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Abstract

Background: Meiotic recombination, one of the central biological processes studied in population genetics, comes
in two known forms: crossovers and gene conversions. A number of previous studies have shown that when one of
these two events is nonexistent in the genealogical model, the point estimation of the corresponding recombination
rate by population genetic methods tends to be inflated. Therefore, it has become necessary to obtain statistical
evidence from population genetic data about whether one of the two recombination events is absent.

Results: In this paper, we formulate this problem in a hypothesis testing framework and devise a testing procedure
based on the likelihood ratio test (LRT). However, because the null value (i.e., zero) lies on the boundary of the
parameter space, the regularity conditions for the large-sample approximation to the distribution of the LRT statistic
do not apply. In turn, the standard chi-squared approximation is inaccurate. To address this critical issue, we propose
a parametric bootstrap procedure to obtain an approximate p-value for the observed test statistic. Coalescent
simulations are conducted to show that our approach yields accurate null p-values that closely follow the theoretical
prediction while the estimated alternative p-values tend to concentrate closer to zero. Finally, the method is
demonstrated on a real biological data set from the telomere of the X chromosome of African Drosophilamelanogaster.

Conclusions: Our methodology provides a necessary complement to the existing procedures of estimating meiotic
recombination rates from population genetic data.
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Background
Meiotic recombination is one of the essential evolution-
ary factors responsible for promoting genetic diversity
within species. There are two major types of meiotic
recombination events: crossovers and gene conversions.
Unlike crossover, which is a reciprocal event, gene con-
version is a unidirectional event that involves the trans-
fer of a short segment of one parental chromosome
(called a ‘conversion tract’) to the other parental chro-
mosome. Crossovers and gene conversions play different
roles in shaping the pattern of linkage disequilibrium
(LD) observed in natural populations: “Recombination
between pairs of markers that are far apart are almost
exclusively crossovers, whereas pairs of markers that
are close together are affected by both crossovers and
gene conversion events” [1]. Thus, studying these two
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biological processes and characterizing their basic param-
eters has direct implications for population genetic
studies.
There is a growing body of work on coalescent-based

statistical approaches to jointly estimating the crossover
rate, the gene conversion rate, and the mean conversion
tract length from population genetic data. Building on a
popular framework called the “Product of Approximate
Conditionals” (PAC) model [2], Gay et al. [3] have pro-
posed a likelihood-basedmethod to incorporate gene con-
version events. Yin et al. [4] have extended and improved
the model further by explicitly modeling overlapping
gene conversion events. On the flip side of these two
frequentist approaches, Bayesian Markov chain Monte
Carlo (MCMC) techniques have also been developed to
estimate recombination rates from population genetic
data [5,6].
Despite the marked progress in the joint estimation of

the aforementioned three parameters, these methods are
less suitable when one of the two recombination events
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is absent in the genealogical model. The corresponding
population parameter, especially the gene conversion rate
when the gene conversion event is nonexistent, tends to
be overestimated by the maximum likelihood (or maxi-
mum a posteriori) point estimation. This is unfortunately
inevitable because the true parameter value (i.e., zero)
lies on the boundary of the parameter space. The use
of inaccurate parameters may limit the efficacy of these
approaches, and can also hinder population genetic anal-
yses based on these estimators. Therefore, it has become
necessary to obtain statistical evidence from population
genetic data about whether one of the two recombination
events is absent.
The goal of this article is to propose a rigorous pro-

cedure to perform hypothesis testing for this problem.
Our approach is based on the likelihood ratio test (LRT).
One of the classical regularity conditions for the asymp-
totic distribution of the LRT statistic requires the null
value to be an interior point in the parameter space. How-
ever, because this condition is not satisfied, it is invalid
to apply the standard chi-squared approximation in this
setting. We thus develop a parametric bootstrap proce-
dure to obtain an approximate p-value of the observed
test statistic. Coalescent-based simulations are conducted
to demonstrate the soundness and effectiveness of our
approach. The bootstrap estimates of the null p-values
closely follow the theoretical prediction, while the esti-
mated alternative p-values tend to concentrate closer to
zero. Finally, we apply the method to a real biological data
set from the telomere of the X chromosome of African D.
melanogaster. The result suggests that while gene conver-
sion is likely to play a leading role in shaping the observed
polymorphism in these regions, crossover may not have
been greatly suppressed in a short segment of su(wa)
locus.

