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Targeted disruption of Tbc1d20 with zinc-finger
nucleases causes cataracts and testicular
abnormalities in mice
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Abstract

Background: Loss-of-function mutations in TBC1D20 cause Warburg Micro syndrome 4 (WARBM4), which is an
autosomal recessive syndromic disorder characterized by eye, brain, and genital abnormalities. Blind sterile (bs) mice
carry a Tbc1d20-null mutation and exhibit cataracts and testicular phenotypes similar to those observed in WARBM4
patients. In addition to TBC1D20, mutations in RAB3GAP1, RAB3GAP2 and RAB18 cause WARBM1-3 respectively.
However, regardless of which gene harbors the causative mutation, all individuals affected with WARBM exhibit
indistinguishable clinical presentations. In contrast, bs, Rab3gap1-/-, and Rab18-/- mice exhibit distinct phenotypes;
this phenotypic variability of WARBM mice was previously attributed to potential compensatory mechanisms.
Rab3gap1-/- and Rab18-/- mice were genetically engineered using standard approaches, whereas the Tbc1d20
mutation in the bs mice arose spontaneously. There is the possibility that another unidentified mutation within
the bs linkage disequilibrium may be contributing to the bs phenotypes and thus contributing to the phenotypic
variability in WARBM mice. The goal of this study was to establish the phenotypic consequences in mice caused
by the disruption of the Tbc1d20 gene.

Results: The zinc finger nuclease (ZFN) mediated genomic editing generated a Tbc1d20 c.[418_426del] deletion
encoding a putative TBC1D20-ZFN protein with an in-frame p.[H140_Y143del] deletion within the highly
conserved TBC domain. The evaluation of Tbc1d20ZFN/ZFN eyes identified severe cataracts and thickened
pupillary sphincter muscle. Tbc1d20ZFN/ZFN males are infertile and the analysis of the seminiferous tubules
identified disrupted acrosomal development. The compound heterozygote Tbc1d20ZFN/bs mice, generated
from an allelic bs/+ X Tbc1d20ZFN/+ cross, exhibited cataracts and aberrant acrosomal development indicating
a failure to complement.

Conclusions: Our findings show that the disruption of Tbc1d20 in mice results in cataracts and aberrant acrosomal
formation, thus establishing bs and Tbc1d20ZFN/ZFN as allelic variants. Although the WARBM molecular disease
etiology remains unclear, both the bs and Tbc1d20ZFN/ZFN mice are excellent model organisms for future studies
to establish TBC1D20-mediated molecular and cellular functions.
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Background
Warburg Micro syndrome (WARBM) is a genetically
heterogeneous autosomal recessive syndromic disorder
characterized by eye, brain, and genital abnormalities
[1]. Mutations in RAB3GAP1, RAB3GAP2, RAB18, and
TBC1D20 genes cause WARBM1, WARBM2, WARBM3,
and WARBM4 forms respectively [2-5]. Regardless which
of the four genes harbors the causative mutation, all
WARBM individuals present with indistinguishable clin-
ical features [1,5]. Eye abnormalities in WARBM children
are characterized by congenital cataracts, microphakia,
microcornea, microphthalmia, optic nerve atrophy, and
small, atonic pupils [6,7]. Postnatal microcephaly, pre-
dominantly frontal polymicrogyria, corpus callosum
hypogenesis, enlarged subdural spaces, cerebellar vermis hy-
poplasia are brain characteristics in the affected WARBM
children; these abnormalities are accompanied by seizures
and severe intellectual disability [8-10]. Microgentialia is
present in both the WARBM affected boys and girls [1,7,9].
In addition to eye, brain and genital abnormalities, WARBM
children also exhibit hypotonia of truncal muscles, as well
as spasticity of the limbs resulting in the inability to walk,
sit, or crawl, and ultimately resulting in quadriplegia [1].
Mouse models of human genetic disorders are excel-

