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Abstract

Background: Genome-wide association (GWA) using large numbers of single nucleotide
polymorphisms (SNPs) is now a powerful, state-of-the-art approach to mapping human disease
genes. When a GWA study detects association between a SNP and the disease, this signal usually
represents association with a set of several highly correlated SNPs in strong linkage disequilibrium.
The challenge we address is to distinguish among these correlated loci to highlight potential
functional variants and prioritize them for follow-up.

Results: We implemented a systematic method for testing association across diverse population
samples having differing histories and LD patterns, using a logistic regression framework. The
hypothesis is that important underlying biological mechanisms are shared across human
populations, and we can filter correlated variants by testing for heterogeneity of genetic effects in
different population samples. This approach formalizes the descriptive comparison of p-values that
has typified similar cross-population fine-mapping studies to date. We applied this method to
correlated SNPs in the cholinergic nicotinic receptor gene cluster CHRNA5-CHRNA3-CHRNB4, in a
case-control study of cocaine dependence composed of 504 European-American and 583 African-
American samples. Of the 10 SNPs genotyped in the r2 > 0.8 bin for rs/6969968, three
demonstrated significant cross-population heterogeneity and are filtered from priority follow-up;
the remaining SNPs include rs16969968 (heterogeneity p = 0.75). Though the power to filter out
rs16969968 is reduced due to the difference in allele frequency in the two groups, the results
nevertheless focus attention on a smaller group of SNPs that includes the non-synonymous SNP
rs16969968, which retains a similar effect size (odds ratio) across both population samples.

Conclusion: Filtering out SNPs that demonstrate cross-population heterogeneity enriches for
variants more likely to be important and causative. Our approach provides an important and
effective tool to help interpret results from the many GWA studies now underway.

Page 1 of 11

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2156/9/58
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18759969
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genetics 2008, 9:58

Background

Large-scale genome-wide association (GWA) studies for
mapping genes for complex traits have now become a
reality. Recent GWA studies have succeeded in discovering
robust, novel findings of SNPs associated with human dis-
eases including diabetes and breast cancer [1-5]. Even psy-
chiatric diseases, notoriously challenging despite many
well-designed family-based studies, have begun to reveal
some of their genetic underpinnings to large-scale associ-
ation designs [6,7].

These exciting successes are expected to ultimately lead to
improved understanding of underlying biological mecha-
nisms; this knowledge can then translate to prevention
and treatment efforts. However, once an initial disease
association study has been completed, any SNP signifi-
cantly associated with the phenotype in fact represents a
finding for all genetic variants correlated with that origi-
nal SNP through linkage disequilibrium (LD), as meas-
ured by r2. Even after a successful replication study, a set
of correlated SNPs is expected to replicate. Therefore, mul-
tiple variants become candidates for functional and bio-
logical follow-up of that signal. There is a need for
approaches that can help direct laboratory follow-up
efforts to the most promising and potentially causal vari-
ants.

We propose an approach that can help refine association
signals and distinguish among these correlated variants.
The overall idea is to follow up initial GWA signals in a
population sample having a different population history
from the initial "discovery" sample. The first step is to
obtain genotypes in both population samples at the dis-
covered associated SNP and at correlated SNPs in its 12
bin. The second step is to perform formal heterogeneity
testing to highlight variants that evidence similar genetic
effect in both populations. To aid interpretation, an addi-
tional step would be to evaluate the power to filter out a
SNP by the heterogeneity test under the assumption of a
range of SNP allele frequencies in the second population.
We propose specific ways to accomplish these steps in the
methods below. This overall approach, which we call
cross-population contrast mapping, works on the hypoth-
esis that important biological mechanisms underlying
disease are shared in common across human populations,
although differences in allele frequencies at risk loci can
lead to differences in prevalence in the different popula-
tions. When a risk allele has similar biological mechanism
and exerts a similar effect on phenotype across these dif-
ferent populations, the contrasting linkage disequilibrium
patterns in these populations can then be leveraged to
narrow down the source of the association and identify
the functional variant.

This general concept of mapping in different populations
was recently applied to refine the association between
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three variants in TCF7L2 and type 2 diabetes [8]; there,
European samples and African samples were analyzed
separately and the results (p-values) were compared. Our
contribution here is to propose a more systematic
approach for studying these correlated SNPs within a
given 12 bin of interest, using the combined samples in a
logistic regression framework that allows formal testing
for heterogeneity of genetic effects across population
groups. We then apply this method to a case-control
cocaine-dependence dataset of European-Americans and
African-Americans. In this application, the association sig-
nal we targeted is in the region of the CHRNA5-CHRNA3-
CHRNB4 gene cluster. This gene cluster was originally
reported to be associated with nicotine dependence [6],
and has now shown evidence of association with cocaine
dependence in European-Americans [9].

Methods

Study design and sample

Recruitment for the Family Study of Cocaine Dependence
(FSCD) targeted equal numbers of men and women, and
equal numbers of European-American (EA) and African-
American (AA) participants. Cocaine dependent subjects
were recruited from inpatient and outpatient chemical
dependency treatment centers in the St. Louis area. Eligi-
bility requirements included meeting criteria for DSM-IV
cocaine dependence, being 18 years of age or older, speak-
ing fluent English, and having a full sibling within five
years of age who was willing to participate in the family
arm of the study. Control subjects were recruited through
driver's license records maintained by the Missouri Family
Registry, housed at Washington University School of Med-
icine for research purposes. Controls were matched to
cocaine dependent subjects based on age, ethnicity, gen-
der, and zip code. Exclusionary criteria for controls
included dependence on alcohol or drugs, including nic-
otine. Controls were required to have at least used alcohol
in their lifetime because substance-abstinent individuals
are considered phenotypically unknown; i.e., they may
have a high genetic liability for addiction, but the absence
of any substance use would preclude their progression to
dependence. Blood samples for DNA analysis were col-
lected from each subject and submitted, together with
electronic phenotypic and genetic data, to the National
Institute on Drug Abuse (NIDA) Center for Genetic Stud-
ies. The study obtained informed consent from all partic-
ipants and approval from the appropriate institutional
review boards.

