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Abstract

novel.

Background: We have previously shown that platelet aggregation has higher heritability in African Americans than
European Americans. However, a genome-wide association study (GWAS) of platelet aggregation in African Americans
has not been reported. We measured platelet aggregation in response to arachidonic acid, ADP, collagen, or epinephrine
by optical aggregometry. The discovery cohort was 825 African Americans from the GeneSTAR study. Two replication
cohorts were used: 119 African Americans from the Platelet Genes and Physiology Study and 1221 European Americans
from GeneSTAR. Genotyping was conducted with lllumina 1 M arrays. For each cohort, age- and sex-adjusted linear mixed
models were used to test for association between each SNP and each phenotype under an additive model.

Results: Six SNPs were significantly associated with platelet aggregation (P < 5x10°®) in the discovery sample. Of these,
three SNPs in three different loci were confirmed: 1) rs12041331, in PEART (platelet endothelial aggregation receptor

1), replicated in both African and European Americans for collagen- and epinephrine-induced aggregation, and in
European Americans for ADP-induced aggregation; 2) rs11202221, in BMPR1A (bone morphogenetic protein receptor
typelA), replicated in African Americans for ADP-induced aggregation; and 3) rs6566765 replicated in European Americans
for ADP-induced aggregation. The rs11202221 and rs6566765 associations with agonist-induced platelet aggregation are

Conclusions: In this first GWAS of agonist-induced platelet aggregation in African Americans, we discovered and replicated,
novel associations of two variants with ADP-induced aggregation, and confirmed the association of a PEART variant with
multi-agonist-induced aggregation. Further study of these genes may provide novel insights into platelet biology.
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Background

Human blood platelets play an essential role in normal
hemostasis and in pathologic thrombosis, in particular
arterial thrombosis [1]. There is accumulating evidence
that platelets also participate in the development, pro-
gression, and manifestations of atherosclerotic diseases
[2]. Studies of ex vivo agonist-induced platelet aggrega-
tion have shown large and reproducible variations
among individuals [3]. In patients receiving anti-platelet
therapy for secondary cardiovascular prevention, greater
platelet aggregability ex vivo is associated with increased
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risk of cardiovascular disease events [4, 5]. Several car-
diovascular risk factors are known to affect platelet ag-
gregation in healthy individuals including age, sex,
obesity, and the presence of metabolic syndrome [6—10].
The majority of this variation in platelet aggregation is
heritable. Using a family study design, we have previ-
ously reported that greater than 70 % of variation in
platelet aggregation in African Americans and almost
60 % of variation in European Americans is heritable
[11].

Several candidate gene studies have examined the asso-
ciation of genetic variants in specific genes with platelet
aggregation with inconsistent results [12]. A genome-wide
association study in European Americans identified seven
loci associated with agonist-induced platelet aggregation
[13]. However, a genome-wide association study of plate-
let aggregation in African Americans has not yet been

© 2015 Qayyum et al; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:rqayyum@jhmi.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Qayyum et al. BMC Genetics (2015) 16:58

reported. The genetic variants reported to date explain
only a small fraction of the heritability in platelet aggre-
gation, providing an opportunity for new studies to
discover additional genetic variants of importance. More-
over, African Americans have higher heritability of plate-
let aggregation than European Americans and additional
genetic variants may contribute to this difference [11].
Because of the different allele frequencies and linkage
disequilibrium patterns in populations of European and
African ancestry, we anticipated that we might discover
new genetic loci associated with platelet aggregation in
an African American population compared to European
Americans [14]. Therefore, we performed a genome-wide
association study (GWAS) in African Americans to iden-
tify genetic variants that determine agonist-induced
platelet aggregation and replicated our findings in inde-
pendent samples of African Americans and European
Americans [4, 5].

Results

The discovery sample from GeneSTAR consisted of 825
African Americans. The replication samples consisted of
119 African Americans in PGAP and 1221 European
Americans in GeneSTAR (Table 1). Participants from
the GeneSTAR cohorts were older with greater per-
centages of hypertensives and smokers. They also had
higher platelet count and fibrinogen levels. Overall,
802,881 genotyped SNPs passed our quality control cri-
teria in all studies and were included in analyses. Table 2
shows the gene variants that were significantly associated
with agonist-induced platelet aggregation at the GWAS
level in African American GeneSTAR participants. The
quantile-quantile plots are presented in Additional file 1:
Fig. S1 with inflation of test statistics (lambda range 1.04
to 1.08).

