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Abstract

Background: Coronary artery calcification (CAC) is an imaging biomarker of coronary atherosclerosis. In European
Americans, genome-wide association studies (GWAS) have identified several regions associated with coronary artery
disease. However, few large studies have been conducted in African Americans. The largest meta-analysis of CAC in
African Americans failed to identify genome-wide significant variants despite being powered to detect effects comparable
to effects identified in European Americans. Because CAC is different in prevalence and severity in African Americans
and European Americans, admixture mapping is a useful approach to identify loci missed by GWAS.

Results: We applied admixture mapping to the African American cohort of the Family Heart Study and identified
one genome-wide significant region on chromosome 12 and three potential regions on chromosomes 6, 15, and
19 that are associated with CAC. Follow-up studies using previously reported GWAS meta-analysis data suggest that
the regions identified on chromosome 6 and 15 contain variants that are possibly associated with CAC. The associated
region on chromosome 6 contains the gene for BMP-6, which is expressed in vascular calcific lesions.

Conclusions: Our results suggest that admixture mapping can be a useful hypothesis-generating tool to identify genomic

regions that contribute to complex diseases in genetically admixed populations.
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Background
Coronary artery calcification (CAC), measured by com-
puted tomography (CT), is an imaging biomarker of cor-
onary atherosclerosis. CAC correlates with atherosclerotic
plaque measured by intravascular ultrasound and histo-
logical methods, and can identify asymptomatic individ-
uals who are at risk for myocardial ischemia [1,2]. The
extent and severity of CAC can also provide predictive
power for other CHD (coronary heart disease) related phe-
notypes such as myocardial infarction (MI) or stroke [3].
The presence and burden of CAC is known to be herit-
able. In Americans of European decent (EAs) quantitative
measures of CAC have a heritability of 40-60% [4]. There
are at least two well-established genome-wide significant
associations for CAC [4,5] at 9p21 (p =7.58 x 107*°) and
6p24 (p=2.65 x 10™'") in EAs. These variants have been
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replicated in other independent studies [6,7]. In African
American (AA) populations, fewer genome-wide associ-
ation studies have been conducted. The largest genome-
wide meta-analysis to date of CAC was conducted by
Wojczynski et al. [8]. This study showed that the heritabil-
ity of CAC is slightly lower in AAs than in EAs; about
30%. Wojczynski et al. [8] failed to identify any genome-
wide significant variants that are associated with CAC.
The most significant site identified in this study was found
on chromosome 2 (rs749924 p =1.07 x 1077). Addition-
ally, Wojczynski et al. [8] showed that EA GWAS signals
do not replicate in AAs, which suggests that the genetic
architecture of CAC in AAs may be different than the
genetic architecture of CAC in EAs. One of the limitations
of genomic studies in AAs using standard genotyping ar-
rays is that SNPs on standard commercial arrays may not
be adequate tags of relevant variation in AA populations.
Admixture analysis is an approach that is not subject to
this weakness and has the potential to identify genomic
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regions harboring functional variants, and thus is comple-
mentary to standard GWAS.

The genomic data suggesting different genetic architec-
tures of CAC between AAs and EAs is consistent with
the longstanding observation that CAC tends to be more
prevalent in EA populations than AA populations [9-12].
In general CAC occurs less frequently and is less severe
in AAs than EAs, despite AAs having similar or increased
exposures to CHD risk factors [10,12,13]. Although there
is a decreased presence of CAC in AAs, this decreased
risk factor does not translate into decreased burden of
cardiovascular disease. Even when AAs have similar
exposure to CHD risk factors as EAs and less overall
CAC, after 70 months of follow up AAs had more CHD
end points (death, MI, angina, or revascularization) than
EAs [14].

When there are distinct differences in the presence of
a phenotype along ethnic lines, similar to the trends seen
in CAC, admixture mapping is a useful technique to
uncover genetic associations that are often not identified
by traditional GWAS or meta-analysis methodologies.
Admixture mapping detects genetic associations by
identifying genomic regions where an association exists
between genetic ancestry and a particular phenotype.
Several groups have used admixture mapping to identify
genetic variants that are associated with CAC [15-17].
These data consistently indicate that CAC is more preva-
lent in people of European descent, and that European
genetic ancestry in admixed populations is associated with
risk for CAC. The current study further explores the util-
ity of admixture mapping to identify genomic regions that
are associated with CAC in AAs. This study tests the
hypothesis that admixture can identify genomic regions
that are missed in GWAS. We have used genome-wide
SNP data to estimate local ancestry in the AA participants
of the Family Heart Study. These data were then used to
examine the association between genetic ancestry and
CAC. We have also used additional data to interrogate
our strongest admixture associated regions to further
identify potentially functional variants. Investigating the
genetic architecture of CAC in diverse populations will
help to understand the biology of this trait and perhaps
shed light on the disparities seen in CHD risk between
EAs and AAs.

