrices {Xij}:':l

and the QTL location vectors {A;;};; jointly, forj = 1,

2,0, P.
f. Update the model indicator variable matrices {(I)j}’;:l .

The conditional posterior distribution of the population
mean b is multivariate normal with mean

n 1oy
l_)0 = 2(2;1) ZZ;I(Yi _zp:q)jxijbj)/
i=1 i=1 j=1

(7)
and variance-covariance matrix
n -1
-1
%, = 2(26) . (8)
i=1

The conditional posterior distribution of the QTL effect b;
is sampled from multivariate normal distribution with
mean

n -1, p
%=%”z@ﬁﬁﬂ#4 Zﬁqgw¢2@%mm@
i=1 i=1

)

and variance-covariance matrix

-1

n
| w1 T T—1 10
%, =| % +;(xi»q>j P X, ) (10)

J

The posterior distribution of the residual error follows
inverted Wishart distribution,

¥, ~ Wishart ' (df, +v,, QTQ +82), (11)

p
where Q =y, — ZQJin]-b

j=1

j— by and df,=n.

In step e, the QTL locations and QTL genotype matrices
are updated jointly. For locus j, we can firstly sample a
new QTL position for each trait from their prior distribu-

http://www.biomedcentral.com/1471-2156/9/48

tion (described later), then sample the QTL genotype
matrices {X;}i., on the new position using equation
(15), and finally, they are updated by the efficient Metrop-

olis-Hastings algorithm [20,21]. Because the sampling of
X;;is too complicate and we are going to firstly describe it.

Due to the QTL genotype x;; has two possible values (-1
or 1) in BC line, if m traits are investigated jointly, X;; has
2m kinds of possible formations, and the general pattern
of X;; can be written as:

X5 = 21
H _ 0 le‘j = Zz s 0
2129 2y . . :

(12)

where, z,, 2,, ..., z,,€ {-1, 1}. For clarity, we omit the sub-

script ij from Hy ... and present formulas

H; ..z, tO denote the genotype matrix of ith individual
and jth loci. Because the QTL genotypes x,; of ith individ-
ual in the jth interval for all traits may be correlated, the
joint prior probability of the genotype matrix X;; can't be
simply expressed by the following equation:

p(xy' = Hz,zz---zm

Ajom; 5mg ) = p(xyy = 21, X0 =22, X = 2y

m
= I I pxj = zp
k=1

}"j'mi,j'mi,]ﬂ)

m M i)
(13)

Instead, it can be derived from the Markov model (see
Equation 14), assuming that the order of markers and
QTLis M;Q;Q, ... Q,,M;,, (see Figure 7), where, Q;, Q,, ...,
and Q,, denote the QTL respectively affecting trait 1, trait
2, ..., and trait m in jth marker interval. Indicator variables

Xy4js X3, -, and x,,; denote the genotypes of these QTL.

P(Xy =Hy 2oz, |Mijo Ay i) = PRy = 20, X5 = 2o, Xy = 2 ‘ﬂli,yrl‘irmr,jﬂ)
= p(x3ij = 20| My joajs M jar) - P(Xaij = 2o | My 9 55 Xy M jaq)
X P(X i = 2o | My s X X s Xmo)ig 1 s M 1 )

If no segregation interference is considered, the joint prior
probability can be factorized into equation (14), and each
term in equation (14) can be derived from Haldane map
function. Only the first term in equation (14) is condi-
tional on two flanking markers; others are not only condi-
tional on two flanking markers but also on the genotypes
of all the QTL prior to the interested one. If double recom-

Page 8 of 11

(page number not for citation purposes)



BMC Genetics 2008, 9:48

1 1 1 | 1 1 I

Mi Q1 Q2Q3 Qm-1 Qm M+l

Figure 7
The positions of markers and QTL and their sequence
ranged on a certain marker interval.

bination is ignored [2], each term in equation (14) can be
inferred only by the genotype of the left nearest loci
(marker or QTL) and the right marker, then equation (14)
can be simplified as:

p(X = Hzz,oz ‘m” M 1) = P(Xyg = 20 %05 = 2,00 Xy = 2 | My, MM 1)
=p(xy; = Zl‘ml,]'»lj' 1,)+1) Pl = zl‘xlvj'»zjfmx,jﬂ)
Xeeens P(xmy = Zon | X(m-1)ij + 2 mjs M j41)s

(15)

Each term in equation (15) can be easily inferred.

It is worth mentioning that we assume the sequence of
markers and QTL is M;Q,Q, ... Q,M,,;, and in fact, the
sequence of QTL may be variable in each round of updat-
ing. Therefore, we should firstly ascertain the sequence in
each round, and then construct the appropriate formula
to calculate the joint prior probability of the QTL geno-
type p(X;= H o,...., |m;;Ajm;j,,) according above rules.