Table 1 Study population characteristics

Characteristics GeneSTAR PGAP (AA) GeneSTAR
(AA) (N=825) (N=119) (EA) (N=1221)
Age, years 45 (12) 35 (9) 44 (13)
Female 62 % 72 % 55 %
Hypertension 39 % 8 % 26 %
Smoker 30 % 14 % 23 %
Body Mass Index, Kg/m? 32 (8) 29 (6) 28 (6)
Fibrinogen, mg/dL 375 (1171) 349 (101) 374 (111)
Platelet Count, 10°/L 266 (63) 236 (53) 261 (62)
Mean Platelet Volume, 107 L 8 (1) 7 (1) 7 (1)
Von Willebrand Factor, % 86 (53) 87 (38) 87 (58)

Data is presented as mean (standard deviation) unless noted otherwise
Abbreviations: EA European Americans, AA African Americans

Population Characteristics of the GeneSTAR (Genetic Study of Atherosclerosis
Risk) and PGAP (Platelets Genes and Physiology) cohorts
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Epinephrine-induced platelet aggregation

The A-allele of rs12041331, located in the first intron of
PEARI, was associated with decreased platelet aggrega-
tion to 2 uM epinephrine (p =834 x 10™'%) (Fig. 1 and
Additional file 1 Table S1). The association of this SNP
has been previously reported by our group and the
Framingham Heart Study with platelet aggregation pheno-
types in both European Americans and African Americans
[13, 15]. Both replication cohorts validated the association
of this SNP with epinephrine-induced platelet aggregation
(African Americans: p = 4.6 x 10~% European Americans:
p =447 x 107°) with a similar direction of effect. Suggest-
ive association was noted with SNPs at 6 loci but none
were significant in the replication samples (Additional file 1:
Table S2).

Collagen-induced platelet aggregation

The PEARI SNP rs12041331 was also associated with
platelet aggregation to 2 pg/mL collagen (Fig. 1; p=2.7 x
10'Y). This association was also present in both replica-
tion cohorts (African American: p =9.0 x 10~ European
American: p=0.01) although p-values did not cross
Bonferroni-adjusted p-value threshold. The minor allele,
A, was associated with lesser platelet aggregation in all
cohorts. In addition, 6 SNPs had suggestive significant
association with aggregation to with 2 pg/mL collagen
(Additional file 1: Table S3).

ADP-induced platelet aggregation

The PEARI SNP rs12041331 was also significantly associ-
ated with platelet aggregation after stimulation with both
doses of ADP (p=5.8 x 10 for 2 uM ADP and p =3.2 x
107" for 10 uM ADP) (Fig. 1). Three additional SNPs
were significantly associated with platelet aggregation after
stimulation with 2 uM ADP. One SNP, rs11924165, was in
the non-protein coding region of ALDHILI-AS2 (alde-
hyde dehydrogenase 1 family, member L1-antisense RNA
2); the minor allele was associated with increased platelet
aggregation (P = 1.17 x 10™®). The second SNP, rs10883735,
was located in the 2™ intron of SUFU gene (p=22 x
107®). The third SNP, rs11202221, was located in the 2nd
intron of the BMPRIA gene (p =4.8 x 107®). The minor
allele of this SNP was associated with decreased platelet
aggregation (Additional file 1: Table S1 and S4). Five
additional SNPs in BMPRIA had suggestive associa-
tions with p-values <5 x 1077 (Fig. 2; Additional file 1:
Table S5); all five SNPs were in strong LD with the
lead SNP, rs11202221 of BMPRIA (Fig. 2).