The genetic arm of the FSCD consists of unrelated cases
and matched unrelated controls from the FSCD who were
genotyped. The genetic sample is composed of 504 EA
participants (260 cases with DSM-IV cocaine dependence
and 244 controls) and 583 AA participants (344 cases and
239 controls).
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SNP selection and genotyping

SNPs in the CHRNA5-CHRNA3-CHRNB4 gene cluster on
chromosome 15 were selected for study. We targeted this
region because of recent findings of strong association
between SNPs across this cluster and nicotine depend-
ence. In particular, here we have focused on a non-synon-
ymous coding SNP in CHRNA5, 1516969968, and its
genetic correlates, that is, SNPs having high r2 with it. This
SNP has demonstrated strong association with nicotine
dependence [6,10] and has recently been replicated in
independent samples, either through analysis of the same
SNP [11] or proxy SNPs having very high 12 with it
[12,13]. This SNP or its 12 proxies have now also demon-
strated association with lung cancer [13-15].

This SNP 7516969968 is a high priority variant for poten-
tial functional effect: the change in amino acid 398 from
aspartic acid (encoded by the G allele) to asparagine
(encoded by A, the minor allele) results in a valence
change, as noted in [6]. We also have recent data that this
D398N amino acid change directly results in a change in
function for the receptor [11]. Most important for the
present study, 1516969968 has now been shown to be
associated with cocaine dependence in two independent
European-American samples from the FSCD and from the
Collaborative Study on the Genetics of Alcoholism [9].
Interestingly, the risk allele for nicotine dependence
appears to be protective for cocaine dependence, suggest-
ing that the involvement of nicotinic receptors (nAChRSs)
in addiction is complex. The nAChRs are well known to be
involved in both excitatory and inhibitory neurons
impacting dopamine transmission, and this dual involve-
ment provides biological plausibility for a bidirectional
effect of the same genetic variant. Our goal in this report
is now to examine the SNPs correlated with 1516969968
across the European American and African American sam-
ples in the FSCD to narrow and define the association sig-
nal.

For this cross-population mapping study, the analysis
focused on 10 genotyped SNPs: 1516969968 and its geno-
typed correlates, defined by the 12> 0.8 bin (that is, the set
of SNPs satisfying 12> 0.8) for rs16969968 in the HapMap
CEU (Centre d'Etudie Polymorphisme Humaine (CEPH),
Utah residents with ancestry from northern and western
Europe) sample. These SNPs were part of a larger set gen-
otyped in the FSCD sample by the Center for Inherited
Disease Research (CIDR) with a custom Illumina SNP
array to cover multiple candidate genes. Details of the
CIDR genotyping procedures are available at their website
http://www.cidr.jhmi.edu/index.html.

Population structure analysis

An additional 380 unlinked SNPs were genotyped for
STRUCTURE [16] analysis to allow tests for the absence of
confounding population structure. Using a two cluster
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solution computed in duplicate, no significant associa-
tion between estimated cluster membership probability
(inferred ancestries) and case-control status was found
after accounting for self-reported race/ethnicity. Further-
more, these probabilities are perfect predictors of self-
reported race. The same lack of association holds for three,
four and five cluster solutions. These results indicate that
our logistic regression framework described below, which
analyzes the full sample while accounting for race as a
covariate, is appropriate.

Linkage disequilibrium

Linkage disequilibrium (LD) between SNPs was calcu-
lated using Haploview [17] (for HapMap data) and also
the verbose option of Idmax [18] (for EA and AA cases and
controls). Both CEU and YRI (Yoruba in Ibadan, Nigeria)
HapMap data were used, separately. Plots for LD in the
case-control data were generated using a custom program
(A. Hinrichs, personal communication).

Genetic association and heterogeneity analyses

Our primary single SNP association analyses of case-con-
trol status use logistic regression models, implemented
using SAS (Cary, NC). To analyze the combined samples
from two different population groups, terms are included
in the base model to denote population source (s) and to
correct for any necessary covariates (e.g. gender), denoted
by variables x;, i = 1, ... n. In general, the non-genetic base
model is then: ln(%) =0 +ax; .. tax, + Bis,
where P is the probability of being a case and s is sample
race/ethnicity. In our particular application to the cocaine
dependence data, we included two covariates (n = 2), gen-
der (0 = male, 1 = female) and year of birth, and the two
populations are EA (s = 0) and AA (s = 1) from self-report.
Genotype status G at each marker is modeled log-addi-
tively (multiplicatively) and coded as the number of cop-
ies of the minor allele in the European-American sample;
this coding choice is arbitrary but allows for consistent
reporting. The full model includes both genotype (5,*G)

(857 G)

ln(%) =ay+ox; ...+ ax, + Bis+ B,G+ B3Gs and

and genotype-by-population terms:

we test for significance of genetic effect by the standard
likelihood ratio chi-square statistic with two degrees of
freedom (df). The population-specific odds ratios for the
effect of a copy of the minor allele are given by exp(4,) for

the EA sample and exp(f, + ;) for the AA sample.

