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Abstract

Background: This paper describes a likelihood approach to model the relation between failure
time and haplotypes in studies with unrelated individuals where haplotype phase is unknown, while
dealing with the problem of unstable estimates due to rare haplotypes by considering a penalized
log-likelihood.

Results: The Cox model presented here incorporates the uncertainty related to the unknown
phase of multiple heterozygous individuals as weights. Estimation is performed with an EM
algorithm. In the E-step the weights are estimated, and in the M-step the parameter estimates are
estimated by maximizing the expectation of the joint log-likelihood, and the baseline hazard
function and haplotype frequencies are calculated. These steps are iterated until the parameter
estimates converge. Two penalty functions are considered, namely the ridge penalty and a
difference penalty, which is based on the assumption that similar haplotypes show similar effects.

Simulations were conducted to investigate properties of the method, and the association between
IL10 haplotypes and risk of target vessel revascularization was investigated in 2653 patients from
the GENDER study.

Conclusion: Results from simulations and real data show that the penalized log-likelihood
approach produces valid results, indicating that this method is of interest when studying the
association between rare haplotypes and failure time in studies of unrelated individuals.

Background instance two SNPs with alleles A or a, and B or b. Individ-

In recent years there has been a great interest in associat-
ing haplotypes with complex disease phenotypes, and
many statistical models have been described. These mod-
els are complicated by individuals that are heterozygous
on two or more of these SNPs, because their haplotypes
cannot be determined with certainty. Consider for

uals that are heterozygous for both SNPs, have genotypes
Aa and Bb, and they inherited either haplotype AB from
one parent and ab from the other, or they inherited hap-
lotypes Ab and aB. Hence, it is unknown whether these
individuals have haplotype pair AB/ab or haplotype pair
Ab/aB. This uncertainty complicates statistical inference
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and if the number of biallelic single nucleotide polymor-
phisms (SNPs) is large, or when allele frequencies of the
SNPs are close to 50%, many individuals will be multiple
heterozygous.

Most of the current methods focus on continuous or
dichotomous outcome data [1-9], while only few can be
applied in cohort studies [10,11]. Another concern is
related to the presence of rare haplotypes, which is a very
common problem in genetic association studies. In the
present paper we adopt the suggestion of Tanck et al. [12]
to use a weighted penalized likelihood method to esti-
mate the association between a phenotype and the set of
haplotypes, which may include rare haplotypes. We con-
sider a model for the relation between a failure time T
measured in N unrelated individuals and the haplotypes
of these individuals formed by m SNPs measured in a sin-
gle gene. Previously, Lin [10] has described a similar
method for haplotype analysis in cohort studies, but this
method did not include a penalty function for dealing
with the unstable estimates of rare haplotypes.

In the sequel we will first describe the kind of data that we
analyze, then we will described our statistical model, and
the algorithm to estimate the parameters of our model.
We will use simulated data to illustrate some characteris-
tics of the estimators, and finally we will analyze real data
from the GENDER study on cardiovascular disease [13].

Results

Algorithm

Data and model

We consider a sample of i = 1,..., N unrelated individuals
with failure- or censored-time t;. The indicator d; is used to
indicate whether t; is an event-time (d; = 1), or a censored-
time (d; = 0). Let g; be a vector of m biallelic SNPs meas-
ured in individual i. With m biallelic SNPs there arej=1,..,
Nhap = 2m different haplotypes possible with population

frequencies py,.... Pj-- Prnap:

Suppose all haplotypes were observed in all patients, then
these could be represented with the vector x; of length
Nhap, where x; equals 0, 1, or 2, depending on the
number of haplotypes of type j observed in patient i.
(Notice that 2x;;= 2, meaning that only Nhap - 1 contrasts
are identifiable.) The conditional hazard function for fail-
ure at ¢; given x; can then be specified as

In(h(t]x)) = In(ho()) + B, (1)
where hy(t) is an unspecified baseline hazard function,

and fa vector of regression parameters. The survival func-
tion S(t;]x;) equals
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S(t; | x;) = o~ Ho(t)e™™ ) (2)

where H(t) is the unspecified baseline cumulative hazard
function.