Two additional SNPs were significantly associated with
platelet aggregation after stimulation with 10 uM ADP
(Table 2). One SNP, rs6566765, was located in an inter-
genic region with no known protein-coding gene within
the flanking 250 kb and its minor allele was associated
with increased platelet aggregation (Additional file 1:



Table 2 Genome-wide association study results

GeneSTAR (AA) PGAP GeneSTAR (EA)
SNP_CA Position Gene (3(SE) P-value MAF B(SE) P-value MAF B(SE) P-value MAF
Epinephrine 2 uyM
rs12041331_A 1:155136338 PEAR1 —093 (0.13) 2.82 x 10-'? 292 % —-0.19 (0.05) 464 %107 328 % -047 (0.18) 447 x 1072 9.1 %
Collagen 2 pg/mL
rs12041331_A 1:155136338 PEAR1 —-0.89 (0.13) 274 %107 358 % —1.55 (0.59) 90x 1073 321 % —047 (0.18) 0.01 9.1 %
ADP 2 pM
rs12041331_A 1:155136338 PEAR1 —9.2 (1.56) 58x107° 358 % —3.65 (241) 0.13 332 % -852(1.87) 608 x 10°° 9.1 %
rs11924165_T 3:127391893 ALDH1L1-AS2 9.72 (1.68) 117 x10°® 16.9 % —5.10 (2.86) 0.07 20.0 % - - -*
rs10883735_T 10:104298436 SUFU —13.9 (2.45) 218 x 1078 51 % 1.72 (4.28) 0.69 83 % 1.36 (2.45) 048 8.1 %
rs11202221_G 10:88592294 BMPR1A —12.72 (2.30) 48 x 1078 73 % —-16.04 (4.06) 771 %107 9.1 % 0.60 (1.50) 0.69 20.5 %
ADP 10 pM
rs12041331_A 1:155136338 PEARI1 —5.63 (0.88) 32 % 10-1° 358 % —3.65 (241) 0.13 321 % —2.57 (1.36) 0.06 9.1 %
rs6566765_T 18:69569776 4.72 (0.84) 359% 1078 39.7 % 1.78 (249) 034 393 % 201 (062) 13%x107° 351 %
rs9889955_G 17:69072972 SDK2 —642 (1.15) 414 %1078 235 % —047 2.71) 0.86 259 % -0.32 (0.74) 0.66 39.3 %t

Abbreviations: SNP single nucleotide polymorphism, CA coded allele, 8 regression coefficient, SE standard error, GeneSTAR Genetic Study of Atherosclerosis, PGAP Platelet Gene and Physiology, MAF minor allele
frequency, ADP adenosine diphosphate, AA African Americans, EA European Americans

Note: In PGAP the epinephrine concentration of 1.5 uM, ADP concentration of 4 uM, and collagen concentration of 2.5 ug/mL were used

* This SNP is monomorphic in population of European descent. Another SNP, rs7611945_A, 231,689 bp upstream of rs11924165 was statistically significant (B(SE) = —4.68 (1.32); p = 4.25 x 10™* MAF = 20 %) after adjusting for the
number of SNPs in between (N = 97) or the number of LD blocks (N = 20)

+ Another variant in SDK2 gene, rs11869008_G, located 140,506 bp downstream of rs9889955 was statistically significant (3(SE) = —2.79 (0.84); p = 9.66 x 10~% MAF = 19.7 %) after adjusting for the number of LD blocks in YRI (N = 25)
but not after adjusting for the number of genotyped SNPs (N = 63)

Genome-wide association study results of platelet aggregation in discovery cohort of African Americans and replication cohorts of African Americans and European Americans
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(See figure on previous page.)

Fig. 1 Manhattan plot of the genome-wide association results of agonist-mediated platelet aggregation. The y-axis represents the negative
logarithm (base 10) of p-values and the x-axis represents chromosomes with positions of genetic variants. The horizontal red line represents the
genome-wide significance threshold. Results of arachidonic acid-mediated platelet aggregation are not shown here as no genetic variant crossed

genome-wide significance threshold

Table S1 and S4). Another SNP, rs9889955, was located
in the first intron of SDK2.

