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Abstract

Background: Single-nucleotide polymorphism (SNP)-set analysis in Genome-wide association studies (GWAS) has
emerged as a research hotspot for identifying genetic variants associated with disease susceptibility. But most existing
methods of SNP-set analysis are affected by the quality of SNP-set, and poor quality of SNP-set can lead to low power
in GWAS.

Results: In this research, we propose an efficient weighted tag-SNP-set analytical method to detect the disease
associations. In our method, we first design a fast algorithm to select a subset of SNPs (called tag SNP-set) from a
given original SNP-set based on the linkage disequilibrium (LD) between SNPs, then assign a proper weight to
each of the selected tag SNP respectively and test the joint effect of these weighted tag SNPs. The intensive
simulation results show that the power of weighted tag SNP-set-based test is much higher than that of weighted
original SNP-set-based test and that of un-weighted tag SNP-set-based test. We also compare the powers of the
weighted tag SNP-set-based test based on four types of tag SNP-sets. The simulation results indicate the method
of selecting tag SNP-set impacts the power greatly and the power of our proposed method is the highest.

Conclusions: From the analysis of simulated replicated data sets, we came to a conclusion that weighted tag
SNP-set-based test is a powerful SNP-set test in GWAS. We also designed a faster algorithm of selecting tag SNPs
which include most of information of original SNP-set, and a better weighted function which can describe the
status of each tag SNP in GWAS.
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Background
With the development of high throughput genotyping technol-
ogy, more and more biologists use GWAS to analyze the asso-
ciations between disease susceptibility and genetic variants
[1-3]. Although standard analysis of a case–control GWAS has
identified many SNPs and genes associated with disease suscep-
tibility [4-6], it suffers from difficulties in detecting epistatic ef-
fects and reaching the significant level of Genome-wide [7,8].
As an alternative analytical strategy, some researchers put
forward association analytical approaches based on SNP-set
[8-14], which have obvious advantages over those based on
individual SNP in improving test power and reducing the
number of multiple comparisons.
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Max-single is the simplest method using the max-
imum χ2 statistic of all SNPs to compute the p-value of
the SNP-set [9]. However, this method might not be op-
timal as it does not utilize the LD structure among all
genotyped SNPs, especially when the disease locus has
more than one in SNP-set. Fan and Knapp [10] used a
numerical dosage scheme to score each marker genotype
and compared the mean genotype score vectors between
the cases and controls by Hotelling’s T2 statistic. Com-
pared with the former, the later makes full use of the LD
information, but the degree of freedom of Hotelling’s T2

increases greatly. Mukhopadhyay [11] constructed
kernel-based association test (KBAT) statistic, which
compared the similarity scores within groups (case and
control) and between groups. The simulation results in-
dicated that KBAT has stronger power than multivariate
distance matrix regression (MDMR) by Wessel [12] and
Z-global by Schaid [9]. The principal component analysis
(PCA) was first applied to analyze the association
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between disease susceptibility and SNPs by Gauderman
[14]. He extracted linearly independent principal compo-
nents (PCs) from the expression vectors of all SNPs in
SNP-set and tested the association between qualitative
trait and PCs under logistic model. Compared with the
above method, PCA gets more favour for the improved
power because great reduction of the degree of freedom
remedies the limitation of the information loss. Lately,
Wu [8] proposed sequence kernel association test
(SKAT) based on logistic kernel-machine model, which
allows complex relationships between the dependent
and independent variables [15]. The simulation results
showed that SKAT gains higher power than individual-
SNP analysis.
All the above methods are involved the selection of

SNP-sets and the quality of SNP-set can further affect
the test power greatly. As an alternative solution, we
propose selecting some representative SNPs (called tag
SNP-set) from the original SNP-set [16-18] and then de-
signing a proper weighted function on the association
test to remedy the information loss in the process of
forming tag SNP-set. The existing algorithms of select-
ing tag SNPs, such as pattern recognition methods pro-
posed by Zhang [16] or Ke [17], statistical method put
forward by Stram [18] and software tagsnpsv2 [19] writ-
ten by Stram, are with high time complexity. Therefore,
we first propose a novel fast algorithm of selecting tag
SNPs based on the LD structure among the genotyped
SNPs. Then design a weighted function in constructing
tag SNP-set-based test (called weighted tag SNP-set-
based test). The intensive simulation results indicate that
our method has much higher power than those of tests
based on original SNP-set, tag SNP-set and weighted
original SNP-set.
The remainder of this paper is organized as follows. In

the next section, we will introduce the proposed fast al-
gorithm of selecting tag SNP-set, weighted function, and
statistics KBAT and SKAT used in this paper. Then we
will list simulation scenarios and simulation results of
the comparison of the weighted tag SNP-set-based test
and the weighted original SNP-set-based test. The ana-
lysis and discussion of the results are shown at the end
of this paper.