In our case, haplotypes were not observed in all patients,
and therefore we model the survival function conditional
on the observed genotypes as a weighted mixture over all
z; possible haplotype pairs given genotypes g;:

S(t; 1 81) = Zw,q ot %) (3)

where S, (t;]x;,) is the survival function specified as in
equation (2), and x;, is the g haplotype pair that is possi-
ble given genotypes g; and w;, is the probability that indi-
vidual i has haplotype pair g given genotypes g;: w;, = Pr(X;
= xiq|gi)-

In most circumstances the population haplotype frequen-
cies py,..., Pnnap are unknown, and must be estimated from
the data at hand. But suppose these are known, then
under the assumption of Hardy-Weinberg equilibrium
the probability that an individual is carrying haplotype
pair g = (h, r) is calculated as ph * pr (h, r = 1,..., Nhap).
Consequently, when observing genotype vector g; the
probability that individual i has haplotype pair g = (h, 1)
equals:

Phprdhri
Wig = Nha Nha (4)
Xp= P 2o P PhPrdnri
where the summation takes place over all haplotype pairs
that are compatible with genotypes g;and d,,;is an indica-
tor function, which = 1 when the haplotype pair (k, r) is
compatible with g;and 0 otherwise.

Given the weights w;, the full likelihood of the data given
the model in equation (3) equals

ﬂ;Z]Wiqsq(Li | xiﬂ)(ho(ti)eb/"r«r )d‘,
(5)

and the regression parameters S, and the baseline cumu-
lative hazard function H,(t) may be estimated by maxi-
mizing (5). If Hy(f) is a parametric function,
maximization of (5) is uncomplicated. If Hy(t) is a non-
parametric function, we follow a similar argument as Bres-
low [14]. If events occurred at times 7;,..., ..., 7, we shift
all censored observations in the interval [z, 7) to 7,
and assume (piecewise) constant hazard in the intervals.
In that case the logarithm of the likelihood (5) reduces to

L HS(“ ( ~In(s(t; |g1))J
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InLBresow _ 2171(1 )+Zl” Zwm] - “Z Li(tj—t)I(t;>t)) db'xw
q=1
(6)

where 4; is the jump in the cumulative baseline hazard
functlon at time 7, and I(7;> 7) is an indicator function.

Estimation equations for Hy(t) and S can be derived by
equating to zero the first-order derivatives of the log-like-
lihood in (6). For 4; we find

1
1. =
] R R ’o. ’
(tj1-£)I ( 1(t>€))S 0Ly Wigrie® *id )
(7)
and for g€ (€ = 1,..., Nhap):
Nz
z wlqt X;ql di—e 'qzl (t]+1 t; )I(t >t)
i=1 g=1
(8)
where
dib'x;
. wigSq(tilxig)e 1™ *1q
iy, = — )

zj dib'xjg
Tt wigSq(tilxigle™ Xiq
Notice that if z; = 1 for all i, thus when all haplotypes were

observed, then w;;, =1, and equation (7) reduces to the

usual Breslow estimator of H(t), and equation (8) to the

usual Cox estimator of S.

Unfortunately, the weights w;, depend on both H,(¢)

iqt;
and g.

Estimation algorithm
Since in practice the population haplotype frequencies p
must be estimated together with fand H,,(t), and because

w,q, depends on Hy(t) and £ direct maximization of (5)
or (6) is complicated. Instead we propose to use an EM
algorithm. For that we consider the covariate vector x; as
missing, and we maximize the expectation of the joint log-
likelihood of L((t;, d;), x;|g;) over the posterior probabili-
ties of x; given the observed genotypes g; and given the
observed failure/censoring times (¢, d;) and given current

estimates of the parameters 8 Hy(t), and w;;:
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N
D HlInL(d), x| g B, Ho(0), wi)] =
i=1

Nz ’
D0 i [ inlhg(e) + dibx ~ Hoft)e™™ + Infuy) |
i=1 g=1
(10)
where w;,,  is the posterior probability that X; = x;, given