For clarity, we take an example to demonstrate it. Con-
sider 3 QTL Q,, Q,, and Q; that affect 3 traits respectively
in an interval. Assuming that in a certain round the
sequence of markers and QTL is M;Q;Q;Q,M;, ;, then the
formula for calculating the joint prior probability of the

QTL genotype can be written as:

P(X:, =Hzlzzzg m . A; m;, ,+|) p(xh] =2, Xgjj = 2o, X355 = 23| M i 7», m(m)
= ij =23 ij+1 ij = 21| %34 i,j+1
=plx3=2 1) POxy = 29 | X355, Ay )
Xp(xe] =2 xn‘,r}“z;r Q1)

Once we obtain the joint prior probability of the QTL gen-
otype, the joint conditional posterior probability of X;;can
be expressed as:

FOi|XGHaye gy WK H gy | Mo 1)
21 By o1 Bk o SO K= gy - K= gy [ mi 1)

(16)
-) is likelihood, and fol-

PXy=Hzpzpz, [yir) =

where f(y; | Xij=Hzz, oz,

lows multivariable normal distribution,

http://www.biomedcentral.com/1471-2156/9/48

F| X =Heyz, 2¢,X‘b, ~by) chx b, -

(17)
Once we have calculated 2™ possible posterior probabili-
ties for the corresponding QTL genotype matrices, we are
going to sample one genotype matrix according to their
posterior probabilities. We firstly constructed the cumula-
tive probability function F(d) by accumulating the 2m
probabilities in an arbitrary sequence ford = 1, 2, ..., 2m
and F(0) = 0, which is a discrete distribution; then sam-
pled a random number from uniform distribution, u ~
U[o0,1]; and compared u with F(d), if F(d - 1) <u < F(d),
then the dth genotype matrix is accepted.

)= n) m/Z‘Z 7z &P

The new sampled QTL genotype matrices {X;}i; are

only the proposal value, which should be updated along

[Aaj Aoy s o]
by the Metropolis-Hastings algorithm [20,21]. For each
trait, the new proposal position is sampled around the

with the proposal QTL position vector A; =

existing one from uniform distributions, /lk] (A - 6 Ay

+ 0), where Jis tuning parameter, usually taking a value of
1 or 2 cM. The new position vector is denoted by

A= [/lfj,/l;j,---,l;,j ]; then the new QTL genotype
matrix X:] is sampled conditionally on the new position
using equation (16); finally, the position vector ?»j and

genotype matrices {X; 1, are accepted jointly with prob-

ability equal to min(1,a), where

H?:l p(yi

XijAjr g A Ip5) - g(Xiilyie-)a(hj)
H{‘le(m\XiprJP(Xij\lj,--‘)P(lj) (Xl yir-)aAy)
(18)

o=

p( kj ) and p(}) is the prior probability of new and old
position respectively, and they are cancelled out under

uniform prior distribution; ) and p(XA;, ...

is the prior probability of QTL genotype conditional on
new and old position, which has been described detailed

: Cd(Xglyie) | p(Xilyie)
previously; . = and
aXijlyir)  p(Xilyi)
a(hj) _ TIRL, p(Akg)

, are all proposal ratio.

aAy) T p(2)
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In step f, block sampling of the indicator variable matrix
®; is expected to have a better performance than separately
updating each y,;in ®;. Due to there are two possible val-
ues (0 or 1) for each model indicator y,, if m traits are
investigated jointly, each model indicator matrix ®; has 2™
kinds of formations. The general formula of it can be writ-
ten as:

V1j =Wy 0 0

0 Yoj=w, 0 0
erwlwz“'wm - : : : !
7mj =Wy

(19)

where, w, € {0,1}, for k = 1, 2, ..., m. Because the prior
probability of each y; is independent, the joint prior prob-
ability for all possible formations can be written as

i}

p(®; =W)) = H p(7ij = w;) - Then the conditional poste-
k=1

rior probability of ®; can be written as

PP=W 110 1wy T S| @5 =W gy gy )

) Zg1e{01} 2&25{01)"’anle{‘)rl)(P("’/=""lrx1xz~--gm)nf':1 f(yl‘“’lz‘“/f/g1x2-"8m""J)v

(20)
The al?proach.to sample (.I)]- is similar to QTL genotypes
sampling previously mentioned.

p@; =W

iy )

Post-MCMC analysis

For summarizing the posterior sample, we use the mean
of the posterior sample to estimate the QTL effect and the
residual (co)variance, and the mode of the posterior prob-
ability or the peak of the 2log,BF statistic to localize QTL.
2log BF statistic was introduced by Yi et al.[17] into QTL
mapping, and BF statistic is defined as the ratio of the pos-
terior odds to the prior odds for inclusion against exclu-
sion of the locus [24]. The critical value of BF is 3 or
2log BF = 2.1 for declaring the existence of a QTL.

In single-trait analysis, we can pick the QTL by plotting
the profile of the posterior probability or 2log,BF statistic
against the genome. In multitrait analysis, if only two
traits are considered jointly, we can use a three-dimension
graph to summarize the statistic for all traits jointly (e.g.,
Figure 2 in [19]). However, if the number of trait is greater
than 2, we can't plot them in one graph. Instead, we can
solve the problem by plotting the marginal posterior
probability distribution. If we divide the genome into H
bins, and denote each bin of kth trait with ¢, forg=1,2,
..., H, then the marginal posterior probability distribution

of G is defined as p(Gyly) = Pl(Gg = A) O (g = DI,

http://www.biomedcentral.com/1471-2156/9/48

where, g indicates the gth interval that locus ¢, resides in.

_ P(gkg‘Y) ) 1-p(Ckg)
Then BF(Ckg) - 1_p(é'kg‘y) P(Ckg)

lated at each possible locus for each trait, respectively.

, which can be calcu-
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