If the overall test for significant genetic effect is significant,
we then test for heterogeneity of genetic effect across the
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two population samples by comparing the above full
model to the model

ln(%) =ay+ox; ... +ax, + Bis+ B,G; that is, the

interaction term is removed. If the resulting likelihood
ratio chi-square statistic is significant, we conclude that
the genetic effect is not similar in the two population sam-
ples and thus the SNP is lower priority for follow-up; the
population-specific odds ratios defined above can then
indicate how the effects differ in the two populations.

Power Analysis

We are interested in the power to filter a SNP from consid-
eration when the association is detected in one popula-
tion but has no effect in the second population. This
power depends on the allele frequency of the SNP in the
second population and can be estimated by simulating
the second population under an odds ratio of 1 and spec-
ified allele frequencies for the SNP, assuming Hardy-
Weinberg equilibrium. It is important to note that no
adjustment for LD is needed here; we are evaluating our
ability to rule out the specific, genotyped SNP. The simu-
lated data is then analyzed together with the real data at
the SNP of interest for the first population, using the logis-
tic regression approach above, and power to detect cross-
population heterogeneity is estimated by the proportion
of replicates which achieve a given significance level.

We derived the needed probabilities for this simulation as
follows. Let N, be the number of cases and N, be the

number of controls in the second population, and let p be
the frequency of the A, allele and g = 1-p be the frequency

of A,. Then we note that for the 2 x 3 table of case status
by genotype status, the marginals for the case and control
counts are N; and N, respectively, and the marginals for
the AA;, AjA, and A,A, counts are p2(N;+N,),
2pq(N,+N,), and g2(N,+N,) respectively. Then the prob-
abilities for the cells of the 2 x 3 table, recalling that the
odds ratio is set to be 1 (corresponding to no effect in the
second population), are the products of the marginal

e N 2
probabilities, so that Pr(caseand A;A;) = N1+§\72 P,
N 2
Pr(ctrl and A;A,) = ﬁp , etc.

For our example study, we therefore sampled from the
above probabilities to simulate samples of 344 cases and
239 controls assuming minor allele frequencies of 0.3
down to 0.05, corresponding to the two extremes for
power: where the allele frequency in the second popula-
tion is similar to the EA frequency, and where it is notably
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lower as we see at 1s16969968. Each simulated AA dataset
was then combined with the real EA data at 1s16969968.
For simplicity, we used only the data at rs16969968,
because this will estimate power to detect cross-popula-
tion heterogeneity not only at rs16969968 itself, but also
at the other SNPs because they have very high r2 with
116969968 in the EA sample. For each allele frequency,
we generated 1000 replicates and recorded the proportion
of replicates for which the cross-population heterogeneity
was detected (i.e. the population*genotype term was sig-
nificant) at fixed significance levels.

Results

Linkage disequilibrium

Figure 1 shows the CHRNA5-CHRNA3-CHRNB4 gene
cluster at the top. The red triangle denotes the SNP
1516969968; the other triangles indicate all SNPs in Hap-
Map correlated with it (r2> 0.8) in the CEU population
sample. This figure thus indicates the "r2 bin" of 21 SNPs
that, according to HapMap CEU LD patterns, are not
likely to be distinguishable even after a replication study
in a similar population of European descent. Figure 2
shows the HapMap 12 values among these same SNPs in
the Yoruba (YRI) HapMap sample, and indicates that SNP
correlations are indeed reduced in this sample. In YR],
only two small non-trivial 2> 0.8 bins remain, one com-
posed of 1517483721, 1s7181486, and 1517483929, and the
other of 157180002, 15951266, and rs1051730. The remain-
ing polymorphic SNPs are singleton bins. One SNP,
1517486278, was not genotyped in the HapMap YRI sam-
ple, and four others were monomorphic in YRI:
1517483548, 1517405217, 1517484235, and 1516969968
(the D398N variant). The pairwise 12 for the remaining 16
SNPs is displayed.

Figure 3 displays 12 values in our case-control sample in
European-Americans and African-Americans, respectively.
The SNPs are all those genotyped in our sample that have
12> 0.8 with 1516969968 in HapMap CEU. Figure 3 defines
the set of SNPs for which we will carry out our cross-pop-
ulation approach, and indicates that there are indeed con-
trasts in the LD patterns in our EA and AA samples to
enable this approach.

Genetic association and heterogeneity analyses

Ten of the 21 SNPs in the HapMap CEU-determined r2 >
0.8 bin for 1516969968 were genotyped in our sample. In
addition, we examined additional SNPs across chromo-
some 15 that were genotyped in our sample and found no
additional SNPs having 12 > 0.8 with 1516969968 in our
own data. Table 1 shows HapMap CEU and YRI allele fre-
quencies for all 21 SNPs in the bin, and also EA and AA
allele frequencies in our sample for the 10 genotyped
SNPs.
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The r2> 0.8 bin for rs16969968 in HapMap CEU. The red triangle denotes rs16969968, and is connected to all other SNPs
(triangles) in the r2 bin by the dotted line. The vertical position of the triangles has no meaning, but allows all the SNPs to be
shown without overlapping the triangles. The rs numbers for all SNPs in this bin are given in map order in Table |.