Methods
We begin by reviewing some previous statistical models
used for point estimation of recombination parameters
from population genetic data. In developing our hypoth-
esis testing procedure based on the likelihood ratio test
(LRT), we adopt the likelihood function of the OVER-
PAINT model that offers greater flexibility by allowing
for overlapping gene conversions [4,7]. Throughout this
paper, ρ and γ are used to refer to the population-scaled
crossover and gene conversion rates (per kb), respectively.
The mean length of gene conversion tracts (kb) is denoted
by λ.

The PACmodel and the GenComodel
In principle, given a set of n haplotypes H = {h1, . . . , hn}
sampled from a natural population, the estimation of ρ, γ
and λ can be obtained by maximizing the likelihood func-
tion �(ρ, γ , λ) := P(H | ρ, γ , λ). However, unless we

can examine the true genealogical history of sampled
sequences in the population [8], which is rarely available
in a population genetic study, we are unable to compute
the exact likelihood function in most models of interest.
To be precise,

�(ρ, γ , λ) :=P(H |ρ, γ , λ) =
∫

P(H | G)P(G | ρ, γ , λ) dG,

where the integral is over all possible genealogies G and
P(G | ρ, γ , λ) is modeled by the coalescent process with
crossovers and gene conversions [9,10]. The above like-
lihood computation is notoriously difficult because the
number of genealogies G consistent with the sampled
haplotypes H , where the consistency is determined by
P(H | G), grows extremely fast as the length of sampled
haplotypes increases [11]. Several approximate-likelihood
approaches have therefore been developed to approximate
the likelihood surface. The ‘Product of Approximate Con-
ditionals’ (PAC) model, first proposed in [2], makes use
of the fact that the joint likelihood of the sampled hap-
lotypes can be decomposed into a product of conditional
probabilities:

�(ρ, γ , λ) := P(h1, . . . , hn | ρ, γ , λ) = P(h1 | ρ, γ , λ)

× P(h2 | h1, ρ, γ , λ) × · · ·
× P(hn | h1, . . . , hn−1, ρ, γ , λ).

However, the exact conditional probabilities P(hk+1 |
h1, . . . , hk , ρ, γ , λ) are largely unknown for the coalescent
models with recombination. Using efficiently computable
approximations π̂ to substitute for the exact conditional
probabilities P, the following approximation to the joint
likelihood has been suggested in [2]:

�(ρ, γ , λ) ≈ �PAC(ρ, γ , λ) = π̂(h1 | ρ, γ , λ)

× π̂(h2 | h1, ρ, γ , λ) × · · ·
× π̂(hn | h1, . . . , hn−1, ρ, γ , λ).

Instead of maximizing the true but intractable likeli-
hood function �, the idea of the PAC model is to use
the approximate likelihood �PAC as a surrogate function
to estimate recombination parameters from the sam-
pled haplotypes. The original PAC model [2] has only
considered the estimation of the crossover rate ρ, in
which case �PAC becomes a one dimensional function.
Gay et al. [3] have extended the model by incorpo-
rating gene conversion events, and their model GenCo
can be used to jointly estimate the crossover rate ρ,
the gene conversion rate γ , and the mean conversion
tract λ.
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The choice of the approximate conditional probabilities
π̂(hk+1 | h1, . . . , hk , ρ, γ , λ) in the GenCo model assumes
that hk+1 is an imperfect mosaic copy of h1, . . . , hk . In
particular, hk+1 is considered to consist of a mixture of
segments from h1, . . . , hk with a small number of muta-
tions, and its mosaic structure is the result of a joint effort
by the crossover and gene conversion events. To cap-
ture this imperfect copying process, Gay et al. [3] have
designed a factorial hiddenMarkovmodel (HMM) [12,13]
with two independent hidden chains. The crossover chain
is modeled as a Poisson process with rate ρ along the
sequence; for the gene conversion chain, both initiation
and termination of a conversion tract are modeled as
Poisson processes, with rates γ and 1/λ respectively. The
joint configuration of the states in these two chains deter-
mines the index of the haplotype from which the copying
is performed. See [3] and Figure two(a) in [4] for more
details.