Methods
Notations
Assumed that there are p SNP loci to be tested in the
original SNP-set, and n independent subjects in a case–
control GWAS. Select randomly m subjects i1, i2, ⋯, im
from the n subjects, ij ∈ {1, 2, ⋯, n}, j = 1, 2, ⋯, m,
m≪ n. We intend to test the haplotypes at all the p
SNP loci of the m subjects. Thus we get 2m haplo-
types, where every allele at each locus only has two
possibilities 0 or 1, representing the major allele and
the minor allele respectively. Let Zi = (zi1, zi2, …, zip)
denote all the alleles of the ith haplotype at all the p
SNP loci (i = 1, 2, ⋯, 2m), where zij ∈ {0, 1}, i = 1, 2, ⋯,
2m, j = 1, 2, ⋯, p. For the remaining n-m subjects i

0
1; i

0
2;

⋯; i
0
n−m; i

0
j∈ 1; 2;⋯; nf g; j ¼ 1; 2;⋯; n−m; we only need

to consider the genotypes of their s tag SNP loci l1, l2,
⋯, ls, s≪ p. Obviously, this reduces greatly the cost of

genotyping. Let Gk ¼ gkl1 ; gkl2 ;…; gkls

� �
denote the

genotype value vector of the kth subject at all the s tag
SNP loci (k = 1, 2, ⋯, n), where the genotype value gkj
= 0, 1, 2. corresponds to homozygotes for the major
allele, heterozygotes and the homozygotes for minor
allele under the additive model, respectively (k = 1, 2,
⋯, n, j = l1, l2, ⋯, ls). Let yi denote the qualitative trait
of the ith subject and yi = 1 for case, yi = 0 for control,
i = 1, 2, ⋯, n.

Fast algorithm of selecting tag SNPs
Up to now, many approaches of grouping the original
SNP-sets have been proposed, such as gene-, LD
structure-, biological pathway- and complex network
clustering-based approaches [8]. In our study, we employ
the gene-based approach, namely treat all the SNPs in a
gene as an original SNP-set. We select a subset of SNPs
from the original SNP-set, in which each SNP is the rep-
resentative with high expression correlation. Obviously,
the subset includes most of information of the original
SNP-set and we define it as the tag SNP-set of the ori-
ginal SNP-set, tag SNP-set for short without confusion.
We divide the original SNP-set into some subsets by the
rules that the SNPs in the same subset have high expres-
sion correlations among individuals and the SNPs in dif-
ferent subsets have low correlations, then choose one
SNP of each subset (regarded as a tag SNP) as the repre-
sentative of this subset. All the tag SNPs forms a tag
SNP-set. The detailed algorithm is as follows.
Input haplotypes zij of all the p loci of the m subjects,

i = 1, 2, ⋯, 2m, j = 1, 2, ⋯, p.
Step 1 compute the coefficient Rij of LD describing the

correlation between SNP i and SNP j [20],

Rij ¼ Rji ¼ 1
2m−1ð ÞSiSj

X2m
k¼1

zki−�zið Þ zkj−�zj
� �( )2

; i; j

¼ 1; 2;⋯; p; i ≥ j;

where �zi and Si denote the mean and the variance of z·i
respectively. t is a threshold in the interval [0, 1]. We set
t = 0.9 based on a series of experiments. If Rij > t or i = j,
let Nij = 1, otherwise Nij = 0, i, j = 1, 2, ⋯, p, i ≥ j. Let S =
∅, B = {1, 2, …, p}.
Step 2 choose an element k from B randomly. Let
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Q ¼ kf g; k ∈ B;B ¼ B− kf g:
Step 3 if there exists Nmn = 1, m ∈ Q, n ∈ B, then let Q

=Q + {n}, B = B − {n}, and go to Step 3; Otherwise go to
Step 4.
Step 4 determine the tag SNP of the subset Q grouped

in Step 3. Namely, let

tQ ¼ min i max
i∈Q

Ri ¼
X
j∈Q

Rij

�����
)
; S ¼ S þ tQ

� �
:

(

Step 5 if B ≠∅, go to Step 2; Otherwise Stop.
Output tag SNP-set S
We compare the time complexity of the above algo-

rithm and software tagsnpsv2 [19], listed in Table 1.
Table 1 shows that our algorithm of selecting tag SNPs
has absolute advantage over software tagsnpsv2 from the
view of time complexity.