((t d), 8 A9, Ho(D@, i)

a),..
i@y o) @ Pig ol
P(X; = x| 810 (t5,d3), B, Ho() @, p(®)) =

5@y, o (@b )xlr (a)

(11)

i
e

and

R

i ZNhap 2Nhap (a) pga) dy,

(12)

The EM algorithm consists then of iterating two steps. In
the M-step of iteration a + 1, (5 Hy(t), wi; = pjp/2p,p,) are

estimated by maximizing (10) given w,,, evaluated using

(f@, Hy(t)@, wl(;)), and in the E-step, w,, is re-esti-

iqt;

mated given using (11) with (Ba+1), Hy(t)(+D), w,(;“) ).

Estimation equations of fand H,(t) are the same as in (8)

and (7), but w replaced with w, and these are solved iter-
atively. The haplotype relative frequencies p; are estimated
as

p(a+1) (13)

Nz
o 2 D G

i=1 g=1

where I(j, g) is an indicator-function denoting whether
haplotype j is part of haplotype-combination ¢. Standard
errors of S can be derived from the information-matrix of
the log-likelihood in equation (6):

B azlnLBreslow n

Zl
~ bx;
= sziqaxiqbwiqtil{o(ti)e '

ob,0by perin
n_ Zi . p by, 2
XigaXigpWiqe, (d; —Ho(t)e™ )" +
i=1 q=1

z(z Wiae Xigaldi = Holt )ebx”))(zwuﬂ Xigo(d; = Ho(t;)e™ ™))

i=1 g=1

(14)
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Since we are mainly interested in the uncertainty of 5 we
only used that part of the hessian that pertains to f. Notice
that the first term of (14) equals the hessian-matrix that is
used in the M-step of the EM algorithm.

Penalized log-likelihood

Mutations in general tend to be rare, and so are the haplo-
types in which they are encompassed. Furthermore, when
ten loci are considered there are 210 = 1024 different hap-
lotypes possible, many of which will have low frequency
in samples up to thousands of individuals. If haplotypes
have low frequency their associated hazard ratio estimate
will be unstable. We used a penalized log-likelihood
method to obtain more stable parameter estimates. Basi-
cally, we optimized the penalized log-likelihood €7,

defined as ¢? = InLBrelow — %Pen(b) , where Pen(f3) is the

penalty function.

As penalty functions we considered the well-known ridge-

penalty function (Pen(b)=2a b?), and a difference-

penalty function (Pen(f) = 2, 2a.4(8,- 5,)* (a > b)), where
a, is a fixed and known value representing the similarity

of haplotypes a and b. We quantified the similarity
between haplotypes (a,) by counting the number of

shared alleles which - with m loci — varies between zero
and m - 1.

The penalty parameter 4 was found by optimizing the
cross-validated log-likelihood (CVL) as described by Ver-
weij and van Houwelingen [15]: CVL(A) = InLBreslow( g) -
c(A), where InLBreslow(52) is the log-likelihood evaluated
with the penalized log-likelihood estimate #*. The factor
¢(A) is an approximation of the effective dimension of the
model, which in our case depends on the log hazard ratios
S, the baseline hazard function Hy(t), and the haplotype
frequencies p. For convenience sake, we approximated the
effective dimension in the same manner as Verweij and
van Houwelingen [15] as

o(2) = trace| [HA(BM)]™ D Ui(b)U;(BY)"

(15)

where U;(/) is the contribution of individual i to the first-
order derivative of the unpenalized log-likelihood, and H*
(P4 is the matrix of second-order derivatives of the penal-
ized log-likelihood evaluated at $*, H,(t), and p. Notice
that the last term of (15) is equal to the third term of (14).
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Although the penalized likelihood estimates of g are
somewhat biased, and it is therefore somewhat unclear
how to interpret standard errors, we nevertheless assessed
the stability of the penalized estimates by a parametric
bootstrap procedure. We took 200 bootstrap samples,
estimated A4 in each sample by optimizing CVL, and
derived standard errors from the distribution of the asso-
ciated penalized estimates of £, p, and H,(t). The number
of bootstrap samples used was based on results from sim-
ulations, in which the number of bootstrap samples var-
ied from 10 to 1000. These data showed that SE estimates
were relatively stable after 100 to 200 bootstrap samples.