The OVERPAINTmodel
Because gene conversion events involve non-reciprocal
transfer of genetic information between homologous
sequences, the typical product created by a gene conver-
sion event is a descendant sequence that consists of a
prefix of a sequence h followed by a short internal frag-
ment of another sequence h′, which is then followed by
a suffix of the first sequence h. However, the indepen-
dent assumption of the two hidden chains in the factorial
HMM formulation of the GenCo model cannot capture
this alternating pattern of the descendant sequence. An
improved model called OVERPAINT based on an inter-
leaved HMM (Figure 1) is introduced in [4]. The desired
alternating pattern is achieved by coupling the crossover

Figure 1 Interleaved HMM. The interleaved HMM with coupled
hidden chains used in the OVERPAINT model to compute π̂(hk+1 |
h1, . . . , hk , ρ , γ , λ) [adapted from Figure two(b) of [4]]. hk+1,j is the
allele state at the j-th site of haplotype hk+1. Xj and Gj denote the
j-th hidden state of the crossover and gene conversion chain,
respectively, and their joint configuration determines the index of
the haplotype from which hk+1,j is copied.

and gene conversion chains as well as by defining their
new transition probabilities. In Figure 1, direct edges from
the gene conversion chain to the crossover chain con-
strain the crossover chain to stay in the same state as the
previous site whenever the current site is in a gene conver-
sion tract. To be precise, the transition probability of the
crossover chain is specified as

P
(
Xj+1 | Xj,Gj+1

) =
{
P

(
Xj+1 | Xj

)
, if Gj+1 = ∅,

I
(
Xj+1 = Xj

)
, if Gj+1 �= ∅.

If site j + 1 is not in a conversion tract (Gj+1 is in the
null state ∅), the crossover chain evolves according to the
same Poisson process as defined in the GenCo model [3].
Otherwise, if site j + 1 is in a conversion tract (Gj+1 �= ∅),
the crossover chain keeps track of the state in the previous
site, i.e., the indicator function I sets Xj+1 = Xj.
In addition to constructing coupled hidden chains

to capture the alternating pattern of gene conversion,
another key feature of the OVERPAINT model is to allow
for overlapping gene conversion events in the copying
process. This is motivated by the observation that it is
possible for the coalescent model with gene conversion
to generate genealogies in which the gene conversion
tracts partially overlap or are completely nested within
each other. See [4] and [7] for details of the OVER-
PAINT model, including the exact form of the initial and
transition probabilities of hidden chains as well as the
forward-backward algorithm to compute the approximate
conditional probabilities π̂(hk+1 | h1, . . . , hk , ρ, γ , λ).
Finally, by taking into account the prior information that

the tract length typically ranges between 0.05 and 2 kb
[14,15], a prior on themean tract length λ can be imposed:

log10(λ) ∼ N(−0.5, 0.42), (1)

where N(μ, σ 2) denotes a standard normal distribution
with mean μ and variance σ 2. This prior is deliberately
chosen to ensure P(λ ∈[ 0.05, 2] ) = 95%. A standard
derivative-free optimization algorithm, the Nelder-Mead
simplex-reflection method [16], is applied to find the best
point estimates of ρ, γ , λ by maximizing the posterior

LOVERPAINT(ρ, γ , λ | H) ∝ f (λ)×�OVERPAINT(ρ, γ , λ).
(2)

Here, we use �OVERPAINT(ρ, γ , λ) to refer to the like-
lihood function of the OVERPAINT model and f (λ) to
denote the density of λ that corresponds to (1). The prior
can also be interpreted as a regularizer to penalize very
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small or very large values of λ, and hence can yield more
stable numerical results [7].