lent resources for elucidation of the molecular and cellu-
lar disease etiologies. Recently, we reported that blind
sterile (bs) mice, initially identified over 30 years ago as a
spontaneous autosomal recessive mouse mutation exhi-
biting cataracts [11,12] and male infertility [13,14], carry a
loss of function mutation in the Tbc1d20 gene [5]. The bs
mice recapitulate the lens and testicular phenotypes ob-
served in the WARBM4 children, although no morpho-
logical brain abnormalities were noted [5]. Rab3gap1-/-

mice do not exhibit any morphological abnormalities of
the eyes, brain, or genitalia, but exhibit synaptic exocytosis
abnormalities [15]. Recently, it was shown that Rab18-/-

mice exhibit cataracts, atonic pupils, and progressive hind
limb weakness associated with accumulations of neurofila-
ment and microtubules in the synaptic terminals [16].
This phenotypic variability between mice with disrupted
WARBM genes has been previously attributed to gene-
specific and species-specific compensatory mechanisms
present in mice [4,5].
Rab3gap1-/- and Rab18-/- mice are mouse models that

were genetically engineered using standard approaches
[15,16]. In contrast, the Tbc1d20 mutation in the bs
mouse arose spontaneously [11]. Our genetic analysis
of the bs mice identified a 416 kb genomic region in
linkage disequilibrium within the bs locus [5]. The ana-
lysis of the bs critical region identified 16 RefSeq can-
didate genes and further evaluation of the candidate
genes focused on the sequencing of the exons and
exon/intron boundaries as well as RT-PCR analysis and
subsequent sequencing of the open reading frames [5].
This approach identified a c.[691 T > A; 692_703del] mu-
tation in the Tbc1d20 gene as causing the bs phenotype;
subsequent functional analysis of the TBC1D20-bs pro-
tein determined that the bs mutation results in the loss
of TBC1D20 functional [5]. Given that we did not se-
quence the entire 416 kb bs critical region, we cannot
eliminate the possibility that another mutation not res-
iding within the exon/intron regions or open reading
frames of the 16 candidate genes, but resides within the
bs linkage disequilibrium region, may be contributing to
the phenotypic differences between the bs, Rab3gap1-/-,
and Rab18-/- mice.
As a part of this study, we set out to unequivocally es-