The EM algorithm presented in this paper was pro-
grammed in MATLAB® R 7.0 (The MathWorks, Natick,
MA, USA) as well as in a set of R-functions and is freely
available upon request from the corresponding author.

Testing

To illustrate some characteristics of our approach, simula-
tions were carried out. In each replicate, a data set of 200
(simulation 1 and 2) or 2000 (simulation 3) individuals
was created in whom 3 loci were measured. We simulated
the 8 haplotypes (x;,..., xg) to have frequencies of: p,,, =
0.62, Poo; = 0.05, P10 = 0.02, P11 = 0.005, pyg0=0.02, P10,
=0.003, p;10=0.002 and p;;; = 0.28. Given the haplotypes
drawn for a specific individual i, the survival time S was
drawn from the exponential distribution with log(inten-
sity) equal to 2;Bx;. A censoring time C was independ-
ently drawn from an independent log-normal
distribution such that in about 25% of all individuals C
<S, in which case the survival time was censored at C. In
each replicate, the haplotype effects were estimated using
three models: 1) unpenalized (similar to [10] and [11]),
2) ridge penalized and 3) difference penalized. The statis-
tical properties were evaluated using three different meas-
ures, namely the mean bias of the parameter estimates,
the mean SE and the coverage probability, which is
defined as the probability that the 95% confidence inter-
val of the parameter estimate contains the true theoretical
value of the parameter estimate.

Furthermore, for each haplotype the percentage of repli-
cates which identified the haplotype as being significantly
associated with the outcome (i.e., power or Type I error
rate) was calculated. The significance level used to calcu-
late the power and the Type I error rate was set to = 0.05.
In addition, the effect of omitting rare haplotypes (011,
101 and 110) or fixing their effect to the close haplotype
111 on the effect estimates was investigated in the unpe-
nalized models only. For simulation 1 and 2, 500 repli-
cates were carried out, whereas 100 replicates were carried
out in simulation 3.
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In the first simulation, replicates contained 200 individu-
als and the haplotypes with a rare allele at locus 2 (010,
011, 110 and 111) were simulated to have a relative risk
of 2 compared to the most frequent haplotype 000, corre-
sponding with a regression parameter of = 0.69. This
simulation mimics a setting in which the observed effects
are due to a single SNP. The observed genotype counts of
a random replicate are given in Table 1. In total, 75
(37.5%) individuals were heterozygous on multiple loci
of which 63 were heterozygous at all three loci. In 80% of
the replicates, all eight haplotypes were present. The mean
bias, mean SE, coverage probability and percentage esti-
mates with a p < 0.05 for this simulation based on the
80% 'complete’ replicates are shown in Table 2. For the
less frequent haplotypes (011, 110 and 101), the intro-
duction of the ridge or difference penalty leads to a sub-
stantial reduction in the mean SE as compared to the non-
penalized model. On the other hand, the mean SE of the
more frequent haplotypes increases somewhat in the
penalized models. The effect on the power to detect the
effects of the haplotypes 010, 011, 110 and 111 as well as
on the type I error probabilities of the haplotypes 001,
100 and 101 is less univocal. In the second simulation,
replicates also contained 200 individuals and the haplo-
types 001 and 101 were simulated to have a relative risk
of 3 (f=1.10) compared to the reference haplotype 000.
This simulation mimics a setting in which a particular
allele combination on loci 2 and 3 (i.e. x01) is related to
an increased risk. In 85% of the replicates, all eight haplo-
types were available. The mean bias, mean SE, coverage
probability and percentage estimates with a p < 0.05 for
this simulation based on the 85% 'complete’ replicates are
shown in Table 3. Similar to simulation 1, inclusion of a
penalty leads to a large reduction in mean SE of the less
frequent haplotypes. The effect of haplotype 101 is esti-
mated more precisely, but the power to find a significant
effect for this haplotype is reduced from 25% in the non-
penalized model to a value similar to the type I error prob-
ability of the haplotypes without an effect in both penal-

http://www.biomedcentral.com/1471-2156/9/9

ized models. The effect of introducing a penalty on the
mean bias, mean SE and power to detect an significant
effect of the more frequent haplotype 001 are only minor.