Motivation examples
In the settings of nonzero crossover and nonzero gene
conversion rates, the studies in [4,7] have shown that the
OVERPAINT model provides a substantial improvement
over the GenComodel in the accuracy of point estimation.
However, as we will show below, the point estimators tend
to be inflated and thus become unreliable when one of the
recombination rates lies on the boundary of the parameter
space, i.e., ρ = 0 or γ = 0. In conducting the simula-
tion, 100 data sets with gene conversions only (ρ = 0)
and crossovers only (γ = 0 and λ = 0), respectively,
are independently generated by the coalescent simula-
tion program MS [17]. In each simulation, we generate a
20 kb region using θ = 1.0/kb for the mutation rate and
λ = 0.5 kb for the mean tract length if the gene conver-
sion rate γ �= 0, then we obtain the point estimation of all
three parameters ρ, γ and λ by maximizing (2).
Table 1 summarizes the parameter estimates on the

data sets generated with gene conversions only (i.e.,
the crossover rate ρ = 0). The column labeled ρ̂ displays
the mean and standard deviation (shown in parentheses)
of the estimates of ρ. It indicates that the estimates of ρ are
well behaved over a range of simulated data sets with gene
conversion rate γ = 0.5, 1.0, 2.5, 5.0, 10.0/kb, though they
are slightly biased upward on the data sets simulated with
a large gene conversion rate (γ = 10.0/kb). In contrast, as
the column labeled γ̂ of Table 2 shows, the estimates of
γ are significantly inflated when there is actually no gene
conversion (i.e., γ = 0). Gay et al. [3] have made the same
observation about an overestimation of the gene conver-
sion rate γ by their model GenCo, when gene conversion
is nonexistent (see their Figure three).
In what follows, we will mainly focus on testing the null

hypothesis H0 : γ = 0 (no gene conversion), but our test-
ing procedure as outlined in Algorithm 1 can also be easily
modified to testing H0 : ρ = 0, as we will demonstrate in
the section of “Results and discussion”.

Table 1 Summary of parameter estimates on simulated
data sets with gene conversions only (ρ = 0)

γ ρ̂a γ̂ a λ̂a #(ρ̂; 0.05)b #(ρ̂; 0.1)b

0.5 0.03(0.05) 1.50(1.21) 0.56(0.23) 60 74

1.0 0.03(0.05) 1.81(2.01) 0.59(0.22) 77 90

2.5 0.05(0.06) 3.08(1.77) 0.54(0.19) 90 99

5.0 0.05(0.07) 4.55(1.69) 0.52(0.14) 96 99

10.0 0.12(0.15) 9.31(4.18) 0.48(0.15) 97 100

For each value of the gene conversion rate γ (per kb), 100 data sets with a
sample size n = 20 are independently generated using the MS program [17]
with a mutation rate θ = 1.0/kb and a mean tract length λ = 0.5 kb.
aThe mean and SD (in parenthesis) of the parameter estimates.
b#(ρ̂ ; k): the number of data sets with ρ̂ in the range (0, kγ ).

Table 2 Summary of parameter estimates on simulated
data sets with crossovers only (γ = 0)

ρ ρ̂a γ̂ a λ̂a #(γ̂ ; 0.05)b #(γ̂ ; 0.1)b

0.5 0.45(0.22) 0.71(0.62) 0.66(0.25) 6 11

1.0 0.75(0.29) 0.71(0.60) 0.73(0.28) 4 10

2.5 1.54(0.68) 0.78(0.61) 0.81(0.25) 14 19

5.0 2.59(0.96) 1.21(0.79) 0.79(0.22) 7 20

10.0 5.24(8.94) 2.89(2.81) 0.75(0.29) 4 13

For each value of the crossover rate ρ (per kb), 100 data sets with a sample size
n = 20 are independently generated using the MS program [17] with a mutation
rate θ = 1.0/kb.
aThe mean and SD (in parenthesis) of the parameter estimates.
b#γ̂ ; k : the number of data sets with γ̂ in the range (0, kρ).