Weighted function
Among the analytical methods based on SNP-set,
weighted analysis tends to increase the power [8]. The
square of χ2 statistic of single SNP is used to weight the
corresponding SNP in our research. The detailed for-
mula [21] of computing the weight wi corresponding to
the ith SNP is

wi ¼ ad−bcð Þ2 aþ bþ cþ dð Þ
aþ bð Þ aþ cð Þ cþ dð Þ bþ dð Þ

( )2

;

where a, b, c, d are the observed data of ith SNP in case
and control.

Kernel-based association test (KBAT)
Mukhopadhyay [11] proposed KBAT statistic based on

U-statistic [22]. Let �Uk
l ¼

X
i<j
hkl gki ; g

k
j

� �
=ml denote U-

statistic of the kth SNP in the lth group, where l = 1, 2
represent case and control respectively; ml ¼ C2

nl ; nl is

the number of subjects in the lth group; the hkl ⋅; ⋅ð Þ is the
kernel, allele match kernel (AM) function [11] is used in

our study. Let Wk ¼
X2

l¼1

X
i<j

hkl gki ; g
k
j

� �
− �Uk

l

h i2
and

Bk ¼
X2

l¼1
ml �Uk

l − �Uk

� �
represent the quadratic sum of

the kernel score of kth SNP within group and between
Table 1 The comparisons of time complexity between our
algorithm and tagsnpsv2

Method Running time1

(about 10 from 163)
Running time1

(about 36 from 163)

Our algorithm Less than 1 minute Less than 1 minute

tagsnpsv2 About 35 minutes About 55 minutes
1Its execution is on the ENr321 gene and a server (Intel(R) Core(TM) i3-3240 T
CPU @2.90GHz2.90GHz, 4GB Windows 8).
groups, respectively, where �Uk ¼ �Uk
1 þ �Uk

2

� �
=2:

Mukhopadhyay employed KBAT statistic to test the as-
sociation between SNP-set and phenotype. The statistic
is

KBAT ¼
Xp

k¼1
BkXp

k¼1
Wk

:

Although KBAT statistic is constructed using F distri-
bution, it does not obey F distribution [11]. We compute
the p-value by a permutation procedure under the null
model to count the empirical quantiles of KBAT statistic.
The details of KBAT method can be found in [11].
In our research, we perform original SNP-set-based

test and tag SNP-set-based test using KBAT. For con-
venience to describe, we denote the original SNP-set-
based test as KBAT, and tag SNP-set-based test as
KBAT-tag. In weighted analysis, we compare the powers
of the tests based on weighted KBAT with weighted
KBAT-tag.

Sequence kernel association test (SKAT)
To further verify the effectiveness of our method, we
also conduct the similar comparisons using sequence
kernel association test (SKAT) statistic instead of KBAT.
For the ith subject, we use the following model (1) to de-
scribe the correlation between the phenotype and the
genotypes:

logitP yi ¼ 1ð Þ ¼ α0 þ α1xi1 þ⋯þ αmxim
þ h zi1; zi2;⋯; zip

� � ð1Þ

where α0 is an intercept term, α1, ⋯, αm are regression
coefficients and x1, ⋯, xm are the environmental and
demographic covariates. The correlation is completely
defined by function h(⋅) and h Zið Þ ¼

Xn

j¼1
γ jK Zi;Zj

� �
according to Representer Theorem [23], where γ1, ⋯, γn
are the coefficients. The mean and variance of h(z) are 0
and τK respectively offered by Liu [24]. We can consider
the null hypothesis h(z) = 0 by testing τ = 0, and Wu [8]
proposed to test τ = 0 using the score statistic Q intro-
duced by Zhang and Lin [25]. The Q-statistic is