For both simulations, removal of the rare haplotypes 011,
110 and 101 from the model leads to a small reduction in
the bias of the remaining haplotypes (e.g. from 0.048 to
0.038 and from 0.019 to 0.005 for haplotypes 010 and
111, respectively). Depending on the modeled effects of
the omitted haplotypes, the bias in the estimate of haplo-
type 111 decreases (simulation 1: from 0.019 to 0.006) or
increases (simulation 2: from 0.005 to 0.011) a little.

In a third simulation, replicates contained 2000 individu-
als and the haplotypes 001 and 101 were simulated to
have a relative risk of 3 (£ = 1.10) compared to the refer-
ence haplotype 000. This simulation mimics a setting sim-
ilar to simulation 2, but due to the larger number of
individuals, all 8 haplotypes will be present in all individ-
ual replicates. The mean bias, mean SE, coverage probabil-
ity and percentage estimates with a p < 0.05 for this
simulation are shown in Table 4.

Implementation

In the GENDER study [13] 3146 patients with cardiovas-
cular disease who were treated with percutaneous translu-
minal coronary angioplasty (PTCA) with or without stents
were followed for at least twelve months for the occur-
rence of clinical restenosis and revascularization of the
vessel which was originally treated with PTCA. Inflamma-
tory processes are involved in such target vessel revascular-
ization (TVR), and the level of inflammatory response is
controlled by several genes, among which possibly the
IL10 gene. We determined in 2653 patients the variants of
four SNPs in this gene (IL10 -592G > T, IL10 -2849G > A,
IL10 -1082G > A, and IL10 4251A > G), and evaluated
their association with TVR risk. Overall, there were 252
TVR, and TVR risk was 9% at nine months, and 10.5% at
twelve months. Rare allele frequencies were 28%, 49%,

Table I: Numbers of individuals with the various genotypes on three loci in a simulation of 200 individuals

Locus 3
Locus | Locus 2 wild type? heterozygote homozygote
wild type wild type 83 13 |
heterozygote 6 2 0
homozygote 0 0 0
heterozygote wild type 6 0 0
heterozygote 0 63 3
homozygote 0 4 2
homozygote wild type 0 0 0
heterozygote 0 3 |
homozygote 0 0 13
a) wild type = homozygous for the most frequent allele
Page 5 of 10
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Table 2: Realized /7, mean bias, mean standard error (SE), coverage probability and percentage of the effects that had a p-value < 0.05
in the simulation where haplotypes with a rare allele at locus 2 had a modeled parameter estimate of 0.69. Each replicate contained

200 individuals

No penalty

Haplotype Frequency Realized® Mean bias Mean SE Coverage P < 0.05b
010 0.020 0.741 0014 0.44 0.95 0.43
oll 0.005 0.593 -0.663 2971.81 0.95 0.21
110 0.002 0.000 -0.971 14514.13 0.96 0.10
Il 0.280 0.713 0.018 0.09 0.79 1.00
001 0.050 0.012 0.050 0.28 0.91 0.09
100 0.020 0.038 0.010 33.23 0.95 0.05
101 0.003 0.000 2212 767481 0.90 0.10

Ridge penalty

Haplotype Frequency Realized® Mean bias Mean SE Coverage P < 0.05b
010 0.020 0.741 -0.135 0.73 0.85 0.18
oll 0.005 0.593 -0.359 1.91 0.74 0.03
110 0.002 0.000 -0.557 1.00 0.39 0.19
11 0.280 0.713 -0.010 0.1 0.83 1.00
001 0.050 0.012 0.037 0.24 0.87 0.13
100 0.020 0.038 0.070 1.08 1.00 0.00
101 0.003 0.000 -0.649 2.16 0.89 0.11

