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Abstract

Background: In contrast to diploids, most polyploid plant species, which include the hexaploid
bread wheat, possess an additional layer of epigenetic complexity. Several studies have
demonstrated that polyploids are affected by homoeologous gene silencing, a process in which sub-
genomic genomic copies are selectively transcriptionally inactivated. This form of silencing can be
tissue specific and may be linked to developmental or stress responses.

Results: Evidence was sought as to whether the frequency of homoeologous silencing in in vitro
cultured wheat callus differ from that in differentiated organs, given that disorganized cells are
associated with a globally lower level of DNA methylation. Using a reverse transcription PCR (RT-
PCR) single strand conformation polymorphism (SSCP) platform to detect the pattern of
expression of 20 homoeologous sets of single-copy genes known to be affected by this form of
silencing in the root and/or leaf, we observed no silencing in any of the wheat callus tissue tested.

Conclusion: Our results suggest that much of the homoeologous silencing observed in
differentiated tissues is probably under epigenetic control, rather than being linked to genomic
instability arising from allopolyploidization. This study reinforces the notion of plasticity in the
wheat epi-genome.

Background

In diploid species, the control of gene expression is largely
under the control of promoters and transcription factors,
whereas in polyploids such as hexaploid wheat or tetra-
ploid cotton, an additional layer of complexity is created
by epigenetic variation. Thus, there is a growing body of
evidence showing that each homoeologous gene copy
does not necessarily contribute equally to the global tran-
scriptome [1,2]. In hexaploid wheat, for example, one of
the three homoeologues normally present is not
expressed in the leaf for approximately 30% of single copy
genes, with a similar figure observed for roots [1]. This

form of silencing has been shown to be variety-dependent
[3]- In tetraploid cotton trichome cells, similarly around
30% of genes show a noticeable bias in expression level
towards one genome [4], and, during development, this
bias can be shifted. This form of transcriptional inactiva-
tion has been termed 'homoeologous gene silencing' and
can be either tissue-specific or associated with a develop-
mental process [5,6]. It is not known as yet how this
silencing is either imposed or maintained, although it has
been suggested to arise from genomic shock occurring at
or shortly after a polyploidization event [7]. However,
recent investigations based on synthetic Arabidopsis poly-
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ploids have shown that when methylation maintenance is
compromised, some previously silenced genes become re-
activated, thus implicating epigenetic control [8].

In a disorganized callus grown in vitro, chromosomal dele-
tions, translocations, transposon movement and epige-
netic repatterning all occur at a much higher level than in
planta [9-12]. Among barley plants regenerated from tis-
sue culture, both DNA sequence mutations and changed
methylation patterns have been observed, with the latter
occurring much more often than the former [13]. Simi-
larly, in re-generated hop plants, "somaclonal" changes
are more frequently epigenetic rather than genetic [14]. If,
as has been suggested, methylation is responsible for
much of the observed silencing in polyploids [8], and
since callus cells are relatively demethylated compared to
differentiated cells in planta [12,15,16], then the level of
silencing present in callus cells would be predicted be
lower than in planta. Thus, in this study, we set out to
examine the pattern of homoeologous silencing in wheat
callus cells. Our aim was to establish whether the undiffer-
entiated state of these cells influenced the level of homoe-
ologous silencing of genes known to be affected in this
way in the root or the leaf.

http://www.biomedcentral.com/1471-2156/9/65

Results and Discussion

As the process of tissue culture is known to induce
sequence re-arrangements and point mutations [17], we
first compared the SSCP profiles of amplified callus
genomic DNA (gDNA) to those of amplified cv. Florida
gDNA. No detectable evidence for such events within the
amplified sequences was noted in any of the material
tested. Of the seven homoeologous sets of single-copy
genes, in which at least one homoeologue is not expressed
in cv. Florida leaf or root [3], four showed expression of
all three homoeologues in the callus, while the other three
were not expressed at all (Table 1). For instance, the A
genome homoeologue of EST BE426364 is expressed in
callus, but not expressed in the root tissue of cv. Florida
and in ten of a sample of 16 other varieties [3]. In order to
increase the number of genes sampled, we sampled a fur-
ther nine genes, in which at least one homoeologue is not
expressed in at least one tissue of cv. Chinese Spring [1].
Of these, all homoeologues were expressed in the callus,
and the remaining one was not expressed. Among a fur-
ther four genes showing full expression in cv. Chinese
spring leaf and/or root were tested, all were also fully
expressed in the callus (Table 1).

Table I: A comparison between; genes shown to be expressed in leaf and/or root tissue of Chinese Spring (CS) (Bottley et al, 2006),
the presence or absence of homoeologue silencing in the cultivar Florida (Bottley et al, 2008) and the expression of the same genes in

callus tissue.