tablish the phenotypic consequences caused by the dis-
ruption of the Tbc1d20 gene. We utilized the zinc-finger
nuclease (ZFN)-mediated genomic editing approach to
generate the Tbc1d20ZFN/ZFN mice. Our results show
that the Tbc1d20ZFN/ZFN mice exhibit cataracts and
testicular phenotypes indistinguishable from the cataract
and testicular phenotypes identified in the bs mice.
Additionally, the complementation analysis confirmed
that the bs and Tbc1d20ZFN/ZFN mice are allelic variants.
Results and discussion
ZFN-mediated disruption of the Tbc1d20 locus
The ZFN mediated targeting of the Tbc1d20 gene
(NM_024196) was designed to cut a 6 bp region within
exon 4 (see Methods). This approach generated 3
Tbc1d20ZFN founder mice with a 9 bp c.[418_426del] dele-
tion (Figure 1A). The Tbc1d20ZFN transcript encodes a
putative TBC1D20-ZFN protein with an in-frame 3 amino
acid deletion p.[H140_Y143del] within a highly evolution-
arily conserved TBC domain (Figure 1B). TBC1D20 is an
ER associated protein that functions as a GTPase activat-
ing protein (GAP) enhancing the GTP hydrolysis rate
when bound to RAB1 or RAB2 [5,17,18]. It was shown
previously that overexpression of mouse or human
TBC1D20-WT protein results in the disruption of Golgi
structures [5,17]. It was also shown that overexpression of
the catalytically inactive mouse or human TBC1D20 pro-
teins did not have an effect on the Golgi morphology
[5,17]. Therefore, we proceeded to evaluate the effects of
overexpression of the FLAG-tagged TBC1D20-WT and
TBC1D20-ZFN proteins of Golgi structures in the HeLa
cells. FLAG immunostaining confirmed the ER pattern of
expression for both TBC1D20-WT and TBC1D20-ZFN
proteins (Figure 1C-D). HeLa cells overexpressing of the
FLAG-tagged TBC1D20-WT protein exhibited disrupted
Golgi structures and only residual GM130 immuno-
staining (Figure 1C). In contrast, both untransfected
(Figure 1E) and HeLa cells overexpressing the FLAG-
tagged TBC1D20-ZFN protein exhibited similar GM130
immunostaining pattern (Figure 1D) suggesting that
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Figure 1 The evaluation of the Tbc1d20ZFN allele. ZFN-mediated genomic editing resulted in the Tbc1d20ZFN transcript characterized by a 9 bp
c.[418_426del] deletion (A). The Tbc1d20ZFN allele encodes the TBC1D20-ZFN mutant protein with an in-frame 3 amino acid p.[H140_Y143del]
deletion within a highly evolutionarily conserved TBC domain. Missing amino acids are depicted in red (B). (C) Overexpression of FLAG-tagged
TBC1D20-WT (green) led to a disruption of the Golgi as evident by the punctate GM130 immunostaining (red). (D) Overexpression of the FLAG-tagged
TBC1D20-ZFN protein (green) did not disrupt GM130 immunostaining of the Golgi and did not differ from GM130 immunostaining of the untransfected
HeLa cell (E). DNA was stained with DAPI (blue). Scale bars = 5 μm.
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TBC1D20-ZFN did not disrupt Golgi structures. Therefore,
these findings suggested that TBC1D20-ZFN catalytic func-
tion was disrupted.
Eye, testicular, and brain phenotypes in Tbc1d20ZFN/ZFN mice
The Tbc1d20ZFN/+ heterozygote mice did not phenotyp-
ically differ from the WT mice. The het to het breedings
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of the Tbc1d20ZFN/+ mice recovered Tbc1d20+/+ (n = 13),
Tbc1d20ZFN/+ (n = 27), and Tbc1d20ZFN/ZFN (n = 10) pro-
geny and these ratios did not significantly differ, following
a chi-squared test, from expected ratios for a Mendelian
autosomal recessive locus. Following the eyelid opening
around postnatal day P14, clinical eye evaluation identified
nuclear cataracts only in Tbc1d20ZFN/ZFN that by P28 pro-
gressed to total cataracts characterized by vacuoles present
throughout the entire lens (not shown). Histological ana-
lysis of Tbc1d20ZFN/ZFN eyes confirmed severely disrupted
vacuolated lenses with ruptured lens capsule and lenticu-
lar material in the vitreal cavity (Figure 2B) although some
lenticular material was also present in the anterior cham-
ber (Figure 2F). Lens epithelial cells did not appear to ex-
hibit any gross morphological abnormalities whereas
cortical and nuclear fiber cells were severely shortened
and disorganized (Figure 2D). Although retinal dismor-
phology and rosetting were evident in Tbc1d20ZFN/ZFN

eyes (Figure 2B), the retina was laminated suggesting that
rosetting may have been caused by the lens rupture and
Control
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Figure 2 The eye phenotypes in Tbc1d20ZFN/ZFN mice. H&E analysis reve
compared to controls (A); scale bars = 250 μm. Tbc1d20ZFN/ZFN vacuolated l
(D) in contrast to highly organized lens fibers in control lenses (C); scale ba
sphincter muscle (F) when compared to the pupillary sphincter muscled n
not by a defect in retinal development. Tbc1d20ZFN/ZFN

eyes also exhibited thickened pupillary sphincter muscle
(Figure 2F) that was not previously identified in bs eyes [5]
suggesting that this TBC1D20-associated phenotype may
be influenced by genetic modifiers.
Tbc1d20ZFN/ZFN females were able to produce litters

and Tbc1d20ZFN/ZFN males did not suggesting that the
Tbc1d20ZFN/ZFN males may be infertile. We proceeded
to evaluate the Tbc1d20ZFN/ZFN testes. Upon observa-
tion, the Tbc1d20ZFN/ZFN testes appeared smaller in size
when compared to control testes (Figure 3A). Histo-
logical evaluation revealed disorganized Tbc1d20ZFN/ZFN

seminiferous tubules (Figure 3C). Male infertility in
TBC1D20-deficient bs mice was caused by a disruption
in acrosomal formation [5,13,14], thus, we proceeded to
evaluate the maturation of the spermatozoa in the
Tbc1d20ZFN/ZFN seminiferous tubules. Immunostaining
with TRA54, a haploid sperm cell-specific antigen [19], of
control seminiferous tubules revealed punctate (not shown)
and crescent-shaped staining (Figure 3D) characteristic of
Tbc1d20
ZFN/ZFN