Of the six SNPs associated with ADP-induced platelet
aggregation in the discovery sample, only the G allele of
the rs11202221 in BMPRIA was associated with de-
creased ADP-induced platelet aggregation in the African
American replication sample (p=9.17 x 107> Table 2).
Furthermore, the 5 SNPs with suggestive significance in
BMPRIA in the discovery sample were also significant in

the African American replication sample (Fig. 2; all p-
values <9 x 10_5). However, neither rs11202221 nor any
nearby SNP was associated with ADP-induced aggrega-
tion in the European American replication cohort, likely
due to differences in linkage disequilibrium between the
two populations (Additional file 1: Fig. S3).

The A allele of rs12041331 in PEARI was not signifi-
cantly associated with platelet aggregation in the PGAP
replication sample, although the direction of effect was
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Fig. 2 Upper half: Results of association between genetic variants in BMPRTA gene and ADP 2 uM in the GeneSTAR African American cohort and
PGAP with the vertical bar highlighting the lead genetic variant in the region. The y-axis represents the negative logarithm (base 10) of p-values
and the x-axis represent the base-pair position of genetic variants on chromosome 10. Lower half: Linkage disequilibrium plot of the BMPRTA re-
gion in the GeneSTAR African American cohort. Lead genetic variant in the region is highlighted with a blue background
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similar for both concentrations of ADP (p =0.14). On
the other hand, this SNP was associated with decreased
platelet aggregation after stimulation with 2 uM ADP in
the European American cohort and had a similar direc-
tion of effect (B[SE] = -9.2[1.56], p=5.8 x 10™°). The T
allele of the intergenic variant, rs6566765, was associated
with increased platelet aggregation to 10 pM ADP in the
European American cohort (B[SE]=2.01[0.62]; p=1.3 x
1073) but not in the African American replication cohort.
When ADP-mediated platelet aggregation with both doses
was examined across the genotypes of rs11202221 and
rs6566765, we found that increasing allele dose (G-allele
for rs11202221 and C-allele for rs6566765) was associated
with decreased platelet aggregation (Additional file 1:
Table S4). The rs9889955 variant in SDK2 was not associ-
ated with platelet aggregation in either of the two replica-
tion cohorts.

Suggestive associations between platelet aggregation
induced by 2 uM ADP and 10 uM ADP were noted for
SNPs at 16 loci and 23 loci, respectively, but only 1 of
these SNPs was replicated (Additional file 1: Tables S5
and S6). The minor allele of the replicated variant,
rs750693 in FRMPDI, was also associated with an in-
crease in platelet aggregation in response to 10 uM ADP
in the European American replication sample.

Arachidonic acid-induced platelet aggregation

We did not find any locus that crossed GWAS threshold
for arachidonic acid-mediated platelet aggregation in the
discovery sample. We found 10 loci that had suggestive
association with arachidonic acid-induced platelet aggre-
gation (Additional file 1: Table S7), but none were nomin-
ally associated with arachidonic acid-induced aggregation
in the replication samples.

Discussion

Lower coronary artery disease survival rates have been
observed in African Americans even after clinical, demo-
graphic and socioeconomic variables are considered
[16, 17], suggesting there are undiscovered factors ac-
counting for this racial difference. We and others have
shown there is a strong genetic component to coronary
artery disease and platelet reactivity [11, 18-20], but
there is a paucity of data about responsible genetic mech-
anisms. Thus, the African American participants in the
GeneSTAR and PGAP studies represent unique and valu-
able resources for discovering novel genetic variants as-
sociated with platelet aggregation, a central process in
acute coronary syndromes. We used the large GeneSTAR
African American cohort as the GWAS discovery sample,
and separate PGAP and GeneSTAR European Americans
as replication cohorts. The major findings were: 1) identi-
fication of 3 replicated variants associated with platelet
aggregation in the discovery sample, 2) rs12041331 in
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PEARI (previously reported genetic variant in European
Americans and African Americans), was associated with
collagen, epinephrine and ADP aggregation in both the
discovery and replication cohorts, 3) rs11202221 in
BMPRIA was associated with ADP aggregation in both
the discovery and the African American replication co-
hort, and 4) rs6566765 was associated with ADP aggrega-
tion in the African American discovery and European
American replication cohort. Since African Americans
are under-represented in most clinical studies of coron-
ary artery disease (CAD), it will be important to consider
these established and novel genetic variants in this racial
group.