Q ¼ y−p̂0ð Þ0K y−p̂0ð Þ
2

;

where logit p̂0i ¼ α̂0 þ α̂1xi1 þ⋯þ α̂mxim; Q obeys χ2

distribution with scale parameter κ and degree of free-
dom v. The details of SKAT method can be found in [8].
We also use the notations SKAT, SKAT-tag similar to
KBAT.
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Simulations
To evaluate the performance of weighted tag SNP-set
analytical method, we conduct extensive simulations. All
causal SNPs used in our study are assumed to increase
the disease risk, because KBAT are not affected by the
direction of effect [11].
HTR2A, associated with Schizophrenia and Obsessive-

compulsive disorder [26,27], is a 62.66-kb-long gene with
169 HapMap [28] SNPs and is located at 13q14-q21. A
total of 34 out of 169 SNPs genotyped by Illumina Human
Hap 650v3 array [29] are used to be the causal SNPs in
simulations. We consider HTR2A gene for instance and
use the HAPGEN2 [30] to generate SNP data at each
locus on the basis of the LD structure of the CEU samples
of the International HapMap Project.
To verify the effectiveness of our proposed method,

we first generate replicated datasets at the 169 SNP loci
on the HTR2A gene in nine different scenarios using
HAPGEN2, where each data set includes 500 cases and
500 controls. Then choose one from the replicated data
sets for each scenario and 200 haplotypes of 50 cases
and 50 controls from this set randomly as the consid-
ered haplotypes used to form the tag SNP-set by the
algorithm of selecting tag SNPs mentioned in the
methods. In the first scenario, 5000 replicated data sets
are generated under the null disease model and 1000
replicated data sets are generated under different disease
models which assume the same heterozygote disease risk
1.25 and same homozygote disease risk 1.5 for other
scenarios. We assume there is only one causal SNP in
scenario 2 and two causal SNPs specified randomly in sce-
narios 3–9. Both of the two causal SNPs are genotyped by
Table 2 Simulation parameters in scenarios 2-9

Scenario No. of causal SNP Causal SNP The position of c

2 1 Each of all the 34 SNPs

3 2 rs977003 46313002

rs9534511 46366581

4 2 rs3803189 46306571

rs977003 46313002

5 2 rs3803189 46306571

rs731779 46350039

6 2 rs9526246 46347862

rs9534511 46366581

7 2 rs3803189 46306571

rs9526246 46347862

8 2 rs3803189 46306571

rs3742278 46317578

9 2 rs6561333 46318313

rs9526246 46347862
1minor allele frequency.
2the average of R2 between the causal SNP and 34 genotyped SNPs.
Illumina Human Hap 650v3 array in scenario 3–5, only
one is genotyped in scenarios 6–8, and no causal SNPs are
genotyped in scenarios 9. The minor allele frequency
(MAF), the mean R2 with genotyped SNPs and the distance
between the causal SNPs are also different. The detailed
parameters for scenarios 2–9 are listed in Table 2.

Results
The preliminary validation using KBAT
Type I error rate evaluation
We simulate 5000 replicated data sets to estimate type I
error rate in scenario 1. The detailed results are listed in
Table 3 at the significance level of 0.005, 0.01 and 0.001
respectively. Table 3 indicates that the type I error of
our method can be controlled.

Power evaluation
To evaluate the powers of KBAT, KBAT-tag, weighted
KBAT and weighted KBAT-tag, we simulate 1000 repli-
cated data sets in scenarios 2–9. Figure 1 plots the powers
of them in scenario 2. As a whole, the powers of the tag
SNP-set-based tests on the basis of KBAT are higher
than the corresponding original SNP-set-based tests.
That is to say, the selected tag SNP plays an important
role in increasing the power of statistical test by obtain-
ing information from the SNPs with high LD. But when
we regard the 6th, 7th, 8th and 9th SNP respectively as the
causal SNP, the powers of tests based on tag SNP-set are
evidently lower than the one based on original SNP-set
of KBAT. We think the main reason is the high LD
between the SNPs. Namely, the very high LD exists be-
tween multi-SNPs and the causal SNP. This makes the
ausal SNP Genotyped MAF1 Mean R2 with the genotyped SNPs2

Yes 0.449 0.0853

Yes 0.442 0.178

Yes 0.107 0.0474

Yes 0.449 0.0853

Yes 0.107 0.0474

Yes 0.161 0.2478

No 0.462 0.2164

Yes 0.442 0.178

Yes 0.107 0.0474

No 0.462 0.2164

Yes 0.107 0.0474

No 0.158 0.0535

No 0.466 0.1127

No 0.462 0.2164



Table 3 Type I error rate in scenario 1 for KBAT

Significance level KBAT KBAT-tag Weighted
KBAT

Weighted
KBAT-tag

0.05 0.049 0.05 0.048 0.046

0.01 0.0096 0.0096 0.0098 0.0092

0.001 0.0008 0.0012 0.0008 0.001

Table 4 Powers of KBAT under the assumption of two
causal SNPs at the significance level of 0.05