Methods

Family heart study - study design

The Family Heart Study (FamHS) was designed to iden-
tify the genetic and non-genetic determinates of CHD
and its risk factors. A detailed description of the FamHS
is provided elsewhere [18,19]. The Family Heart SCAN
(FamHS SCAN) study is a follow-up study that was de-
signed to identify genetic factors that influence suscepti-
bility to coronary and aortic atherosclerosis, and the
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inflammatory response to atherosclerosis. The African
American subjects used in the current study were col-
lected as a part of the FamHS SCAN effort. Six hundred
and twenty-two African Americans from 211 families
were recruited for this study. These individuals were re-
cruited from hypertensive sibships previously examined
by the Hypertension Genetic Epidemiology Network
(HyperGEN) of the Family Blood Pressure Program
[20]. All samples were collected and analyzed after obtain-
ing approval from the institutional review board (IRB) of
Washington University School of Medicine (IRB protocol
number: 201403014). Written informed consent was re-
ceived from all study participants. In the current study
611 individuals were analyzed. The individuals used in the
current study are described in Table 1. Eleven individuals
were removed either because of missing phenotype infor-
mation (n=5) or because the individual average African
ancestry was <1% (n =6).

Clinical examination

In the years between 2002 and 2004 participants were
invited for a clinical examination at the University of
Alabama in Birmingham. The examination included gen-
eral questionnaires, CAC measurements by cardiac CT,
and other physiologic measures including blood pressure,
lipid levels, and several anthropometric measurements.
The details of the CAC measurements are described in
earlier publications [21,22]. Briefly, participants underwent

Table 1 Characteristics of FamHS African Americans
included in the current study

Characteristics Men Women
Sample Size 209 402

Age (years) 28.56 (11.32) 30.17 (12.30)
Percent African ancestry 84.44 (0.08) 85.11 (0.07)
Mean CAC score 265.69 (668.7) 109.89 (350.17)
Maximum CAC score 5513 3615

CAC score >0 (%) 61.72 49

CAC score > 100 (%) 2967 16.17

CAC score > 300 (%) 18.66 9.7
Hypertension (%) 71.29 78.36
Diabetes (%) 2775 2861

Current smoker (%) 29.19 20.15

Total cholesterol 182.94 (39.07) 192.98 (37.43)
HDL cholesterol (mg/dL) 4760 (15.06) 56.75 (14.70)
Triglycerides (mg/dL) 114.25 (83.80) 109.39 (77.75)
BMI (kg/m?) 30.13 (6.11) 33.921 (7.55)
Waist circumference (cm) 102.76 (15.38) 105.63 (17.14)

Values are means with (Standard Deviation) or percent values (%); N =207 for
triglycerides, HDL, and cholesterol in men; N = 394 for triglycerides, HDL, and
total cholesterol in women; N = 401for BMI in women.
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a cardiac multi-detector CT exam using a standardized
protocol [23] and the CT images were read at Wake Forest
University to compute CAC scores [17].

Genotyping

The subjects described here were genotyped using an
Mlumina Human 1M-DuoV3 array. Genotypes were
called using Genome Studio software (GenCall algo-
rithm). Quality control was performed using several dif-
ferent methods to assess the correctness of the reported
familial relationships as well as to assess the quality of
the genotype calls. Mendelian errors were assessed using
LOKI [24]. 15,948 SNPs with a call rate < 0.99% or with
enough Mendelian errors to be considered outliers were
removed. One individual who had an unacceptable number
of Mendelian errors (n=1,446) was removed. GRR [25]
was used to check familial relationships based on IBS. The
output from GRR was used to make corrections to the
family relationships as warranted by the data, including the
exclusion of one individual. Quality control procedures for
SNPs included eliminating: SNPs with minor allele fre-
quency <1% (n=285,370), SNPs with deviations from
Hardy-Weinberg equilibrium (p<1 x 107%, n=783), and
SNPs that were not in HapMap (n =264,407). Because
imputation in admixed subjects can be challenging [26]
and the accuracy of the ancestry estimation depends on
quality genotype data, only measured genotypes (1,022,358
autosomal SNPs) were included in this study.