Despite modest sample sizes of the discovery and rep-
lication cohorts, we were able to identify and validate
three loci associated with platelet aggregation. The find-
ing of significant loci in modestly sized cohorts is not
typical of most GWAS studies. We had large effect sizes
for these loci, probably because platelet aggregation is
more physiologically defined than most clinical pheno-
types and represents a biological process, not a disease
outcome. The large effect sizes are likely due to the rela-
tively large percentage of heritability explained by the
discovered loci in African Americans (from 10 % with
ADP 2uM to 17 % with epinephrine). With a larger sam-
ple size, we probably would have discovered additional
genetic variants with smaller effect sizes.

Assessment of ex vivo platelet function is labor intensive
and very few cohorts have been generated with this
phenotype; fewer still have substantial numbers of African
Americans. In general, compared to the PGAP cohort,
GeneSTAR participants had a higher incidence of CAD
risk factors. Nevertheless, the minor allele frequencies
(MAF) for each of the African American cohorts in this
report were remarkably similar (Table 2). The GeneSTAR
and PGAP studies also utilized the same platelet agonists
and same genotyping platform, features of the study de-
sign that support the validity of our analyses. The repli-
cated variants were not associated with fibrinogen levels
in any cohort (Additional file 1: Table S1).

The rs12041331 SNP in PEARI has previously been as-
sociated with epinephrine-and ADP-mediated platelet ag-
gregation in European Americans and African Americans
[13, 15]. PEARI encodes a 1037 amino acid platelet cell
surface receptor and, upon activation, an intracellular
tyrosine residue is phosphorylated, followed by degranula-
tion, amplification of the glycoprotein IIb/Illa pathway
and sustained platelet aggregation, most likely through the
PI3K/Akt pathway [21, 22]. We now extend the associ-
ation to include collagen-mediated platelet aggregation,
findings confirmed in an independent group of African
Americans. The variant identified by rs12041331 has been
shown to regulate expression of PEARI protein in a dose-
dependent fashion [15]. Taken together, these data suggest
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that PEAR1 levels are important effectors of platelet ag-
gregation in both African and European Americans.

Of the five novel variants associated with platelet ag-
gregation in the discovery sample, 2 were confirmed in
at least one of our replication cohorts. Three novel vari-
ants did not replicate, suggesting they might be false
positives. The most intriguing replicated variant was
rs11202221 in BMPRIA; the G-allele of this SNP was as-
sociated with decreased ADP-induced platelet aggrega-
tion. This is of interest because BMPRIA has been
implicated in vascular calcification as well as in the de-
velopment of atherosclerosis [23], and platelets play a
role in pathogenesis of the latter. BMPRIA encompasses
168 kb in the 10q23.2 region and encodes a 532 amino
acid long single-pass cell surface receptor. This receptor
belongs to the BMP receptor family of the transforming
growth factor-beta (TGF-P) receptor superfamily and is
expressed widely in various tissues. On ligand binding,
BMPRIA activates intracellular signaling pathways, com-
monly leading to altered gene expression. Although
BMPRI1A has not been identified in platelets, several reports
indicate it is expressed in megakaryocytes [24, 25], the bone
marrow progenitor cell that produces platelets. Thus, the
variants in BMPRIA that are associated with platelet aggre-
gation could alter BMPRI1A expression and/or function in
megakaryocytes, which in turn could alter gene expression
in signaling molecules mediating ADP-induced platelet ag-
gregation. Alternatively, these BMPRIA SNPs could be in
LD with other causative SNPs in either protein-coding or
non-protein coding genes. Among the protein-coding genes
near BMPRIA, transcripts of MMRNZ2, GLUDI, WAPL, and
PAPSS? are present in platelets, however, only GLUDI (glu-
tamate dehydrogenase 1) and PAPSS?2 (3'-phosphoadenosine
5'-phosphosulfate synthase 2) protein-products are present
in platelets [26—28]. There are no microRNAs or lincRNAs
within 500 kb of rs11202221.