Table 2 displays the primary association test results and
the population heterogeneity results for the combined EA
and AA samples (columns 9-12). For comparison, Table
2 also provides the association results when the EA and
AA samples are analyzed separately using logistic regres-
sion with covariates gender and year of birth and a log-
additive genetic model (columns 5-8).

We see that among the genotyped SNPs in Table 2, all are
associated with case status with a primary p-value less
than 0.05; this is expected since these SNPs are strongly
correlated with 1516969968, which we know is associated
with cocaine dependence in the EA sample. The key col-
umn in Table 2 is the last one, which gives the p-value for
the test of the population-by-genotype interaction term
and provides a test for heterogeneity of effect in the two
population samples. We see that three SNPs (159788721,
1s8034191, rs1051948) show significantly different effects
in the two samples, and two others have p-values of 0.06
(rs2656052, 131317286). The population-specific odds
ratio in the AA group for each of these SNPs is essentially
1. Therefore our method would rule out these SNPs as
likely causative variants and assign them lower priority.
Of the remaining 5 SNPs, we observe heterogeneity p-val-
ues < 0.2 for all except 1516969968, which has a heteroge-
neity p-value of 0.75 and odds ratios in the EA and AA
groups of 0.66 and 0.73 respectively.

Our conclusion is that among these genotyped SNPs,
1516969968 should be prioritized for follow-up because it
exhibits the strongest evidence for a comparable odds
ratio in both the EA and AA groups; the other 6 SNPs that
survived filtering also remain as potential SNPs of interest,
while three have been ruled out. This similar odds ratio at
1$16969968 is observed despite the fact that the A allele
has very different allele frequencies in EAs and AAs (0.33
versus 0.05 respectively). In contrast, the flanking SNP
1s951266 has a similar level of allele frequency discrep-
ancy (0.33 versus 0.08, which leads to a reduction in 12
between it and 1516969968 in the AA sample (Figure 3)),
but has an odds ratio of 0.95 in the AAs versus 0.68 in the
EAs. Thus a discrepancy in allele frequency on its own
does not indicate whether the odds ratio for the allele
effect will be similar or not in the two groups. By includ-
ing a "population" covariate in the overall model, we can
adjust for differences in population rates, and then test for
the significance of the population-by-genotype interac-
tion.

Note that none of the SNPs are significant when analyzed
in the AA sample alone. However, this result underscores
the advantage of using the population-by-genotype term
in the full sample. A non-significant result for a SNP in the
AA sample does not allow us to rule it out; it is only when
we test for significant cross-population heterogeneity in
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LD (r2) in the HapMap YRI sample, for the r2> 0.8 bin for rs16969968 defined by HapMap CEU LD. Of the 21 bin members
pictured in Figure I, 20 were genotyped in HapMap YRI of which 4 were monomorphic. The numerals in the cells denote the
r2 between the two SNPs corresponding to the cell. Cells with no numeral indicate r2 = |. Cell shading indicates strength of r2

as shown by the numeral.

the full sample that we come to the useful conclusion that
three of the ten SNPs in fact can be filtered from further
priority consideration.

The above advantage is also clear when we consider that
power in the separate AA sample is impacted by allele fre-
quency differences. For a "true" locus having the allele fre-
quency pattern of 1516969968, a large AA sample would
be needed to ensure a significant result in EAs and also in
AAs separately, because of the low MAF in AAs. For exam-
ple, using standard power calculations for an allelic test
[19], assuming the observed allele frequencies of 33% in
EAs and 5% in AAs, prevalence of 3%, and a genotypic
odds ratio of 1.4, our sample sizes attain 75% power at an
alpha of 0.05 in the EAs, compared to only 27% power in
the AAs. Nevertheless, our available sample sizes still
allow useful filtering of the correlated set.

There are additional SNPs correlated with 7516969968
according to the current HapMap CEU build that were not

genotyped and analyzed in our samples; one of these
additional SNPs (rs7180002) was in fact attempted by
CIDR but removed during quality control due to poor
clustering (more than 3 genotype clusters). However, it is
useful to note that according to HapMap YRI, 57180002
is in perfect LD (12 = 1) with the genotyped rs951266 (Fig-
ure 2) and therefore is very likely to have association and
heterogeneity results very similar to those of 15951266. For
the other non-genotyped SNPs, the YRI LD patterns do
not indicate strong correlations with our genotyped SNPs,
and we therefore cannot draw conclusions for these.

Power analyses

Table 3 shows the power to filter out a SNP when its allele
frequency in the second population ranges from 0.3 down
to 0.05, assuming that there is no genetic effect (odds ratio
of 1) in the second population. As expected, power is
reduced as the minor allele frequency decreases: when the
allele frequency p = 0.3, power to detect a significant pop-
ulation-by-genotype interaction at the a = 0.05 level is
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LD plot (r2) in our cocaine-dependence case-control sam-
ples. The quadrants display AA cases (upper right), EA cases
(upper left) EA controls (lower left), AA controls (lower
right).

61% compared to power of 25% when p = 0.05. Recruit-
ing a larger sample of African Americans would allow us
to further refine the region of association and make a
more definitive conclusion about rs16969968. Neverthe-
less, with only approximately 61% power even when p =
0.3, in our data we have good evidence to be able to rule
out SNPs such as rs9788721 and rs10519203 (Table 2).
Note furthermore that rs8034191 is filtered out (heteroge-
neity p-value of 0.048) despite having a MAF of only 0.15
in the AA sample, corresponding to an estimated power
between 34% and 52% at the a. = 0.05 level.