Parametric bootstrap
It seems inevitable to obtain an overestimation of the gene
conversion rate when γ = 0 because the true value lies
on the boundary of the possible range. We formulate and
address this problem in a hypothesis testing framework,
and devise a testing procedure based on the likelihood
ratio test (LRT). Our null hypothesis is H0 : γ = 0
(no gene conversion), and the test statistic of the sampled
haplotypes H is the likelihood ratio statistic:

	(H) = −2 log
{

supρ LOVERPAINT(ρ, 0, 0 | H)

supρ,γ ,λ LOVERPAINT(ρ, γ , λ | H)

}
,

(3)

where LOVERPAINT(ρ, 0, 0 | H) denotes the function in (2)
computed with crossover rate ρ only (i.e., the original PAC
model in [2]).
As usual, large values of the observed statistic 	(H)

would lead us to favor the alternative hypothesis and pos-
sibly to reject the null hypothesis H0. The key question is:
what is the critical value of 	(H) used to reject H0? One
might conjecture that the LRT statistic in (3) would follow
an asymptotic χ2

2 distribution under the null hypothesis.
However, as Figure 2 and Additional file 1: Figure S1 show,
the null distribution of the LRT statistic 	(H) is not well
approximated by the desired χ2

2 distribution, as least not
for a sample size of n = 35. Even for larger sample sizes,
we believe that the chi-squared approximation is still inac-
curate because of two facts: first, the null value lies on the
boundary of the parameter space; second, the model is not
identifiable, i.e., two distinct parameter settings γ = 0
and λ = 0 give rise to the same likelihood. Therefore, the
regularity conditions of the classical large-sample theory
are violated, and it becomes invalid to apply the standard
large-sample approximation to the distribution of the LRT
statistic 	(H) [18].
As Figure 2 and Additional file 1: Figure S1 show, the

null distribution of the LRT statistic 	(H) and its critical
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Figure 2 Histograms of the LRT statistic�(H) under the null hypothesis H0 : γ = 0 (n = 35). For each value of the nuisance parameter ρ
(per kb), 100 data sets with a sample size of n = 35 are independently generated using the MS program [17] with a mutation rate θ = 1.0/kb.
The 95% quantiles of the histograms are: 16.99 (ρ = 0.5), 14.36 (ρ = 1.0), 8.32 (ρ = 2.5), 9.73 (ρ = 5.0), 13.04 (ρ = 10.0), and 17.17 (ρ = 20.0),
respectively. The red dashed lines correspond to the density of χ2

2 distribution.

value (the 95% quantile) depends on the crossover rate ρ,
which is an unknown nuisance parameter under the null
hypothesisH0. This observation motivates us to develop a
parametric bootstrap procedure [19] to obtain an approx-
imate p-value for the observed test statistic 	(H), as
outlined in Algorithm 1. Instead of constructing the whole
null distribution of the LRT statistic, we draw B samples of
size n from the null hypothesis with a crossover rate of ρ̂,
which is the parametric estimate of the nuisance parame-
ter ρ under H0. We then evaluate the test statistic on each
bootstrap sample, and count the proportion that exceed
the observed statistic.

Algorithm 1 PARAMETRICBOOTSTRAP

1: Input: A set of n haplotypes H = {h1, . . . , hn}.
2: Output: A bootstrap estimation of the p-value.
3: Compute ρ̂ = argmaxρLOVERPAINT(ρ, 0, 0), the para-

metric estimate of ρ under H0, and the LRT statistic
	(H) in (3).

4: Draw B bootstrap samples H∗
1 , · · · ,H∗

B, each of size n
using the MS program [17] with a crossover rate of ρ̂.

5: Compute the test statistic 	(H∗
b ) in (3) for each boot-

strap sample H∗
b , b = 1, · · · ,B.