Genbank id Expressed Callus Homoeologue Tissue Homoeologues Homoeologue Putative function
silenced in CS identifiable in CS silenced in Florida

BE399113 Y D/D LEAF/ROOT BD B Unknown

BE444894 Y D/B LEAF/ROOT ABD saline responsive OSSRIII
protein

BF482273 Y D/B LEAF/ROOT BD Unknown

BF201235 N D LEAF ABD Rubisco subunit binding-
protein alpha subunit

BF473379 Y D LEAF BD D Unknown

BF478825 Y D LEAF ABD Unknown

BF484100 N D LEAF ABD B Unknown

BM138439 Y D ROOT ABD

BE443527 N B/B LEAF/ROOT ABD B Unknown

BE404371 Y B ROOT BD NADH glutamate
dehydrogenase

BE495400 N B ROOT ABD A Unknown

BE499478 Y B ROOT B+ B FAT domain-containing
protein/
phosphatidylinositol 3- and
4-kinase family protein

BF202681 Y B ROOT AB Unknown

BE426364 Y AJA LEAF/ROOT AD A glyceraldehyde-3-
phosphate dehydrogenase

BE591763 Y A LEAF ABD Unknown

BF202265 Y A LEAF A+ Unknown

BE500510 Y - - -

BE591372 Y - - -

BE638105 Y - - -

BM136908 Y - - -

The symbol '-' denotes that the homoeologous gene set is not afflicted by silencing. EST sequences blasted against NCBI Nucleotide collection

Page 2 of 4

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE399113
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE444894
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF482273
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF201235
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF473379
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF478825
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF484100
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BM138439
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE443527
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE404371
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE495400
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE499478
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF202681
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE426364
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE591763
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BF202265
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE500510
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE591372
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BE638105
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BM136908

BMC Genetics 2008, 9:65

Homoeologous gene silencing, as understood to date,
refers to events in genetically predictable and stable
organs/tissues [reviewed by [18]]. This form of silencing
has been successfully detected in cDNA populations gen-
erated from global RNA extracted from a range of complex
multi-cell type organ such as a leaf, root, pistil, and spikes
at the bolting stage [19,1,2,6]. In the disorganized callus,
chromosomal deletions, translocations, transposon
movement and epigenetic repatterning are enhanced [9-
12]. DNA methylation levels in in vitro callus cells are
proven to be highly variable [20] and in many instances
lower than that in organized tissues, even though this dif-
ference, at a global level, is relatively small [12,18,16].
Demethylation has been demonstrated to relieve homoe-
ologous silencing in polyploid Arabidopsis [8]. Therefore
if methylation is responsible for this form of silencing in
wheat, one plausible hypothesis is that the demethylation
induced in the callus cells occurred at a relatively early
stage of callus development, since otherwise the majority
of cells would still be affected by silencing, and thus the
detection of de-silencing would be compromised. In
tobacco (Nicotiana tabacum) callus, rDNA genes become
demethylated as early as 14 days after callus induction
and a low level of methylation is stably maintained
throughout prolonged culture [16].

Conclusion

The pattern of homoeologous silencing in distinct tissues
of wheat [6,1] or single cells of cotton [4] suggests the evo-
lution of sub-functionalization of the expression of each
homoeologue within a particular cell type or organ [4].
This form of silencing is typically highly specific, heritable
and in some instances is associated with a particular
developmental phase [2,1,3] suggesting a model in which
silencing is strictly controlled. Therefore we propose that
the absence of cellular control lifts the suppression of
homoeologous expression, and we further speculate that
the most likely mechanism of suppression is methylation.

Methods

Plant materials, RNA extraction and cDNA synthesis

The bread wheat cv. Florida was selected on the basis that
it readily generates callus tissue when cultured in vitro
(Perry, personal communication). Calli were generated in
replicate from four individual scutella obtained from
mature seed, as described by [21]. Calli were split after 21
days in culture, and harvested after 42 days growth. The
tissue was snap frozen in liquid N,, and total RNA was
extracted using Trizol™ reagent (Sigma), following the
manufacturer's instructions. Crude RNA preparations
were treated with DNAse (Amersham Bioscience) and
phenol/chloroform extracted [22]. The presence/absence
of contaminating genomic DNA was tested by amplifica-
tion with a number of well-characterized PCR primers,
and the quantity and quality of RNA were compared after

http://www.biomedcentral.com/1471-2156/9/65

agarose gel electrophoresis with a quantitative RNA stand-
ard (Ambion). cDNA was synthesised with Superscript II™
(Invitrogen), using oligo dT as the polyA primer and fol-
lowing the manufacturer's protocol. Newly synthesised
cDNA was again tested by amplifying with intron-span-
ning PCR primers, since this allows a distinction between
RNA-derived DNA and carry-through gDNA.

EST selection, primer design, PCR amplification and SSCP
analysis

Unigene ESTs mapping exclusively to a set of homoeolo-
gous genes located on one of wheat chromosome groups
1, 2, 3 or 7 were selected from among those examined by
[1] on the basis that they generated clearly defined SSCP
profiles and showed some silencing in either cv. Florida or
cv. Chinese Spring [3,1]. Primer sequences were as
described in [1]. The identity of the EST lodi is listed in
Table 1. cDNA was diluted 1:20, and 1 pl of this dilution
was used as template for a 10 pl PCR, together with 5 pl
Hotstar Master Mix™, 3.5 ul water and 0.25 pl of each
primer (10 mM concentration). The amplification pro-
gramme consisted of a 15 min/95°C Taq polymerase heat
activation, which also served to denature the template,
followed by 35 cycles of 95°C/30s, 59°C/5 s and 72°C/
60 s, and completed with a single extension step of 10 min
at 72°C. Amplicons were electrophoretically separated by
SSCP and visualised by silver staining, as described else-
where [1].

Pattern analysis

SSCP profiles generated from genomic DNA were com-
pared with those derived from the equivalent cDNA tem-
plate. Where all homoeologous copies identified in the
gDNA template were also present in the cDNA profile, this
was taken to imply full expression. Where, despite the
known presence of a gDNA locus, no matching cDNA was
detected, the relevant locus was scored as 'silenced'.
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