Conclusion and discussion

After a large-scale association study, the set of SNPs asso-
ciated with disease will typically include correlated SNPs.
There is a need for approaches that can help determine if
a particular SNP among a correlated set is likely to be the
biologically causative SNP and thus focus follow-up
efforts in the laboratory on these most promising variants.
One approach is to consider these correlated SNPs and
systematically prioritize them according to known
genomic and biological information such as locations of
genes and cross-species conserved regions [20]. Here we
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have implemented a complementary method to prioritize
SNPs that capitalizes on differences in LD patterns
between different world population groups. We first iden-
tify the SNPs in strong LD with an associated SNP as meas-
ured by the correlation coefficient 12 in the initial
population; when 12 is reduced in a second population, we
then have the opportunity to refine the association and fil-
ter out some of the originally correlated variants.

This method presumes that the mechanism of action for
functional genetic variants is shared in common across
human populations, although differences in allele fre-
quencies at risk loci can lead to differences in prevalence.
This premise is supported by an empirical study by loan-
nidis et al. that showed that while the frequency of genetic
markers may vary across populations (58% showed large
heterogeneity), their biological impact on the risk for
common diseases appears to be usually consistent across
different 'races' (only 14% showed large heterogeneity in
the genetic effects) [21]. Our analysis, which has demon-
strated successful filtering of some of the SNPs correlated
in the EA population, raises the interesting possibility that
among these 14% of markers observed by Ioannidis to
have heterogeneity of genetic effect, some fraction may
still indeed correspond to gene variants that do have sim-
ilar biological mechanism and genetic effect, but were rep-
resented by a SNP merely in LD with the true causal
variant. Thus the proportion of common diseases for
which the biological effects of the causative genetic vari-
ants are consistent across traditional racial groupings may
perhaps be even higher than estimated in [21].

By design, our method chooses to focus attention on these
shared biological mechanisms, rather than on possible
population-specific mutations which may exist in some
situations. This statistical approach filters association sig-
nals and allows likely functional alleles to be better
defined. Thus the next steps of functional follow-up can
be focused on a smaller, enriched pool of potential caus-
ative variants.

In this context, the correlation coefficient r2 is the appro-
priate measure of LD rather than D'. The goal is to distin-
guish among SNPs that are statistically correlated, so that
the disease association signal at each bin member in fact
can be statistically explained by the LD between the SNPs,
yet the biological basis of the observed association may
potentially be due to any member of the bin. Our
approach therefore allows us to filter out bin members to
narrow down to the most likely biologically causative var-
iants.

Our approach uses logistic regression, which is a classical
tool for genetic association studies. We chose the 2-df test
as our primary association test simply to allow for poten-
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Table I: SNPs in the r2> 0.8 bin for rs16969968, sorted by genomic position, and their allele frequencies.

SNP pos_bp gene SNP function Minor allele Minor allele Minor allele, Minor allele Minor allele
frequency, frequency, EA sample/ frequency, frequency,
HapMap CEU HapMap YRI AA sample! EA sample AA sample

rs|17483548 76517368  IREB2 LOCUS 0.408 0.00

rs17405217 76518204  IREB2 INTRON 0.408 0.00

rs17483721 76520786  IREB2 INTRON 0.408 0.175

rs2656052 76527987  IREB2 INTRON 0.408 0.475 c/C 0.3313 0.4580
rs7181486 76528673  IREB2 INTRON 0.408 0.175

rs17483929 76529431  IREB2 INTRON 0.408 0.175

rs17484235 76548469  IREB2 INTRON 0.408 0.00

rs9788721 76589924 LOCI23688 INTRON 0.433 0.371 c/C 0.3452 0.3602
rs8034191 76593078 LOCI23688 INTRON 0.433 0.142 c/C 0.3333 0.1595
rs10519203 76601101 LOCI23688 INTRON 0.433 0.300 c/C 0.3353 0.3225
rs8031948 76603112 LOCI23688 INTRON 0.432 0.103

rs931794 76613235 0.433 0.292

rs2036527 76638670 0.425 0.217 A/IA 0.3323 0.2187
rs17486278 76654537 CHRNAS INTRON 0.409  Not available G/G 0.3294 0.2942
rs7180002 76661048  CHRNAS INTRON 0.417 0.117

rs951266 76665596  CHRNAS INTRON 0.417 0.117 A/A 0.3274 0.0858
rs16969968 76669980 CHRNAS NONSYNON 0.424 0.00 AA 0.3274 0.0497
rs1051730 76681394 CHRNA3 SYNON 0.4 0.110 T 0.3270 0.0943
rs1317286 76683184 CHRNA3 INTRON 0.405 0.297 G/G 0.3323 0.2204
rs12914385 76685778  CHRNA3 INTRON 0.43 0.198

rs17487223 76711042 CHRNB4 INTRON 0.433 0.067

IMinor allele in EA sample is the same as the minor allele in the AA sample

tial differences in populations up front. The key point is
that this framework then allows for formal testing of het-
erogeneity that can be used specifically to filter across the
correlated, associated variants. Logistic regression can test
for heterogeneity of SNPs regardless of their correlations
with each other, and has been used in the literature to ana-
lyze uncorrelated SNPs, in distinct genes, to confirm
agreement of association results across datasets. However,
the extension of analysis to highly correlated SNPs in the
r2bin, as well as to populations having differing LD struc-
ture, not only allows filtering of correlated, significant sig-
nals (an important goal), but also can help prevent "false
negative" findings of apparent non-consistency when a
locus does indeed have consistent biological effect across
populations. For example, suppose a study in one popu-
lation detects association at a single genotyped SNP but
ignores correlates, so that only the same SNP is tested
using logistic regression in a second population. This SNP
may not appear to be consistent because of LD differences,
whereas a correlated, causative SNP might have shown
clear association in both populations, had it been geno-
typed and tested.