Scenario 3 4 5 6 7 8 9

KBAT 0.099 0.067 0.287 0.264 0.1 0.128 0.3

KBAT-tag 0.111 0.06 0.348 0.297 0.105 0.114 0.241

Weighted KBAT 0.562 0.524 0.762 0.544 0.64 0.744 0.478

Weighted KBAT-tag 0.583 0.545 0.795 0.593 0.674 0.75 0.482
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test power reduce due to losing too much information
when forming the tag SNP-set. Obviously, each tag SNP
in the tag SNP-set plays a different role in detecting
disease association. Therefore we come to an idea that
each SNP in the tag SNP-set is assigned a different value
weighted by the χ2 statistic of this SNP. Figure 1 shows
that, in the weighted case, the power of test based on
tag SNP-set is better than that based on original SNP-set.
In order to further study the performance of our

method under more complex simulation data sets, we
conduct scenarios 3–9. Each data set has two causal
SNPs designated randomly. Table 4 lists the powers of
KBAT, KBAT-tag, weighted KBAT and weighted KBAT-
tag in scenario 3–9. In un-weighted cases, the powers of
KBAT based on tag SNP-set are higher than those based
on original SNP-set except for few scenarios, while these
exceptions do not arise in weighted case.

The further validation using SKAT
To further verify the performance of our method, we
apply it on SKAT. Table 5 shows that the type I error of
our method can be controlled. Figure 2 plots the power
Figure 1 Power comparisons of different SNP-sets for KBAT. This show
Weighted KBAT-tag at the significant level of 0.05.
comparison of SKAT, SKAT-tag, Weighted SKAT and
Weighted SKAT-tag in scenario 2 and Table 6 lists their
powers in scenario 3–9. The results also demonstrate
our proposed weighted tag SNP-set analytical method is
effective in disease association. To estimate the influence
of the selection of the tag SNP-set on the test power, we
compare the powers of the weighted SKAT-tag based on
four types of tag SNP-sets: the original SNP-set, all tag
SNPs selected by our proposed algorithm of selecting,
all remaining SNPs and a randomly selected subset.
Figure 3 indicates that the power of the weighted
SKAT-tag based on the tag SNP-set selected by our
proposed algorithm is the largest.

Discussion
In this research, we proposed a novel powerful method-
weighted Tag SNP-set analytical method, which uses
weighted tag SNP-set-based test instead of the original
SNP-set-based test. We also designed a new fast algo-
rithm of selecting tag SNPs and treated χ2 statistic of in-
dividual SNP as its weight in the study of disease
s the power comparisons of KBAT, KBAT-tag, Weighted KBAT and



Table 5 Type I error rate in scenario 1 for SKAT

Significance level SKAT SKAT-tag Weighted SKAT Weighted
SKAT-tag

0.05 0.049 0.048 0.05 0.048

0.01 0.0092 0.0098 0.0104 0.0096

0.001 0.0008 0.0006 0.001 0.0012

Table 6 Powers of SKAT under the assumption of two
causal SNPs at the significance level of 0.05

Scenario 3 4 5 6 7 8 9

SKAT 0.16 0.1 0.265 0.508 0.13 0.123 0.674

SKAT-tag 0.207 0.1 0.334 0.539 0.132 0.114 0.637

Weighted SKAT 0.945 0.903 0.939 0.977 0.888 0.932 0.99

Weighted SKAT-tag 0.952 0.918 0.953 0.979 0.921 0.947 0.995
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association. In our method, we only need to genotype
the tag SNPs instead of all SNPs in original SNP-set,
which greatly reduces the cost of genotyping. To illustrate
the effective of our method, we applied it to the test of
SKAT and KBAT respectively and conducted intensive
simulations under nine scenarios. The results indicated
that weighted Tag SNP-set analytical method is an attract-
ive alternative approach in SNP-set analysis. It is worth
mentioning that we only applied our method to the test of
SKAT and KBAT of qualitative traits, but, theoretically, it
is also suitable for all statistical tests of qualitative traits
and quantitative traits. We will verify its effective in the
future study.