It is intriguing that rs11202221 in BMPRIA did not
replicate in European Americans. It is unlikely that this
SNP is a false positive because 1) it replicated in PGAP
African Americans, 2) the effect of the minor allele on
platelet aggregation was the same direction in the two
African American populations, and 3) there were 5 other
SNPs in BMPRIA that showed association (p<107°)
with ADP-induced platelet aggregation in both African
American populations. LD patterns differ dramatically
between European (CEU) and African (YRI) populations
represented in the 1000 Genomes Project (see Additional
file 1 Fig. S3). There is a 53 Kb block of LD including
rs11202221 in the CEU reference population where vari-
ants are high in frequency (G allele frequency ~20 % at
rs11202221, and MAF of most SNPs in the block are
~20 %). In contrast, no LD block in the YRI reference
population includes rs11202221 and the allele frequency
of the G allele is considerably lower (4 %). Given the
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tagging approach employed herein with the GWAS array,
we speculate that rs11202221 tags the true 'causal’ variant
which itself may be low in frequency. Under this hypoth-
esis, the 'causal' variant would consequently be tagged
with higher correlation in the African American popula-
tion in contrast to the European American population and
therefore yield significant results in the African Americans
but not European Americans. Future work will involve a
targeted resequencing in the full dataset to fully examine
all sequence-identified variants in this region and specific-
ally test this hypothesis.

The second novel association with ADP-mediated ag-
gregation is of an intergenic variant at 18q22.3 locus
with ADP-mediated platelet aggregation. The 500 kb re-
gion on either side of this variant contains a few genes,
but the transcript of only one, FBXO15 (which encodes
E-box protein 15), has been reported at low levels in
platelets. F-box proteins are important in substrate rec-
ognition by certain ubiquitin protein ligase complexes
and thus are important in regulating protein degradation
[29, 30]. While it is possible that this variant may affect
protein degradation in platelets, the role of FBXO15 in
platelet aggregation remains unexplored.

Different agonists and agonist concentrations were uti-
lized to generate more refined platelet signaling pathway
phenotypes. Collagen activates platelets via glycoprotein
VI, which signals via an immunoreceptor tyrosine activa-
tion motif [31]. ADP induces platelet activation through
the P2Y, and P2Y; G protein coupled receptors (GPCRs),
while epinephrine activates platelets via a different GPCR,
the a2A-adrenergic receptor [32]. Each of these GPCRs
activates different G protein families, which in turn acti-
vate different sets of signaling molecules. Eventually, these
different proximal signaling pathways converge to a final
common pathway resulting in integrin allIbp3 activation
and platelet aggregation. Because SNPs in PEAR1 were as-
sociated with platelet aggregation induced by all three of
these physiologic agonists, our data suggest a potential
role for PEARI in a shared signaling pathway downstream
of receptor-proximal signaling. Furthermore, ADP at low
concentrations (e.g., 2 pM) induces rapid and reversible
platelet aggregation through Gg-coupled P2Y;, whereas
high ADP concentrations (e.g., 10 pM) induce G;-coupled
P2Y;, inhibition of adenyl cyclase and complete aggrega-
tion [33]. Thus, our findings that different loci were associ-
ated with different concentrations of ADP-induced platelet
aggregation support hypotheses whereby ALDHILI-AS?2,
SUFU and BMPRIA regulate primarily platelet G signal-
ing and SDK?2 regulates primarily G; signaling in platelets.

Conclusions

In conclusion, we report here results of the first GWAS of
agonist-induced platelet aggregation in African Americans.
Our results confirm the importance of PEARI in platelet
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biology and establish that variants in this gene affect plate-
let function in both African and European Americans. In
addition, we have discovered and replicated novel loci
associated with ADP-mediated platelet aggregation, one
of which (rs11202221 in BMPRIA) may affect platelet
function in African Americans but not in European
Americans. Inhibition of ADP-induced platelet aggrega-
tion with thienopyridines is a mainstay of CAD treat-
ment, and it will be important to consider race in the
pharmacogenetics of these anti-platelet therapies. Further
study of the loci discovered in this report may provide im-
portant insights into platelet biology and may identify tar-
gets for the development of novel anti-platelet agents.