The effectiveness of this method of course depends on the
available genotyping coverage of the target region. If the
"true" disease susceptibility locus is not genotyped, for
example if it lies on a haplotype defined by genotyped
SNPs, it will not be recognized and included among the
enriched set of SNPs after cross-population filtering. How-

for all genotyped SNPs

ever, the method still can narrow down the possibilities
by eliminating individual SNPs. Furthermore, as genotyp-
ing and sequencing costs continue to decline, we expect
that studies will be able to thoroughly and directly assay
the genetic variation and therefore apply this approach
most effectively.

It is important to note that it is possible for a significant
difference in odds ratio to occur not because the effect is
lacking in the second population, but because it is signif-
icantly stronger. Therefore, significant results from the
cross-population heterogeneity tests should be reviewed
to check for such cases, and such SNPs for which there is
a clear genetic effect in both populations should not be fil-
tered from further study. For the 10 SNPs studied in our
sample, this situation does not occur: the point estimate
for the population-specific odds ratio in the AA sample is
essentially one for all SNPs except rs16969968, as we had
hoped to demonstrate for at least some SNPs. The direc-
tion of effect for 1516969968 in the AA sample also
matches the direction in the EA sample (allele A is "pro-
tective").

Homogeneity across populations can also be evaluated
using a stratified Cochran-Mantel-Haenszel analysis and
testing for homogeneity of the odds ratio with the Bres-
low-Day test. In general, we expect the results to be similar
to those obtained by our logistic regression analysis. In
our dataset, the Breslow-Day test appeared slightly less

Page 8 of 11

(page number not for citation purposes)



BMC Genetics 2008, 9:58

Table 2: Cross-population association results.
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EA SAMPLE ONLY AA SAMPLE ONLY PRIMARY ANALYSIS OF THE COMBINED SAMPLE
EA AA

Odds ratio Odds ratio Population  Population P-value,

(95% (95% -specific -specific population-by

confidence confidence Primary? odds odds  -genotype term
SNP p-value! interval) p-value' interval) p-value ratio3 ratio?  (heterogeneity)
rs|7483548
rs17405217
rs17483721
rs2656052 0.0147 0.71 (0.539, 0.935) 0.9737 1.004 (0.793, 1.272) 0.04656 0.7074 1.0008 0.06031
rs7181486
rs17483929
rs17484235
rs9788721 0.0031 0.662 (0.505, 0.870) 0.4084 1.108 (0.868, 1.415) 0.008229 0.6619 1.1045 0.005783
rs8034191 0.0052 0.679 (0.518, 0.891) 0.7846 1.046 (0.756, 1.449) 0.01903 0.6797 1.0389 0.04839
rs10519203  0.0035 0.667 (0.509, 0.875) 0.8629 1.022 (0.795, 1.315) 0.01312 0.6679 1.0208 0.02396
rs8031948
rs931794
rs2036527 0.0062 0.683 (0.520, 0.897) 0.5081 0.906 (0.677, 1.213) 0.01797 0.6837 0.9048 0.1676
rs17486278  0.0032 0.663 (0.504, 0.871) 0.3669 0.884 (0.676, 1.155) 0.007876 0.6616 0.8848 0.1356
rs7180002
rs951266 0.0051 0.677 (0.515, 0.890) 0.8252 0.952 (0.617, 1.469) 0.01777 0.6761 0.9512 0.1894
rs16969968  0.0033 0.664 (0.505, 0.873) 0.2397 0.729 (0.430, 1.235) 0.006299 0.6636 0.7313 0.7479
rs1051730 0.0036 0.666 (0.507, 0.876) 0.6663 0.913 (0.604, 1.380) 0.01135 0.6636 0.9149 0.2016
rs1317286 0.0044 0.675 (0.515, 0.884) 0.9011 0.982 (0.736, 1.311) 0.01586 0.6745 0.9830 0.06096
rs12914385
rs17487223

The SNPs correlated with rs16969968 on chromosome |5 (r2> 0.8 in HapMap CEU) are sorted by genomic position. The heterogeneity test

results are given in the rightmost column.
One-degree of freedom test as described in methods.
2 Two-degree of freedom test as described in methods.

3 Population-specific odds ratio for the effect of one copy of the minor allele, from the combined analysis as defined in the methods.

sensitive and filtered out only two SNPs at an o of 0.05;
the Breslow-Day p-value was 0.0092 for rs9788721,
0.0596 for rs8034191, and 0.0305 for rs10519203. We
favor using the heterogeneity test within the logistic
regression framework because it is a natural extension of
the logistic regression analysis, without the population-
by-genotype term, that is already popular for the analysis

Table 3: Power results!

of GWAS data and has been used by our group [6,7] and
others.

This cross-population contrast method, applied to Euro-
pean-American and African-American case-control sam-
ples, was successful in refining an association signal
between SNPs in the CHRNA5-CHRNA3-CHRNB4 gene

Minor allele frequency in
2nd population

Significance level (o) required

Power (%) to detect significant
population*genotype interaction?