6: Return the estimated p-value as

1
B

B∑
b=1

I(	(H∗
b ) > 	(H)) (4)
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Figure 3 Bootstrap estimates of the p-values under the null
hypothesis H0 : γ = 0 (n = 35). For each value of the crossover
rate ρ (per kb), 100 data sets with a sample size of n = 35 are
independently generated using the MS program [17] with a mutation
rate θ = 1.0/kb. Shown in the figure are the Q-Q plots of the p-values
estimated by B = 200 parametric bootstrap replications versus a
uniform distribution.
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Table 3 Summary of the estimated nuisance parameter ρ

under the null hypothesis H0 : γ = 0

ρ
n = 20 n = 35

ρ̂a #(ρ̂; 2)b #(ρ̂; 5)b ρ̂a #(ρ̂; 2)b #(ρ̂; 5)b

0.5 0.65(0.26) 87 100 0.71(0.22) 91 100

1.0 1.04(0.37) 94 100 1.09(0.31) 99 100

2.5 2.00(0.58) 89 100 2.22(0.47) 99 100

5.0 3.33(0.75) 90 100 3.72(0.64) 97 100

10.0 7.52(1.40) 75 100 8.19(1.01) 88 100

These estimates, computed as ρ̂ = argmaxρLOVERPAINT(ρ , 0, 0), are used to draw
bootstrap replications (line 4 in Algorithm 1) and then to estimate the bootstrap
p-values (as in Figure 3 and Additional file 2: Figure S2).
aThe mean and SD (in parenthesis) of the estimates of ρ.
b#ρ̂ ; k: the number of data sets with ρ̂ within a factor of k from the true ρ.

Results and discussion
Simulation study
To evaluate the performance of our testing procedure,
we use the same parameter settings as in the section
“Motivation examples” to conduct the simulation. All
reported p-values are based on B = 200 bootstrap
samples.

p-values under the null hypothesis
Under the null hypothesis H0 : γ = 0, we use the val-
ues 0.5, 1.0, 2.5, 5.0 and 10.0/kb for the crossover rate ρ

(the nuisance parameter). For each value of ρ, we gener-
ate 100 simulated data sets with sample sizes of n = 20

and n = 35 haplotypes, respectively. We then apply our
parametric bootstrap procedure presented in Algorithm 1
to compute an estimate of the p-value for each data
set. Figure 3 and Additional file 1: Figure S2 show that
the bootstrap estimates of the null p-values closely fol-
low the uniform distribution over the interval (0, 1),
thereby exhibiting excellent agreement with theoreti-
cal prediction. Table 3 summarizes the estimated nui-
sance parameter ρ under the null hypothesis (line 3 in
Algorithm 1) that are used to draw bootstrap replications
(line 4 in Algorithm 1). Though the estimates are slightly
biased downwards for large values of true ρ, the empirical
behavior shown in Figure 3 and Additional file 1: Figure S2
suggests that it suffices to draw bootstrap samples from
approximately correct null distributions in our case to
obtain good estimates of the null p-values.

p-values under the alternative hypothesis
Under the alternative hypothesis H1 : γ �= 0, different
combinations of ρ and γ are chosen in the simulation, and
the ratio of gene conversion to crossover rate f = γ /ρ

ranges over 0.5, 1.0, 2.5, 5.0 and 10.0. For each parameter
setting, we generate 100 data sets with a mutation rate
θ = 1.0/kb, a mean tract length λ = 0.5 kb, and sam-
ple sizes n = 20 and n = 35, respectively. Figure 4
shows the bootstrap estimates of the alternative p-values
and the power of the test when setting the p-value thresh-
old to 0.05. As the rate ratio f = γ /ρ or the sample
size n increases, the alternative p-values tend to decrease

Figure 4 Bootstrap estimates of the p-values under the alternative hypothesis H1 : γ �= 0. For each value of the rate ratio f = γ /ρ , 100 data
sets with sample sizes of n = 20 and n = 35 haplotypes, respectively, are independently generated using the MS program [17] with a mutation rate
θ = 1.0/kb and a mean tract length λ = 0.5 kb. The first five sub-figures show the Q-Q plots of the bootstrap p-values (B = 200) versus a uniform
distribution. The last sub-figure plots the power of the test when using 0.05 as a p-value threshold.
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Table 4 Bootstrap p-values for segments of the su(s) locus
inD.melanogaster

Segment s1 s2 s3 s4 s5 All

Length (kb) 1.8 1.8 1.6 2.4 2.3 4.1

H0 : γ = 0 0.32 0.66 0.01 0.15 0.54 0.03

H0 : ρ = 0 0.86 0.46 0.92 0.64 0.36 0.45

towards 0, leading to increased power of detecting gene
conversion.