Ancestry estimation and statistical analyses

A number of different methods have been proposed to
estimate local ancestry. These methods have been thor-
oughly reviewed in a number of recent publications
[26-31]. Generally, most ancestry estimation methods
can be divided into two categories; those methods that
rely on reference allele frequencies for each parental
population (i.e. LAMP [29] and those methods that
utilize reference haplotypes for each of the ancestral
populations (i.e. HAPMIX [30], LAMP-LD [31], Saber
[32]) [27]. Shriner et al. [27] suggest that LAMP-LD is
among the most accurate software for local ancestry
inference.

In the current study, local ancestry was inferred using
LAMP-LD [31]. Each chromosome was analyzed separ-
ately and two ancestral populations were assumed, which
is consistent with most demographic models used to de-
scribe African American admixture. 1000 Genomes CEU
and YRI phased haplotypes from the Cosmopolitan Panel
were used as reference haplotypes (version 2010-11 data
freeze, 2012-03-04 haplotypes), downloaded from http://
www.sph.umich.edu/csg/abecasis/MaCH/download/1000G.
2012-03-14.html. Local ancestry estimates were coded by
the number of African alleles at each site (i.e. 0,1,2 African
alleles) and average ancestry for each individual was
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determined by summing the number of African alleles
and then dividing by the total number of markers in
the dataset.

The association of local ancestry with CAC was tested
using a linear regression of CAC score on local ancestry
using a kinship model. To complete this task we used
the R package kinship2 [33]. CAC scores were adjusted
by applying a BLOM transformation (SAS PROC RANK,
NORMAL = BLOM) by sex and age group because CAC
is strongly correlated with age and sex and its distribu-
tion is non-normal (also see [17]).

Local ancestry estimates can be highly correlated. On
a single chromosome a block of ancestry from one pro-
genitor population can be up to several mega bases long.
Therefore, to determine an appropriate p-value criterion
it is necessary to estimate the number of effective inde-
pendent tests in the dataset. We estimated the effective
number of independent tests following the method of
Shriner et al. [34] based on fitting an autoregressive model
to the local ancestry data and evaluating the spectral dens-
ity at frequency zero. A Bonferroni correction was then
applied to calculate an adjusted significance threshold to
yield an experiment-wise type I error rate of 5%.

Admixture sites with a p-value <1 x 10~ were carried
forward for further characterization, which included a
Student’s t-test to determine whether individuals in the
highest and lowest quartiles of the distribution of CAC
show a difference in the amount of African ancestry at
the sites identified in the admixture analysis. The bound-
aries of the regions indicated by admixture mapping (i.e.
regions that contain the sites carried forward) were de-
fined using a strategy similar to Zhu et al. [35]. A target
region was defined as the region bound by sites within a
2.0 unit drop of —log;o(P) from the admixture sites
carried forward [35]. Because admixture mapping signals
can be driven by single nucleotide polymorphisms (SNPs)
with considerable allele frequency differences between
ancestral populations [35], each target region was inter-
rogated in YRI and CEU 1000 Genomes data for SNPs
with an information content (8) > 0.2. Here, 8 is defined
as the absolute frequency difference for an index allele in
the YRI and CEU populations [36]. The 1000 Genomes
SNPs with § >0.2 in each target region were then queried
in the Wojczynski et al. [8] CAC meta-analysis data.
Then, using the number of informative meta-analysis
SNPs in each region a Bonferroni correction was applied
to determine an appropriate p-value threshold for each re-
gion. Additionally, the Bonferroni corrected value was di-
vided by four- the total number of regions considered for
meta analysis look-up. SNPs with p-values less than the
Bonferroni corrected threshold were considered as pos-
sible drivers of the admixture signal.

As a final follow-up procedure, CAC phenotype values
were adjusted for the local ancestry of the meta-analysis
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SNPs that reached the region specific p-values. On both
chromosome 6 and chromosome 15, the identified meta-
analysis SNPs were not typed in the AA FamHS cohort.
Therefore, proxy sites in high LD (r* > 0.8) determined by
the Broad Institute’s SNAP database [37] were used. Using
the residuals from the adjustment analysis a secondary re-
gression was completed to test whether adjusting for the
ancestry of the meta-analysis SNPs diminished the effect
of ancestry in each region.