D

aled severely disrupted P28Tbc1d20ZFN/ZFN eyes (B) eyes when
enses exhibiting severely shortened and disorganized lens fiber cells
rs = 50 μm. The Tbc1d20ZFN/ZFN mice exhibited thickened pupillary
oted in control eyes (E); scale bars = 50 μm.
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Figure 3 The testicular phenotypes in Tbc1d20ZFN/ZFN mice. Tbc1d20ZFN/ZFN testes appeared smaller in size when compared to controls (A);
scale bar = 1 mm. H&E analysis identified disorganized Tbc1d20ZFN/ZFN seminiferous tubules (C) when compared to highly organized seminiferous
tubules in controls (B); scale bars = 50 μm. TRA54 immunostaining (green) in control tubules revealed small punctae and crescent-shaped staining
consistent with spermatocytes and round spermatids respectively (D) and in Tbc1d20ZFN/ZFN only TRA54 positive punctate staining was evident
(E). PNA staining of control tubules identified the presence of acrosomes (F), whereas in Tbc1d20ZFN/ZFN only PNA positive punctate staining was
noted (G); scale bars = 25 μm. DNA was stained with DAPI (blue).
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spermatocytes and round spermatids respectively [19]. In
contrast, immunostaining for TRA54 in Tbc1d20ZFN/ZFN

seminiferous tubules revealed only punctate staining
(Figure 3E). Peanut agglutinin (PNA) is a marker for ac-
rosomes [20]; PNA staining of the seminiferous tubules
in the controls revealed a characteristic crescent acroso-
mal shape (Figure 3F) whereas inTbc1d20ZFN/ZFN sem-
iniferous tubules only the PNA positive punctae were
evident (Figure 3G). The observed testicular phenotypes
of Tbc1d20ZFN/ZFN were indistinguishable from the tes-
ticular phenotypes reported for the bs mice [5,13,14].
Evaluation of the Tbc1d20ZFN/ZFN brains did not identify
any gross morphological abnormalities (not shown). Col-
lectively these findings indicated that in Tbc1d20ZFN/ZFN

mice eye and testicular phenotypes are fully penetrant
without any brain morphological abnormalities consistent
with findings previously reported for bs mice [5].

Cellular phenotypes of Tbc1d20ZFN/ZFN MEFs
An accumulation of enlarged lipid droplets (LDs) following
oleic acid supplementation was the only cellular abnormal-
ity in the skin-derived TBC1D20-deficient fibroblasts from