Difference penalty

Haplotype Frequency Realized® Mean bias Mean SE Coverage P < 0.05b
010 0.020 0.741 -0.008 0.62 0.98 0.35
oll 0.005 0.593 -0.132 1.39 1.00 0.03
110 0.002 0.000 -0.272 1.00 1.00 0.15
Il 0.280 0.713 0.008 0.12 0.89 1.00
001 0.050 0.012 0.122 0.24 0.79 0.21
100 0.020 0.038 0.131 0.88 0.93 0.07
101 0.003 0.000 -0.301 1.68 0.91 0.09

a) "Realized" denotes to the median estimate from the simulated data, where the haplotypes were known, and could be used in the Cox model
directly; b) For haplotypes 010, 011, 110 and I 11 these percentages reflect power, whereas the percentages for the other three haplotypes reflect

type | error probabilities.

27%, and 24%, of the four SNPs, respectively. All four
markers were in linkage disequilibrium (P < 0.001), and
Hardy-Weinberg equilibrium was not rejected for any of
the markers (P > 0.0125; significance level (Bonferroni)
corrected for multiple testing).

Univariately, in a Cox model assuming co-dominant
effects, IL10 -2849G > A, IL10 -1082G > A, and IL10
4251A > G were significantly associated with TVR risk
with hazard ratios (HR) 1.21 (95% CI: 1.00-1.46), 1.20
(1.01-1.42), 1.20 (0.99-1.45), respectively. HR of IL10 -
592C > A was 0.87 (0.70-1.07). In a Cox model with all
SNPs, and all two-way interactions, we found significant
interactions between SNPs IL10 -2849G > A, and IL10 -
1082G > A (P = 0.003), and IL10 -1082G > A, and IL10
4251A > G (P = 0.001). Higher-order interactions were
not significant. The prognostic index of this model (Xf)
varied between -2.6 and +1.6, and had 23 different values

corresponding to the 23 different genotype combinations
that were observed.

With 4 biallelic SNPs, 16 different haplotypes are possi-
ble, but seven had zero frequency in the current sample.
Of the remaining nine haplotypes, there were four major
haplotypes with substantial frequencies 27% (0000),
24% (0001), 21% (0100), and 27% (1110), while the rel-
ative frequencies of the remaining five haplotypes varied
between 0.46% and 0.02%. The estimated haplotype fre-
quencies and log hazard ratios at the optimal CVL (ridge
penalty) are given in Figure 1. The hazard ratios of the four
major haplotypes were not different from each other, but
of the five rare haplotypes two had decreased (0010, and
0101), and three had increased (0110, 1000, and 1100)
hazard ratios, although all had very wide confidence inter-
vals, and none were statistically significantly associated
with TVR risk.
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Table 3: Realized /7, mean bias, mean standard error (SE), coverage probability and percentage of the effects that had a p-value < 0.05
in the simulation where haplotypes 001 and 101 had a modeled parameter estimate of 1.10. Each replicate contained 200 individuals.

No penalty

Haplotype Frequency Realized? Mean bias Mean SE Coverage P < 0.05b
001 0.050 I.151 0.067 0.25 0.90 0.98
101 0.003 0.817 -0.868 8132.96 0.97 0.25
010 0.020 0.031 0.079 0.48 0.90 0.10
oll 0.005 0.000 -1.363 3514.27 0.92 0.08
100 0.020 0.025 0.026 0.49 0.94 0.06
110 0.002 0.000 -1.082 13327.13 0.95 0.05
11 0.280 0.005 0.012 0.10 0.80 0.20

Ridge penalty

Haplotype Frequency Realized® Mean bias Mean SE Coverage P < 0.05b
00l 0.050 I.151 -0.012 0.24 0.84 0.99
101 0.003 0.817 -0.568 1.77 0.57 0.08
010 0.020 0.031 0.057 1.56 1.00 0.00
01l 0.005 0.000 -0.322 291 0.98 0.02
100 0.020 0.025 0.022 1.65 1.00 0.00
110 0.002 0.000 -0.338 1.85 0.86 0.14
11 0.280 0.005 0.005 0.11 0.84 0.16