Power improved
Power and Type I error are two important standards in
statistical test. In our proposed weighted tag SNP-set
analytical method, the power is increased greatly under
the condition of protecting the type I error. We also
note that regardless of the tag SNP-set, the curve pat-
terns of the powers are very similar in Figure 3. This in-
dicates the relative size of the power of the test is
Figure 2 Power comparisons of different SNP-sets for SKAT. This show
Weighted SKAT-tag at the significant level of 0.05.
determined by the LD structure between causal SNP and
other SNPs. From Table 4 and Table 6, we also find that
the power has no direct relationships with that whether
the causal SNP is genotyped or not and the power has
positive correlation with the mean R2 between causal
SNP and all genotyped SNPs. This further verifies that
the LD structure between causal SNPs and other SNPs
impacts the relative size of the power.

New fast algorithm of selecting tag SNPs
Obviously, the quality of the tag SNP-set impacts the
test power directly because our test is performed be-
tween the tag SNP-set and disease phenotype. In the
study, we selected the tag SNP-set using the LD struc-
ture information among SNPs. Firstly we established the
complex network, whose nodes are SNPs and edges are
the relationships of LD between SNPs, then divided it
into many subsets by a threshold, and finally selected a
SNP from each subset as the tag SNP to form a new set
regarded as tag SNP-set. It took less than 1 minute to
select 58 tag SNPs from 169 SNPs on a server (Intel(R)
s the power comparisons of SKAT, SKAT-tag, Weighted SKAT and



Figure 3 Power comparisons of different SNP-sets for weighted SKAT. It indicates the comparisons of the powers of the weighted SKAT
based on the original SNP-set (weighted SKAT), all selected tag SNPs (weighted SKAT-tag), all remaining SNPs (weighted SKAT-untag) and a randomly
selected subset (weighted SKAT-random) at the significant level of 0.05 respectively.
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Core(TM) i3-3240 T CPU @2.90GHz 2.90GHz, 4GB
Windows 8). During forming the tag SNP-set, threshold
t is an important parameter. When t = 1, each SNP rep-
resents itself and tag SNP-set is the same as original
SNP-set. If t = 0, only one SNP is included in tag SNP-
set and the analysis is similar to Max-Single method. We
tested different values of t in our simulations, and the
comparison showed that threshold has a great influence
on power and t = 0.9 is relatively the best to improve
power.
Table 7 The selected tag SNPs when regard rs3803189 as
a causal SNP

Causal SNP rs3803189

The selected
tag SNPs

2 4 5 7 9 10 13 15 16 23 29 31 34 37 40 58 59 60 61 62
64 65 67 68 69 72 75 79 80 81 83 85 89 91 94 103 108
111 116 118 119 120 121 125 127 129 134 136 139 143
153 155 157 158 159 166 167 168

This is an example with 169 original SNPs and each number represents a
tag SNP.
Reduction of the cost of genotyping
Our proposed tag-SNP-based analytical method only
needs to test genotypes of tag SNP loci instead of all loci
of all subjects. For example, the original SNP-set used in
our simulations consists of 169 SNPs and 58 SNPs
(about 1/3 of the original SNP-set) of forming the tag
SNP-set are showed in Table 7 when regard rs3803189
as the causal SNP in scenario 1. That is to say, the tag
SNP-set-based method saves nearly 2/3 of the cost of
genotyping relative to original SNP-set-based one. This
also happens in other situations and that how much can
be saved relies on the LD structure of the original SNP-
set and the set of threshold.
Although there are many advantages in our method,

limitations also exist. We only used simulative datasets
to evaluate the effectiveness of our method, and did not
apply the method to the real disease data. In addition,
the set of threshold t is difficult and it determines the
size of the tag SNP-set, which further greatly impacts
the test power and influences the cost of genotyping.

Conclusions
We proposed a weighted tag SNP-set analytical method
involving the selection of tag SNP-set from original
SNP-set and the description of status of each tag SNP-
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set. Based on gene HTR2A and the LD structure of the
CEU samples of the International HapMap Project
under various model parameters, our simulation studies
confirmed that the weighted tag SNP-set analytical
method is efficient in SNP-set analysis of GWAS. In our
simulative experiments, we also demonstrated that tag
SNP-set impacts the test power greatly. So we designed
a fast algorithm of selecting tag SNP-set with most of
information of original SNP-set, and the power of the
test based on our selected tag SNP-set is the highest in
our simulations. The proposed weighted function pro-
vides a better description for the status of each tag SNP
according to the comparisons between weighted cases
and un-weighted cases.
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