Park et al. BMC Genetics 2014, 15:135 Page 6 of 10
http://www.biomedcentral.com/1471-2156/15/135
a WARBM4 patient [5]. Primary bs MEFs also exhibit an
accumulation of enlarged LDs following treatment with
oleic acid, but additionally the bs MEFs also exhibited en-
larged Golgi structures [5]. Therefore, we proceeded to
evaluate the LD and Golgi morphology in control and
Tbc1d20ZFN/ZFN MEFs. Our analysis confirmed a significant
accumulation of enlarged LDs in the Tbc1d20ZFN/ZFN MEFs
(Figure 4B) when compared to the LDs in the MEFs
from the control mice (Figure 4C) 24 h following oleic
acid treatment and subsequent staining with the neutral
lipid dye BODIPY 493/503. However, we did not ob-
serve any difference in the Golgi structures between
control and Tbc1d20ZFN MEFs following immunostain-
ing with GM130 (Figure 4D and F). Western blot ana-
lysis confirmed there was no difference in levels of
GM130 protein in control and Tbc1d20ZFN MEF cell ly-
sates (not show). Although bs MEFs exhibited enlarge-
ment of Golgi structures, Golgi structures in the
TBC1D20-deficient skin fibroblasts from a WARBM4
patient did not differ from Golgi structures in control
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Figure 4 Tbc1d20ZFN/ZFN mEF cellular phenotypes. Oleic acid treatment
revealed expanded LD structures in Tbc1d20ZFN/ZFN MEFs (B) when compar
that % of LD area per cell in Tbc1d20ZFN/ZFN (13.89 ± 1.23) was significantly
determined by Student’s t test and error bars represent SEM. GM130 immu
(E) and control MEFs (D). DNA was stained with DAPI (blue). Scale bars = 5
skin fibroblasts [5]. However, thickened Golgi ribbons
were observed in HeLa cells following shRNA mediated
TBC1D20 knock-down [17]. Collectively these findings
indicate that a spectrum of Golgi phenotypes is associ-
ated with TBC1D20 functional deficiency indicating
that this phenotype is most likely influenced by genetic
modifiers.

Complementation analysis
To determine if bs and Tbc1d20ZFN mice are allelic vari-
ants, we set up complementation breedings. A cross be-
tween bs/+ and Tbc1d20ZFN/+ mice led to Tbc1d20ZFN/bs

(n = 4), Tbc1d20+/+ (n = 3), Tbc1d20ZFN/+ (n = 2), and
Tbc1d20bs/+ (n = 3) progeny. Clinical eye evaluation (not
shown) as well as histological eye analysis identified vacu-
olated cataracts in the Tbc1d20ZFN/bs compound heterozy-
gous mice (Figure 5B) phenotypically similar to the
Tbc1d20ZFN/ZFN cataracts (Figure 2B) as well as bs cata-
racts [5]. The compound heterozygous Tbc1d20ZFN/bs

mice did not exhibit pupillary thickening observed in
Tbc1d20
ZFN/ZFN

B

E

for 24 hr following staining with the neutral lipid dye BODIPY 493/503
ed to control MEFs (A). Quantification analyses shown in (C) identified
greater (P < 0.001) than in control (4.16 ± 0.25) MEFs. P values were
nostaining (red) revealed no Golgi differences between Tbc1d20ZFN/ZFN

μm.
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Figure 5 Eye and testicular phenotypes in compound heterozygoteTbc1d20ZFN/bs mice. H&E analysis revealed cataracts in Tbc1d20ZFN/ZFN

lenses characterized by the presence of vacuoles (B) when compared to highly organized control lenses (A); scale bars = 50 μm. Tbc1d20ZFN/bs

testes appeared smaller in size when compared to controls (C); scale bar = 1 mm. H&E analysis identified disorganized Tbc1d20ZFN/bs seminiferous
tubules (E) when compared to highly organized seminiferous tubules in controls (D); scale bars = 50 μm. Immunostaining with TRA54 (green) in
control tubules revealed small punctae and crescent-shaped staining consistent with spermatocytes and round spermatids respectively (F) and in
Tbc1d20ZFN/bs only TRA54 positive punctate staining was evident (G). PNA positive acrosomes were evident in control tubules (H), whereas in
Tbc1d20ZFN/ZFN only PNA positive punctate staining was noted (I); scale bars = 25 μm. DNA was stained with DAPI (blue).

Park et al. BMC Genetics 2014, 15:135 Page 7 of 10
http://www.biomedcentral.com/1471-2156/15/135



Park et al. BMC Genetics 2014, 15:135 Page 8 of 10
http://www.biomedcentral.com/1471-2156/15/135
Tbc1d20ZFN/ZFN (not shown). The testes from the
Tbc1d20bs/ZFN compound heterozygote males appeared
smaller in size when compared to controls (Figure 5C).
Histological analysis revealed disorganized Tbc1d20ZFN/bs

seminiferous tubules (Figure 5). Tbc1d20ZFN/bs seminifer-
ous tubules immnunostaining with TRA54 (Figure 5G)
and staining with PNA (Figure 5I) identified disrupted ac-
rosomal formation phenotypically indistinguishable from
the findings in Tbc1d20ZFN/ZFN (Figure 3A,C,E and G)
and bs males [5].