Results

The characteristics of the sample used in this analysis
are shown in Table 1. There are ~400 women and ~200
men of similar age in the sample. Note that the average
African ancestry is similar among men and women, but
on average, the male CAC scores are higher than the fe-
male CAC scores. Approximately 50% of the male and
female samples have some evidence of CAC but, a small
percentage (< 20%) of either the male or female sample
have extreme CAC values (CAC score > 300). Greater
than 70% of the sample has diagnosed hypertension and
the average BMI of the male and female sample is
greater than 30, which is consistent with other studies
that have examined hypertension and BMI in AA popu-
lations [38,39].

Global and local ancestry was estimated using 1,022,358
genotyped autosomal SNPs in 611 AA individuals. The es-
timated average African ancestry in this sample is 84.92%
(see Additional file 1). The effective number independent
ancestry blocks in this dataset was estimated to be 245,
based on the spectral density at frequency zero, making the
threshold for genome-wide of significance 2.04 x 10, One
site on chromosome 12 (rs12824925) reached genome-
wide significance (p = 1.64 x 10™*) (see Figure 1, Additional
files 2 and 3). Three additional sites on chromosomes 19
(rs8102093) (see Additional files 2 and 4 for chromosome
19 results), chromosome 6 (rs11243125) and chromosome
15 (rs12907600) that met the p-value < 1.0 x 10 > thresh-
old were also carried forward for follow-up analyses
(Table 2, Figure 1). In all cases the average African ancestry
at each site was significantly higher in individuals in the
lowest CAC quartile, suggesting that lower CAC scores are
associated with African ancestry at these sites (Figure 2),
consistent with the regression results.

In addition to examining the association between
CAC and local ancestry, the association of CAC and the
average genomic African ancestry was tested, including
a test stratified by sex. Overall, global African ancestry
was not significantly associated with CAC (data not
shown), however, the sex stratified analysis showed a
significant association between CAC and global ancestry
(p =0.0004) in men and no significant effect in women
(see Additional file 5) suggesting a possible modification
of genetic effect by sex. While our sample size is too

Page 4 of 13

small to support a full admixture analysis by sex, we
examined the associations we observed from local
admixture analysis for evidence of sex-specific effects
using a Student’s ¢ test. Consistent signals were observed in
men and women on chromosomes 6 and 15. However, the
regions on chromosomes 12 and 19 exhibited sex-specific
effects: the association on 12 was significant in women
only, while on chromosome 19, the association was signifi-
cant in men only (see Additional file 5). These results
suggest that the association between ancestry and CAC
may have some sex specific effects, but further verification
in independent samples is warranted.

To further investigate the strongest admixture signals
on chromosomes 12, 19, 6, and 15, a target admixture
region was defined and probed, as described in the
Methods and Materials (Table 3). Region specific thresh-
olds (Table 2) were determined, as described in the
Methods and Materials, to test whether the admixture
target regions contain SNPs that are potentially associ-
ated with CAC (Table 3). Two SNPs on chromosome 6
were smaller than the determined regional threshold.
Three sites on chromosome 6 were not smaller than the
determined threshold, but are suggestive signals. One
site on chromosome 15 was of a similar magnitude to
the determined regional threshold for chromosome 15,
but not smaller than the threshold. Regional association
plots that highlight these sites are shown in Figures 3
and 4. On chromosome six the strongest associated SNP
from meta-analysis is rs6929568 (p-value = 9.77 x 1077).
This is one of the strongest signals in the Wojczynski
et al. meta-analysis. Rs6929568 is in an intergenic region
~347 kb from BMP6 (Bone Morphogenic Protein 6),
which is a member of a gene family that is known to
play a crucial role in bone development and whose
members have also been shown to be associated with
vascular calcification [40]. On chromosome 15, one SNP
(rs7180916) showed a similar p-value to the region spe-
cific threshold. This site is in an uncharacterized protein-
coding locus of unknown function. This site is also 122,184
bp away from the ATP10A gene, which has been suggested
to be a possible candidate gene driving a GWAS signal
identified for insulin resistance in the African American
cohort of the HyperGEN study [41]. For comparative
purposes regional association plots of the corresponding
region from a GWAS of CAC in the FamHS EAs (unpub-
lished data) are presented in Figures 3 and 4. On both
chromosomes 6 and 15, similar GWAS signals were not
found in the FamHS EAs.