Methods

Genetic Study of Atherosclerosis Risk (GeneSTAR) cohort
The design of GeneSTAR has been reported previously
[10, 34]. Briefly, African American and European American
probands with documented early-onset CAD were
identified at the time of the event at ten Baltimore
hospitals. Their apparently healthy family members
(siblings, offspring of probands and siblings, and par-
ents of the offspring) were enrolled. Eligible partici-
pants were interviewed by a nurse practitioner and
self-reported their age and race. They underwent a car-
diovascular history and physical examination and as-
sessment of cardiovascular risk factors. Individuals with
personal history of CAD, bleeding disorders, serious
comorbidities, or who were taking anticoagulants, anti-
platelet agents or nonsteriodal anti-inflammatory agents
that could not be safely discontinued for two weeks prior
to the study start were excluded. Individuals were also ex-
cluded if they had abnormal platelet count (<100,000/pL
or > 500,000/puL) hematocrit (<30 %), or white blood cell
count (>20,000/pL). The study was approved by the Johns
Hopkins Institutional Review Board and all study partici-
pants gave informed consent (Additional file 1: Fig. S1).

Platelet Genes and Physiology (PGAP) cohort

Healthy volunteers were recruited between 2001-2006
in Houston, Texas. The study protocol was approved by
the Institutional Review Boards of Baylor College of
Medicine and Thomas Jefferson University, and in-
formed consent was obtained from all participants. Sub-
jects were 18—80 years of age and were excluded if they
had diabetes or hypertension, or had taken anti-platelet
drugs within the past 10 days, anti-inflammatory drugs
within the past 48 h, more than one prescribed medica-
tion (excluding oral contraceptives and hormone re-
placement therapy), or had been exposed to medication
that affected the bone marrow. Eligible participants were
interviewed by a study coordinator and self-reported
their age and race. Hematocrit and platelet counts were
in the normal range.
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Platelet aggregation studies
In both cohorts, blood was obtained by venipuncture and
collected into EDTA (for complete blood cell counts) or
3.2 % sodium citrate (for platelet function testing). Platelet
counts were determined by automated cell counter.
Platelet-rich plasma was prepared from whole blood by
centrifugation at 180 x g for 15 min, and platelet-poor
plasma was prepared by centrifugation at 2000 x g for
10 min. Platelet counts were adjusted to 200,000/pL by di-
luting platelet-rich plasma with platelet-poor plasma.
Optical aggregometry with platelet-rich plasma was used
to measure platelet aggregation (0-100 %) and maximal
aggregation was determined within 5 min of stimulating
samples with various platelet agonists. In GeneSTAR,
platelets were stimulated with adenosine diphosphate
(ADP 2 and 10 uM), arachidonic acid (1.6 mM), collagen
(2 pg/mL) or epinephrine (2 uM). In PGAP, platelets were
stimulated with ADP (4 pM), collagen (2 pg/mL), arachi-
donic acid (1.6 mM) and epinephrine (1.5 uM). As agon-
ist doses were not identical for ADP and epinephrine in
GeneSTAR and PGAP, we compared the platelet aggrega-
tion results with both doses of ADP from GeneSTAR
with ADP 4 pM from PGAP and epinephrine 2 uM from
GeneSTAR with epinephrine 1.5 uM from PGAP analyses.

Genotype data and quality control

In GeneSTAR, genome-wide SNP genotyping was per-
formed at deCODE Genetics, Inc. using the Human
1Mvl_C array from Illumina, Inc. with an average call
rate per sample of 99.65 % (overall missing data rate =
0.35 %). Using 25 duplicate pairs, the reproducibility rate
was >99.95 %. Samples that showed Mendelian errors >
5 % were excluded. We also excluded SNPs with call
rate <90 %, MAF <5 % and/or severe deviation from
Hardy Weinberg equilibrium (p-value < 10™°) in the dis-
covery sample.

In PGAP, genotyping was performed using the Illumina
HumanlM BeadChip at Baylor College of Medicine. Indi-
viduals with greater than 3 % missing genotypes, or aver-
age heterozygosity greater than 2 standard deviations
from the mean were excluded. Any SNP locus with >5 %
missing genotypes or deviation from Hardy Weinberg
Equilibrium (p-value < 107°) was removed. In the final
analysis, only those SNPs were included in the analysis for
which data were available in both the discovery and repli-
cation samples.