Conclusions
In mice, the disruption of Tbc1d20 results in vacuolated
cataracts and a defect in acrosomal formation resulting
in male infertility. At the cellular level, disruption of
Tbc1d20 resulted in an accumulation of LDs. Thickening
of the pupillary sphincter muscle eye phenotypes and ab-
errant Golgi cellular phenotypes were not penetrant on
all genetic backgrounds suggesting that these pheno-
types, caused by disruption of Tbc1d20, may be influ-
enced by genetic modifiers. Although molecular and
cellular disease etiology caused by TBC1D20 functional
deficiency in mice and humans remains unclear, bs and
Tbc1d20ZFN/ZFN mice are allelic variants and as such are
excellent model organisms for future studies focusing on
elucidating TBC1D20 function.

Methods
Mice
To target the mouse Tbc1d20 (NM_024196.3) gene, ZFN
plasmid design, assembly, validation and mRNA was done
by the CompoZr Custom ZFN Service (Sigma). The ZFNs
were designed to cut the c.[419ACTACT424] sequence
within exon 4. The Tbc1d20 targeting ZFN mRNA was
injected into the B6D2F1/Crl (F1 het from C57BL/6 N
and DBA2 strains) embryos, which were implanted into
pseudo-pregnant females. Pups were genotyped using
standard conditions with ZFN-F 5′CTGGGTGTCATG
AGCAATGT3′ and ZFN-R 5′AGGAGGCTGAGGAGTG
ACCT3′ primers, electrophoresed, gel purified using the
QIAquick Gel Extraction Kit (Qiagen), and screened for
mutations using the Cel1 nucleotide mismatch assay
(Sigma). The founders were confirmed by Sanger sequen-
cing (Retrogen). Tbc1d20ZFN/+ did not differ phenotypic-
ally from Tbc1d20+/+ mice and both genotypes were used
as controls. RNA was isolated from spleen, kidney, liver,
and testes and the Tbc1d20 transcript was reverse tran-
scribed, PCR-amplified and sequenced as previously de-
scribed [5]. Comparative sequence analysis was performed
using DNAStar software. Allelic breedings utilized bs/+
mice previously obtained from Jackson Laboratories and
the bs allele was genotyped as previously described [5].
The treatment and use of all animals in this study was
compliant with all protocols and provisions approved by
the Institutional Animal Care and Use Committee
(IACUC) at the Medical College of Wisconsin.

Clinical evaluations, histology, and immunohistochemistry
Mouse eyes were examined with a Topcon SL-D8Z slit
lamp biomicroscope with a Nikon SLR-based Photo Slit
Lamp imaging system following mydriasis with 1% Atro-
pine Sulfate (Bausch & Lomb). Eyes, brains, and testes
were collected at 8 weeks of age. Eyes and testes were
fixed in 4% paraformaldehyde (PFA), paraffin embedded
and H&E stained as previously described [5]. Brains
were fixed at 4°C for 24 h in 4% PFA followed by 30%
sucrose for 24-72 hrs. Brains were then sectioned at
30 μm on a sliding microtome (Leica) and stained with
DAPI to label all nuclei. Immunostaining was done with
TRA54 (B-Bridge) as a primary antibody and DyLight
488 goat anti-rat (Abcam) as a secondary antibody fol-
lowing the manufacturer’s recommendations. PNA stain-
ing was performed utilizing the Lectin PNA-Alexa-488
conjugate (Life Technologies) according to the manufac-
turer’s recommendations. Slides were DAPI stained ac-
cording to the manufacturer’s recommendations (Life
Technologies), mounted using Fluoromount-G (Southern
Biotech), and imaged using a Nikon DS-Fi1 camera on a
Nikon Eclipse 80i microscope using NIS-Elements soft-
ware (Nikon).