To assess whether the admixture signal could be
driven by the SNPs identified from the GWAS meta-
analysis, CAC scores were adjusted for the estimated
local ancestry for the identified meta-analysis SNPs on
chromosomes 15 and 6 (rs7180916 and rs6929568, re-
spectively), and the regression was repeated. Because
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Figure 1 Manhattan plot of genome-wide admixture analysis. The significance threshold is based on the estimated 245 effective tests in the dataset.
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these particular SNPs were not genotyped in the FamHS
AA dataset, SNP proxies were identified (rs6929568
proxy = rs6421947; r* = 0.872; rs7180916 proxy = rs7180560;
=10 [37]). On both chromosomes 6 and 15, we ob-
served a reduction in the evidence for ancestry associ-
ation following the adjustment procedure (Figure 5),
suggesting that these loci may in part account for the
genetic effect on CAC levels in AAs. Following the adjust-
ment procedure, the p-value for rs11243125 (top chromo-
some 6 admixture signal) changed from p =3.895 x 10™* to
p=0.12 (see Figure 3) and the p-value for rs1290760 (top
chromosome 15 signal) changed from p=7.911 x 10™* to
p =0.2373. In both scenarios these results suggest that the

Table 2 Top admixture mapping results

sites identified from in the meta-analysis are contributing
to the admixture signals detected on chromosome 6 and
chromosome 15.

Discussion

The goal of this study is to identify genomic regions in
the AA cohort of the FamHS SCAN that are associated
with CAC burden. To accomplish this goal admixture
mapping was employed. Admixture mapping can iden-
tify genomic regions in admixed populations that are
associated with traits that differ in severity or prevalence
between ethnic groups. It is based on the assumption
that casual variants will be associated with genomic

Chr Region (Mb) Region upper and lower Lead SNP Lead SNP Admixture Beta SE  Number of 6 >0.2 SNPs Meta analysis
boundary P-values position  P-value in meta analysis regional P-value
regions thresholds
12 12031- 12662 0.020/0.021 rs12824925 122802641 1.64E-04 —0303 008 1838 6.80E-06
19 027-210 0.00063/ 0.027 rs8102093 636638 2.58E-04 —0.2854 008 416 3.00E-05
6 4.75- 828 0.084/0.083 1s11243125 6869898 746E-04 -0.2768 0.08 1479 845E-06
15 2447-2764  0.03041/0.1205 rs12907600 25386427 791E-04 —02622 008 1215 1.03E-05

Chr= Chromosome. This table includes the target regions for further analysis and the number of informative SNPs that were mapped to each target region.
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Figure 2 Comparison of average African ancestry at admixture mapping sites carried forward. Q1 = individuals in the lowest quartile of the CAC
distribution; Q3 = individuals in the highest quartile of the CAC distribution; p indicates p-value. In each case there is significantly more African ancestry
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regions from the parental population with higher disease
risk or where average trait values are larger [26-28]. CAC
shows differences in both prevalence and severity between
EAs and AAs, thereby making it an appropriate phenotype
for admixture mapping.

Local ancestry was inferred at 1,022,358 autosomal loci in
611 AA individuals using LAMP-LD [31]. Overall, an average
of 84.9% African ancestry was observed in the FamHS AA
cohort, but with a range from 38% - 98%. These results are
similar to those previously reported in AAs (~80% African
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Table 3 Summary of top Wojczynski et al. [8] meta analysis SNP

Chr SNP SNP YRI YRI 6 Meta Meta Meta Meta Meta SNP type Nearby genes
position minor freq allele p-value directions effect SE
allele

6 rs6929568 8228942 T 048 020 T 9.77 E-07 —————+ -008 002 intergenic  EEF1E1,SLC35B3,SCARNA27,
TXNDC5,BMP6

6 rs2327037 8228490 G 048 021 A 129 E-06 +++++++ 008 002 intergenic EEF1E1,SLC35B3,SCARNA27,
TXNDC5,BMP6

[§ rs641753 8233377 G 048 021 A 246 E-05 ++++++- 0.07 0.02 intergenic  EEF1E1,SLC35B3,SCARNA27,
TXNDC5,BMP6