0.3 0.1
0.05
0.2 0.1
0.05
0.1 0.1
0.05
0.05 0.1
0.05

739
60.8
67.9
51.7
49.6
342
34.1
24.6

'From simulation, assuming rs16969968 has no effect and a range of allele frequencies in the second population sample of 344 cases and 239

controls.

2When the population*genotype interaction term is significant, we filter the SNP from priority consideration.
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cluster and cocaine dependence, with the results high-
lighting a group of SNPs that includes 17516969968, a non-
synonymous coding SNP in CHRNA5. Among the 10 gen-
otyped SNPs, which are highly correlated in populations
of European descent, three are filtered out due to signifi-
cant evidence for heterogeneity of association in the two
population samples, two others have p-values of 0.06,
and the remaining SNPs include rs16969968, which had
heterogeneity p-value 0.75 and similar odds ratios in EAs
and AAs. This result further highlights this variant as a
potential causative variant, as it adds a new line of evi-
dence - no significant heterogeneity between populations
for 1516969968 - to existing knowledge that this SNP
causes an amino acid change and is conserved across spe-
cies. This interpretation must be tempered by the fact that
the power to rule out this SNP is reduced due to the con-
siderable allele frequency difference in the EA versus AA
samples. With a larger sample size, better discrimination
among the remaining SNPs might have been possible.
Nevertheless, in the available data our approach has nar-
rowed the field of candidate variants for functional fol-
low-up. Indeed, our recent work has now shown that
116969968 alters receptor function in vitro [11].

These results are especially interesting in light of recent
publications that report association between variation in
CHRNA5-CHRNA3-CHRNB4 and smoking quantity [12]
and nicotine dependence [13] and thus provide evidence
of replication of the initial association discovered in [6].
Furthermore, the same or correlated variants also show
association with lung cancer [13-15]. In these new papers,
the reported association was either at 1516969968 (when
genotyped), or at rs8034191, rs1317286, or 1s1051730,
all of which have very high r2with rs16969968 (0.966, 1.0
and 0.90 respectively in HapMap CEU) and all of which
we studied here. Our analysis studied cocaine rather than
nicotine dependence, so the conclusions here may not
directly translate to smoking or lung cancer. However it is
intriguing to note that in our cocaine dependence analy-
sis, 1s8034191 is ruled out (heterogeneity p-value 0.048),
1s1317286 has a heterogeneity p-value of 0.06, and
rs1051730, while not ruled out (heterogeneity p-value
0.20), has an odds ratio of 0.91 in the AA sample versus
0.66 in the EA sample. Applying this cross-population
approach to an African American sample of nicotine
dependent (or lung cancer) cases and controls will be an
important next step to further understand and dissect this
strongly replicated association between the 12 bin for
1$16969968 and those diseases.

The D398N amino acid change at 1516969968 demon-
strates large differences in allele frequency across popula-
tions. The minor allele frequency (MAF) is 33% in our EA
sample and only 5% in our AA sample. In the HapMap
Yoruba sample, 1516969968 is monomorphic, so our Afri-

http://www.biomedcentral.com/1471-2156/9/58

can American sample likely demonstrates population
admixture. Though homogeneous samples have been
promoted as a resource to increase power to detect associ-
ation, it is with outbred and admixed samples and two
different populations (European-American and African-
American) that we have narrowed an association signal to
a likely functional variant involved in substance depend-
ence. These results underscore the importance of expand-
ing current genetic disease mapping studies to include
diverse population samples beyond those of European
descent.

Authors' contributions

NLS designed and carried out the statistical analyses and
power calculations and drafted the manuscript. SFS car-
ried out SNP selection for genotyping and contributed to
the design of the study. AMG contributed to the concep-
tion and design of the study. RAG carried out the popula-
tion structure analyses. ALH performed linkage
disequilibrium analyses and visualization. JPR contrib-
uted to the conception and design of the study and
advised on the implementation of the method. LJB con-
tributed to the conception and design of the study and is
the PI of the FSCD project that provided the samples. All
authors contributed to the interpretation of results and
the intellectual content of the manuscript, and have read
and approved the final manuscript.

Acknowledgements

We thank Weimin Duan and Louis Fox for data management and support.
We also thank the anonymous reviewers, whose comments helped us
improve the content and presentation of this paper. This work was funded
by grants KOIDAOI5129 (N.L.S.), KOIDA16618 (R.A.G.), KOIAAQI5572
(A.H.), and K02DA021237 (L.).B.) from the National Institutes of Health,
and by IRG-58-010-50 from the American Cancer Society (S.F.S.). The Fam-
ily Study on Cocaine Dependence (FSCD) has been supported by
ROIDAOQ13423 (L.J.B.) and ROIDA019963 (L.J.B.) from the NIH. Genotyp-
ing services were provided by the Center for Inherited Disease Research
(CIDR). CIDR s fully funded through a federal contract from the National
Institutes of Health to The Johns Hopkins University, contract number
HHSN268200782096C. Conflict of Interest Statement: Drs. S. Saccone, A.
Goate, A. Hinrichs, J. Rice and L. Bierut are listed as inventors on a patent
"Markers of Addiction" (US 20070258898) held by Perlegen Sciences, Inc.,
covering the use of certain SNPs in determining the diagnosis, prognosis,
and treatment of addiction. Dr. N. Saccone is the spouse of Dr. S. Saccone,
who is listed on the above-named patent. Dr. Bierut has acted as a consult-
ant for Pfizer, Inc. in 2008.