Functional analysis of the Tbc1d20ZFN allele
To generate an N-terminal FLAG-tagged Tbc1d20 clone,
Tbc1d20 (BC034504.1) clone MGC: 25843/IMAGE:
4192736 (Open Biosystems) was PCR-amplified utilizing
PCR primers (F 5′AAGCTTGCGGCCGCGGCCCTC
CGGCCCTCAAAG3′ and R 5′GGATCCTCTAGATTA
GGGGAACAGCTGCAGCTG3) to incorporate a 5′ NotI
restriction site and 3′ XbaI site. The PCR product was
subcloned via directional ligation into the NotI and XbaI
sites in the MCS of pFLAG-CMV-2 (Sigma-Aldrich). Mu-
tagenesis to introduce the ZFN deletion was performed
with the Phusion Site-Directed Mutagenesis Kit (Finn-
zymes) using F5′Phos-CAGGGCTACCATGACATCGTG
GTCACATTT3′ and R5′Phos-GAGCTGAGGGTTGCG
ATCCAGGACGAGGAG3′ primers. Generated clones
were confirmed by Sanger sequencing.
HeLa cells were cultured in DMEM containing 10% fetal

bovine serum at 37°C and 5%CO2. For transfections, HeLa
cells were grown on glass slides in 12-well plates and
transfected with Lipofectamine LTX (Life Technologies)
following the manufacturer’s recommendations. Following
transfections, the coverslips were washed with 1XPBS,
then fixed with 4% PFA in PBS pH7.4 for 15 minutes at
room temperature, washed with ice cold 1XPBS, perme-
abilized with 0.25% Triton X-100 in PBS (PBST), and then
washed with 1X PBS for 3X5 minutes. The coverslips were
immunostained with FLAG (Sigma) and GM 130 (Abcam)
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antibodies overnight at 4°C and for 1 hr at RT, with Alexa
488 and 546-conjugated (Life Technologies) secondary
antibodies following the manufacturer’s recommendations.
The coverslips were stained with DAPI for 5 min, washed
with 1XPBS, mounted onto glass slides with Fluoromount-
G mounting medium, and photographed with a Nikon DS-
Fi1 camera on a Nikon Eclipse 80i microscope.

Mouse embryonic fibroblasts (MEFs)
MEFs were isolated from the E13.5 mouse embryos
(from the Tbc1d20ZFN/+X Tbc1d20ZFN/+ cross) that ge-
notyped either Tbc1d20ZFN/ZFN or Tbc1d20+/+ and were
maintained as previously described [5,21]. Lipid droplets
were evaluated as described previously utilizing media
supplemented with 400 μM oleic acid (Sigma Aldrich)
for 24 h and stained with 1 μg/μL BODIPY 493/503 (Life
Technologies) [5]. All slides were mounted using Vecta-
shield with DAPI (Vector Labs). Imaging was done with
a Nikon DS-Fi1 camera on a Nikon Eclipse 80i micro-
scope using NIS-Elements software (Nikon). Quantifica-
tion of the lipid droplets was performed as previously
described [22] using ImageJ (US National Institutes of
Health) and NIS-Elements software. For each analysis, at
least 20 cells per genotype were evaluated and statistical
significance was determined by a t-test (Graphpad
Prism) where p < 0.05 was treated as significant. For
Golgi analysis, the control and Tbc1d20ZFN/ZFN MEFs
were immunostained using GM130 (Abcam) primary
antibody and Alexa 488-conjugated secondary antibody
(Life Technologies) following manufacturers’ recommen-
dations. Western blots were run using cell lysates gener-
ated from control and Tbc1d20ZFN/ZFN MEFs following
lysis with RIPA buffer supplemented with a protease in-
hibitor cocktail (Sigma). Cell lysates were immuno-
blotted with GM130 (BD Biosciences) primary antibody
and HRP-conjugated secondary antibody (Abcam) fol-
lowing the manufacturer’s recommendations as previ-
ously described [5]. Even loading was established following
immunoblotting with β-actin HPR conjugated antibody
(Abcam). The detection was performed using the ECL
Western Blot Analysis System (Amersham) following the
manufacturer’s instructions.
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