6 rs6924698 8225111 G 046 023 C 7.76 E-05  ++4+++++- 006 002 intergenic  EEF1E1,SLC35B3,SCARNA27,
TXNDC5,BMP6

6 1s7771592 8223599 A 046 023 A 9.77 E-05 ——————+ -006 002 intergenic  EEF1E1,SLC35B3,SCARNA27,
TXNDC5,BMP6

15 rs7180916 26230533 G 044 041 A 832 E-05 ++++++++ 006 002 genic uncharacterized locus- LOC100128714
(RP11-108419.1)

Chr=chromosome.

ancestry) and are also similar to the AAs from Birmingham,
AL from in the CARDIA consortium, where the estimated
average African ancestry was 81.2% [42]. The observed
variability in ancestry supports the informativeness of this
population for admixture analysis.

The genome-wide admixture analysis resulted in one
genome-wide significant signal on chromosome 12 and
three suggestive regions on chromosomes 19, 15, and 6
with p-values < 1x10 > (see Figure 1, Additional files 2
and 6). We confirmed that for each of these regions indi-
viduals with the highest CAC scores had more European
ancestry at these sites. These results suggest that risk for
CAC is associated with genomic variation of European
ancestry. In this case, African ancestry appears to be
protective against CAC. Wassel et al. [16] used admixture
analyses to show that in AAs a standard deviation increase
in European ancestry was associated with an 8% increase
CAC prevalence. They also observed a similar trend in
Hispanics, where European ancestry is associated with a
higher CAC prevalence. Divers et al. [15] used linkage
analysis to show significant associations with risk for CAC
and European ancestry at 1p32.3 (LOD=3.7), 1q32.1
(LOD =3.1), 4q21.2 (LOD =3.0), and 11q25 (LOD =3.4).
Zhang et al. [17] also conducted an admixture scan of
CAC in FamHS using microsatellite markers. They identi-
fied several significant associations (p<0.01) between
CAC and African ancestry at 10p14 (p =0.0012), 20q13
(p=0.0075), 12q14 (p=0.0082), and 6ql2 (p =0.0098).
Although the individuals in the Zhang et al. [17] analysis
and the analysis presented here are the same, the markers
and methods of estimating ancestry are quite different. In
the current analysis a much denser panel of SNP makers
was used, which provided better resolution of ancestry
patterns and revealed stronger associations. Signals of
similar strength were observed on chromosome 10 and
chromosome 20 (see Additional file 7) and on chromo-
some 12 and 6; although the signals identified here do not

overlap with the Zhang et al. [17] analysis, the same
chromosome is consistently identified.

When the association of CAC with overall genomic
ancestry was tested, results show that global genomic
ancestry is significantly associated with CAC in men, but
not in women. This summarizes the average direction of
effects by sex over all ancestral regions that are associ-
ated with CAC, but does not necessarily imply that all
local ancestral associations follow the same pattern. In
fact, testing at the local ancestry level at the four regions
identified in our study showed consistent results across
sexes on chromosome 6 (rs11243125) and chromosome
15 (rs12907600), whereas the protective effects of African
ancestry are only seen in women on chromosome 12
(rs12824925) and only seen in men on chromosome 19
(rs8102093). Few studies that have examined the sex-
specific effects of loci associated with CAC. Pechlivanis
et al. [6] conducted an exploratory analysis to determine
whether there are sex-specific effects at loci known to be
associated with CAC. They showed that the well-
replicated variants at 9p21 have a stronger association
with CAC in males than females, and that the known as-
sociation of CAC with rs9349379 in PHACTRI is stronger
in females. The sex specific associations between ancestry
and CAC observed here are intriguing and deserve further
study in a sample that is appropriately powered to detect
sex-specific differences.