Difference penalty

Haplotype Frequency Realized® Mean bias Mean SE Coverage P < 0.05b
001 0.050 1.151 0.003 0.25 0.88 0.98
101 0.003 0.817 -0.394 1.67 0.87 0.01
ol1o0 0.020 0.031 0.111 1.43 1.00 0.00
oll 0.005 0.000 -0.049 2.48 0.99 0.01
100 0.020 0.025 0.078 1.53 1.00 0.00
110 0.002 0.000 -0.139 2.08 1.00 0.00
(NN 0.280 0.005 0.019 0.12 0.86 0.14

a) "Realized" denotes to the median estimate from the simulated data, where the haplotypes were known, and could be used in the Cox model
directly; b) For haplotypes 001 and 101 these percentages reflect power, whereas the percentages for the other five haplotypes reflect type | error

probabilities.

To validate our model we calculated the survival curves of
all 23 subgroups with different genotype combinations
according to equation (3) and compared these with the
Kaplan-Meier curves. These curves are given in Figure 2 for
the subgroup of 233 patients who were homozygous for
the most common allele of IL10 -2849G > A and IL10
4251A > G, and heterozygous for IL10 -1082G > A and
IL10 -592C > A (Figure 2). These two curves are compara-
ble, indicating that our haplotype method produces valid
results.

Discussion

In the present study we present a method to model the
relation between failure time and (rare) haplotypes in
unrelated individuals. The simulations presented in this
study show that haplotype effects of especially the rare
haplotypes are closer to the true estimates when a penalty
is introduced into the model.

Furthermore, the simulations show that the penalized log-
likelihood approach that is used to deal with the unstable
estimates of rare haplotypes can indeed shrink the esti-
mates and their 95% confidence intervals to 'acceptable’
values. Simulations also show that the cross-validated
standard errors of the more common haplotypes can be
increased compared to their unpenalized standard errors
due to uncertainty with respect to the penalty parameter A.
The power to detect a true haplotype effect is, in general,
reduced in the penalized models compared to the non-
penalized model, the reduction being more pronounced
for the less frequent haplotypes. This reduced power is
due to the shrinkage of the estimates. With respect to the
type 1 error probabilities, the effect of introducing a pen-
alty depends on the penalty applied and the true haplo-
type effects. For the ridge penalized models, the type I
error probabilities are similar to those observed in the
non-penalized models. The non-penalized estimates of
the haplotypes without a modeled effect are already close
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Table 4: Realized /7, mean bias, mean standard error (SE), coverage probability and percentage of the effects that had a p-value < 0.05
in the simulation where haplotypes 001 and 101 had a modeled parameter estimate of 1.10. Each replicate contained 2000 individuals.

No penalty

Haplotype Frequency Realized? Mean bias Mean SE Coverage P < 0.05b
001 0.050 1.094 -0.005 0.08 0.93 1.00
101 0.003 I.155 -0.037 0.38 0.93 0.77
010 0.020 0.016 -0.007 0.14 0.98 0.02
oll 0.005 0.023 0.036 0.30 0.98 0.02
100 0.020 0.006 0.015 0.14 1.00 0.00
110 0.002 0.084 0.075 1.14 0.95 0.05
11 0.280 -0.007 -0.007 0.03 0.82 0.18

Ridge penalty

Haplotype Frequency Realized® Mean bias Mean SE Coverage P < 0.05b
001 0.050 1.094 -0.009 0.07 0.91 1.00
101 0.003 I.155 -0.085 0.61 0.91 0.62
010 0.020 0.016 -0.007 0.013 0.96 0.04
01l 0.005 0.023 0.046 0.23 0.96 0.04
100 0.020 0.006 0.014 0.12 0.98 0.02
110 0.002 0.084 0.067 0.40 0.66 0.34
11 0.280 -0.007 -0.008 0.03 0.8l 0.19