References

I.  Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H,
Roix JJ, Kathiresan S, Hirschhorn JN, Daly M), et al.: Genome-wide
association analysis identifies loci for type 2 diabetes and
triglyceride levels. Science 2007, 316(5829):1331-1336.

2. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango
H, Timpson NJ, Perry JR, Rayner NWV, Freathy RM, et al.: Replication
of genome-wide association signals in UK samples reveals
risk loci for type 2 diabetes. Science 2007,
316(5829):1336-1341.

3. Scott L), Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL,
Erdos MR, Stringham HM, Chines PS, Jackson AU, et al.: A genome-
wide association study of type 2 diabetes in Finns detects

Page 10 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463248

BMC Genetics 2008, 9:58

20.

21.

multiple  susceptibility variants. Science 2007,
316(5829):1341-1345.

Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ball-
inger DG, Struewing JP, Morrison |, Field H, Luben R, et al.: Genome-
wide association study identifies novel breast cancer suscep-
tibility loci. Nature 2007, 447(7148):1087-1093.

WTCCC: Genome-wide association study of 14,000 cases of
seven common diseases and 3,000 shared controls. Nature
2007, 447(7145):661-678.

Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Mad-
den PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, et al.:
Cholinergic nicotinic receptor genes implicated in a nicotine
dependence association study targeting 348 candidate genes
with 3713 SNPs. Human Molecular Genetics 2007, 16(1):36-49.
Bierut L), Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomer-
leau OF, Swan GE, Rutter ], Bertelsen S, Fox L, et al.: Novel genes
identified in a high-density genome wide association study
for nicotine dependence. Human Molecular Genetics 2007,
16(1):24-35.

Helgason A, Palsson S, Thorleifsson G, Grant SF, Emilsson V, Gun-
narsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir |, et al.:
Refining the impact of TCF7L2 gene variants on type 2 dia-
betes and adaptive evolution. Nat Genet 2007, 39(2):218-225.
Grucza RA, Wang JC, Stitzel JA, Hinrichs AL, Saccone SF, Saccone NL,
Bucholz KK, Cloninger CR, Neuman R}, Budde JP, et al.: A risk allele
for nicotine dependence in CHRNAS is a protective allele for
cocaine dependence. Biological Psychiatry in press.

Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia
ML, Agrawal A, Breslau N, Grucza RA, Hatsukami D, et al.: Multiple
distinct risk loci for nicotine dependence identified by dense
coverage of the complete family of nicotinic receptor subu-
nit (CHRN) genes. American Journal of Medical Genetic Part B: Neu-
ropsychiatric Genetics in press.

Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Bertelsen S, Fox L, Grucsa
RA, Horton W], Kauwe ]S, Morgan SF, et al: Variants in nicotinic
receptors and risk for nicotine dependence. Am | Psychiatry
2008, 165(9):1163-1171.

Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Water-
worth D, Muglia P, Mooser V: alpha-5/alpha-3 nicotinic receptor
subunit alleles increase risk for heavy smoking. Molecular Psy-
chiatry 2008, 13:368-373.

Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson
KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, et al.: A
variant associated with nicotine dependence, lung cancer
and peripheral arterial disease. Nature 2008,
452(7187):638-642.

Amos Cl, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q,
Zhang Q, Gu X, Vijayakrishnan J, et al.: Genome-wide association
scan of tag SNPs identifies a susceptibility locus for lung can-
cer at 15q25.1. Nat Genet 2008.

Hung R], McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D,
Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, et al.: A
susceptibility locus for lung cancer maps to nicotinic acetyl-
choline receptor subunit genes on 15q25. Nature 2008,
452(7187):633-637.

Pritchard JK, Stephens M, Donnelly P: Inference of population
structure using multilocus genotype data. Genetics 2000,
155(2):945-959.

Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visu-
alization of LD and haplotype maps. Bioinformatics (Oxford, Eng-
land) 2005, 21(2):263-265.

Abecasis GR, Cookson WO: GOLD-graphical overview of link-
age disequilibrium. Bioinformatics  (Oxford, England) 2000,
16(2):182-183.

Purcell S, Cherny SS, Sham PC: Genetic Power Calculator:
design of linkage and association genetic mapping studies of
complex traits. Bioinformatics ~ (Oxford, ~England) 2003,
19(1):149-150.

Saccone SF, Saccone NL, Swan GE, Madden PAF, Goate AM, Rice JP,
Bierut LJ: Systematic biological prioritization after a genome-
wide association study: an application to nicotine depend-
ence. Bioinformatics (Oxford, England) 2008, 24(16):1805-181 1.
loannidis JP, Ntzani EE, Trikalinos TA: 'Racial' differences in
genetic effects for complex diseases. Nat Genet 2004,
36(12):1312-1318.

http://www.biomedcentral.com/1471-2156/9/58

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 11 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17463248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17529967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17529967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17529967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17554300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17554300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17135278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17135278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17135278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17206141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17206141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17206141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18519132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18519132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18519132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18519524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18519524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18227835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18227835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10835412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10835412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10842743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10842743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18565990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18565990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18565990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15543147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15543147
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Study design and sample
	SNP selection and genotyping
	Population structure analysis
	Linkage disequilibrium
	Genetic association and heterogeneity analyses
	Power Analysis

	Results
	Linkage disequilibrium
	Genetic association and heterogeneity analyses
	Power analyses

	Conclusion and discussion 
	Authors' contributions
	Acknowledgements
	References