When the results from the admixture analysis were
probed using the GWAS data from a meta-analysis con-
ducted by Wojczynski et al. [8], the strongest identified
meta-analysis SNP is rs6929568 (p =9.77 x 1077). An-
other SNP was also identified on chromosome 15 at
157180916 (p = 8.32 x 107°). A regression analysis condi-
tional on the local ancestry at rs7180916 and rs6929568
was conducted. In both cases, the evidence for the effect
of local ancestry diminished to non-significant levels.
While these results are consistent with the conclusion
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African American CAC Meta Analysis Results from Target Region on Chromosome 6
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that the SNPs in these locations could account for the
admixture signals we observed, it does not exclude the
possibility that other SNPs in the regions also contribute
to the signal. Rs6929568 is located in an intergenic re-
gion of chromosome six (822894 bp), near BMP6 (Bone
Morphogenic Protein 6). BMP-6 is a part of the bone
morphogenetic protein family. The members of this pro-
tein family (and associated genes) are multi-functional
growth factors that belong to the Transforming Growth
Factor B (TGFp) super family [43]. These proteins play
an important role in fundamental developmental

processes; including the formation and ossification of
bones. In addition to the developmental roles of the
BMPs, some proteins in this family are known to play a
role in the pathogenesis of the vascular calcific lesions that
are associated with atherosclerosis, diabetes, and chronic
kidney disease. It has been suggested that vascular calcific
lesions are known to be enriched in BMP ligands and con-
tain bone-specific matrix regulatory proteins [44-48]. Of
all the BMP proteins, BMP-2 and BMP-7 are the most
well accepted proteins to show possible roles in vascular
calcification [40,49]. However, immunocytochemistry
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experiments have shown that BMP-6 is expressed in
atherosclerotic lesions [50]. Although the meta-analysis
sites identified here are > 300 kb from BMP6, it is pos-
sible that these variants regulate BAMP6 expression.
RegulomeDB [51] provides minimal evidence of transcrip-
tion factor binding (score:6) at rs641753 (meta p-value =
2.46 x 107% see Table 3). However, RegulomeDB does in-
dicate that histone marks have been identified in genomic
regions that contain this and other SNPs on chromosome
6 identified here. These results suggest that the genomic
region identified through admixture mapping on chromo-
some 6 may be involved in gene regulatory activity, al-
though the target gene is not identified. The site identified
on chromosome 15 is located within a proposed intron of
LOC100128714, which is an uncharacterized protein-
coding locus. The SNP annotation in Haploreg [52] con-
firms that rs7180916 is in a DNAse hypersensitive region,
suggesting that this region is transcriptionally active. In
addition to being in open chromatin, rs7180916 is also
~120 kb away from ATPI0A, which encodes a protein that
belongs to a subfamily of aminophospholipid-transporting
ATPases. Irvin et al. [40] suggests that this gene is a po-
tential candidate for the top association signal with
fasting insulin and HOMA-IR discovered in African
Americans in the HyperGen study. Further investigation
of this genetic region is necessary to draw more defini-
tive conclusions.

Although the results of this study present some intri-
guing results that may provide insight into the biology of
CAC and the protective effects of African ancestry, this
study has several important limitations. Chief among
these limitations is the sample size. Additional inde-
pendent samples with more AA individuals are needed
to address this drawback. Furthermore, replication in
independent studies would be desirable to confirm the
findings presented here. While the use of a dense SNP
panel to assess the effect of local ancestry is a strength
of this analysis, use of the same panel to query the rele-
vance of particular SNPs is limiting in that it may not be
adequate to tag relevant variation in African-descent
populations [8]. Therefore, our follow-up of SNP associ-
ations from a published GWAS meta-analysis may be
incomplete in its identification of genetic variants influ-
encing CAC in AAs.

The result presented here are an additional step for-
ward in identifying genomic regions that are associated
with CAC in AAs. We identified four potential genomic
regions associated with CAC, the most promising of
which is an intergenic region on chromosome 6 that is
close BMP6, a gene that is known to be expressed in
vascular calcific lesions. Further association studies are
needed to replicate these initial findings, and follow-up re-
sequencing or expression QTL mapping could be used
to further determine whether the associations identified

Page 11 of 13

here are among the true causal loci driving the protect-
ive effects of African ancestry against CAC in AAs.

Conclusion

This study has identified four possible genomic regions
where ancestry is associated with CAC on chromosomes
6, 12, 15, and 19. Follow-up analyses of these regions
suggest that the region on chromosome 6 contains the
locus for BMP6, which is known to be expressed in
vascular calcific lesions. The identified admixture signal
on chromosome 6 is among the top hits from the
Wojczynski et al. [8] CAC meta-analysis, suggesting that
admixture mapping can be complementary to traditional
GWAS analyses. The results of this study demonstrate
that admixture mapping can be a useful supportive tool
to highlight potential functional loci among GWAS-
identified signals.
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