A real biological application
We apply our testing procedure to SNP data sets from two
genes, su(s) and su(wa), located near the telomere of the
X chromosome of African Drosophila melanogaster [20].
The lengths of su(s) and su(wa) loci are about 4.1 kb
and 2.5 kb, respectively, and they are about 400 kb apart.
The su(s) locus contains 50 haplotypes and 41 SNPs,
and the su(wa) locus contains 50 haplotypes and 46
SNPs. The two data sets are further divided into over-
lapping segments of 20 SNPs each (except for the last
segment with 21 SNPs), with 15 SNPs of overlap between
two adjacent segments. For each segment, we apply our
parametric bootstrap procedure with B = 500 bootstrap
samples. The estimated p-values for the null hypothe-
ses H0 : γ = 0 and H0 : ρ = 0 are shown in Tables 4
and 5.
For the su(s) locus, the p-values against H0 : ρ = 0 for

all the segments (including the whole locus) show no evi-
dence of detecting crossover. However, a small p-value
(0.01) against H0 : γ = 0 is observed for the shortest
segment s3, and the overall effect is to provide a strong
evidence of gene conversion for the whole locus (p-value =
0.03). This is consistent with the conclusion that gene
conversion is likely to play a leading role in shaping the
observed polymorphism in this region [20].
A similar pattern of the p-values holds for the su(wa)

locus, except that the p-values against H0 : γ = 0 and
H0 : ρ = 0 for the shortest segment s1 are both sig-
nificant at the 5% level: 0.01 and 0.03, respectively. This
could imply that while gene conversion rate is high in
this short segment, crossover may not have been greatly
suppressed. It could also suggest a higher proportion
of gene conversions that are accompanied by crossover
events.

Table 5 Bootstrap p-values for segments of the su(wa)

locus inD.melanogaster

Segment s1 s2 s3 s4 s5 s6 All

Length (kb) 0.4 1.0 1.1 1.8 1.2 1.5 2.5

H0 : γ = 0 0.01 0.17 0.31 0.19 0.22 0.30 0.0

H0 : ρ = 0 0.03 0.71 0.49 0.55 0.88 0.89 0.31

Conclusion
In this work, we have introduced a hypothesis test-
ing procedure that can provide statistical evidence from
population genetic data about whether one of the two
recombination events is absent. By extensive coalescent
simulation studies, we have shown that our parametric
bootstrap approach is able to yield accurate estimates of
the null p-values that closely follow the theoretical pre-
diction. On the other hand, the bootstrap estimates of
the alternative p-values tend to concentrate closer to zero.
Our results on real SNP data sets from the su(s) and
su(wa) loci of African D. melanogaster indicate a strong
evidence of detecting gene conversion in short segments
of these regions. Moreover, crossover may also play an
important role in a short segment of the su(wa) locus. We
believe that our method provides a necessary complement
to the existing procedures of estimating meiotic recombi-
nation rates from population genetic data, and expect it to
be applied to other data sets.

Additional files

Additional file 1: Figure S1. Histograms of the LRT statistic 	(H) under
the null hypothesis H0 : γ = 0 (n = 20). For each value of the nuisance
parameter ρ (per kb), 100 data sets with a sample size of n = 20 are
independently generated using the MS program [17] with a mutation
rate θ = 1.0/kb. The 95% quantiles of the histograms are: 13.49 (ρ = 0.5),
8.98 (ρ = 1.0), 8.56 (ρ = 2.5), 8.18 (ρ = 5.0), 9.06 (ρ = 10.0), and 16.53
(ρ = 20.0), respectively. The red dashed lines correspond to the density of
χ2
2 distribution.

Additional file 2: Figure S2. Bootstrap estimates of the p-values under the
null hypothesis H0 : γ = 0 (n = 20). For each value of the crossover rate ρ

(per kb), 100 data sets with a sample size of n = 20 are independently
generated using the MS program [17] with a mutation rate θ = 1.0/kb.
Shown in the figure are the Q-Q plots of the p-values estimated by B = 200
parametric bootstrap replications versus a uniform distribution.
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