Difference penalty

Haplotype Frequency Realized® Mean bias Mean SE Coverage P < 0.05b
001 0.050 1.094 -0.011 0.07 0.88 1.00
101 0.003 I.155 -0.066 0.54 0.88 0.71
ol1o0 0.020 0.016 0.004 0.12 0.96 0.04
oll 0.005 0.023 0.071 0.22 0.90 0.10
100 0.020 0.006 0.017 0.12 0.98 0.02
110 0.002 0.084 0.069 0.37 0.57 0.43
(NN 0.280 -0.007 -0.009 0.03 0.82 0.18

a) "Realized" denotes to the median estimate from the simulated data, where the haplotypes were known, and could be used in the Cox model
directly; b) For haplotypes 001 and 101 these percentages reflect power, whereas the percentages for the other five haplotypes reflect type | error

probabilities.

to the true value of zero and the nature of the ridge pen-
alty further shrinks the effects towards zero. For the differ-
ence penalty, the type I error probability appears to be
increased for some haplotypes. This deviation is related to
the extent that the assumption (similar haplotypes, simi-
lar effects) is met. In the first simulation (Table 2), the
mean bias of haplotypes 001 and 100 are increased in the
direction of a #> 0. In this scenario, haplotypes 010, 011,
110 and 111 all had a modeled effect and the difference
penalty results in estimates for the haplotypes 001 and
100 towards the effects of these haplotypes. In the second
simulation, the majority of the haplotypes had no mod-
eled effect and the effects of the rare haplotypes could be
directed towards £ = 0. In replicates containing 2000 indi-
viduals (Table 4), the reduction in SE is still present, but
the gain is relatively small compared to simulation with
only 200 individuals per replicate. This is conform expec-
tations, since rare haplotypes are 'less rare' in larger sam-
ples, thus enabling a more precise estimation of their
effect even without a penalty. Based on the characteristics

of the models displayed in the simulations and the real
data, the penalized log-likelihood method mostly serves
the purpose of estimating the effects of rare haplotypes
more accurate.

The method described in this paper is a flexible method
allowing for adjustment for (environmental) covariates as
well as haplotype-environment interactions. Although we
focus on haplotypes consisting of a certain number of
biallelic SNPs, the method is also capable to handle loci
with more than two alleles. Furthermore, the method can
be easily extended to deal with missing genotype data,
since this will simply increase the number of possible hap-
lotype pairs that are compatible with the observed geno-
type. The wig in our method are calculated under the
assumption of Hardy-Weinberg. Although we did not
check robustness of the method to violations of this
assumption, Lin [10] has shown that his method, which
is similar to our unpenalized method, is robust to viola-
tions of the Hardy-Weinberg assumption.
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As an alternative estimation method we considered the
partial likelihood. Unfortunately, estimation of £ and
H,/(t) are not separated, and therefore there is no reason to
prefer this partial likelihood approach over the EM algo-
rithm outlined in the present manuscript. Compared to
the method described by Tregouet et al [11], the present
EM method assumes piecewise constant hazard, which
seems less restrictive than the assumption behind the their
method using partial likelihood.

We use a penalty function to increase precision of esti-
mates of rare haplotypes. Other strategies for managing
unstable estimates of rare haplotypes include excluding
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Estimated IL10 survival curves based on genotypes and based
on haplotypes.
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the rare haplotypes from the variable list, pooling the rare
haplotypes into one category, or pooling the rare haplo-
types with common haplotypes that are very similar. The
first approach implicitly groups the rare haplotypes with
the reference category and the second and third approach
lead to pooled categories that are sometimes hard to inter-
pret. Nevertheless, these last two methods seem to
increase power [16]. However, the three strategies men-
tioned above do not result in (individual) effect estimates
of rare haplotypes, whereas the penalized models do.

Conclusion

The method presented in this paper can be applied to esti-
mate haplotype effects in cohort studies when haplotype
phase is unknown. The joint estimation of haplotype
effects and haplotype frequencies together with the pen-
alty function provides a good way of estimating effects of
rare haplotypes, which is a common problem in these
studies.

Abbreviations

SNP(s): single nucleotide polymorphism(s); SE: standard
error; PTCA: percutaneous transluminal coronary angi-
oplasty; TVR: target vessel revascularization; IL10: inter-
leukin 10.
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