Data analysis

Analyses were performed separately for the African
Americans and European Americans in GeneSTAR. All
variables were assessed for Gaussian distribution. Since
the distribution response to epinephrine and collagen in
both African American cohorts was bimodal, we dichot-
omized the phenotypes at the visual intersection of the
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two modal distributions. For all platelet aggregation phe-
notypes, we evaluated age- and sex-adjusted linear addi-
tive models. To account for intrafamilial relationships in
GeneSTAR, linear mixed effects models were used to
test the association under an additive model between a
SNP and specific phenotype adjusted for age, sex and 2
principal components [13]. In our previous work with
platelet aggregation phenotypes, we have found that only
the first two principal components are associated with
platelet phenotypes and that including more than two
principal components in GWAS analyses does not pro-
vide additional information. The formulation of the
mixed model follows in a matrix form: Y=XB + ZU + ¢,
where Y is an m x 1 vector of responses; X is an m x p
design matrix of the fixed effects; B is the parameter p x
1 vector of fixed effects; Z is an m x q incidence matrix
of random effects, and U is a q x 1 vector of random ef-
fects with E(U) =0, and covariance matrix G; 0 is an
m x 1 vector of random effects with E(0) =0 and covari-
ance matrix R. We tested whether the SNPs additive ef-
fects are different from zero, and especially we identified
the highest significances. These models were run using
PROC MIXED in SAS (v. 9.1.3 for Linux OS) with the
option for EMPIRICAL variance and including the fam-
ily identification number in the random effects to ac-
count for relatedness [35, 36] (SAS Institute, Cary, North
Carolina, 1996). For collagen 2 pg/mL phenotypes, logistic
models were used using generalized estimating equations
for GeneSTAR. The data from PGAP was analyzed under
additive models using R library GenABEL [37]. We ad-
justed for cryptic population structure using the method
proposed by Chen and Abecasis as implemented in the
“mmscore’ function in the GenABEL package [38]. The
mmscore function uses the formula {(G - E[G]) V™! x Y)%/
{(G - E[G]) V! (G - E[G])} where G is the vector of ge-
notypes (coded 0, 1, 2) and E[G] is a vector of (strata-
specific) mean genotypic values; V™" is the inverse of the
variance-covariance matrix at the maximum of polygenic
model and Y are residuals after both the effect of covari-
ates and the estimated polygenic effect (breeding values)
are factored out [37]. We also used linear or logistic re-
gression adjusting for age, sex, and 2 principal compo-
nents and found similar results; hence we are presenting
results obtained using mmscore function. In all three
cohorts, we tested whether the SNP additive effects dif-
fered from zero. GWAS significance threshold was set at
p-value<5 x 10°® and for replication, a Bonferroni
adjusted p-value of <0.008 was considered significant.
Suggestive association between a variant and a phenotype
was said to be present if association p-value was <5 x 107°.
The African American cohort of the GeneSTAR study
served as the discovery sample and the PGAP cohort
served as a replication sample. As the PGAP sample size
was small and hence had limited power, we also examined
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the European American cohort of the GeneSTAR as an
additional replication sample. Due to the differences in
the linkage disequilibrium pattern between populations of
African and European descent, we also examined the
association of the phenotype with nearby SNPs (within
250 kbp on either side) in the European American replica-
tion sample if the lead SNP in the African American
discovery sample was not statistically significant in the
African American or European American replication
cohorts.

Availability of supporting data

Based on participant consent forms, only aggregate data
are available on dbGAP. Individual level data will be avail-
able using a Limited Access Agreement, which requires
submission of an application and a study description to
the GeneSTAR Study Steering Committee at The Johns
Hopkins University. All data and all information will be
fully deidentified according to our consent process. For
further information, please visit: http://www.genestarstudy.
com/For-Researchers.html.

Additional file

Additional file 1: The supplemental material contains the following:
Table S1. Hemostatic characteristics across genotypes of replicated SNPs.
Table S2. Loci with suggestive association findings in the GWAS of
epinephrine-mediated platelet aggregation in African Americans. Table S3.
Loci with suggestive association findings in the GWAS of collagen-mediated
platelet aggregation in African Americans. Table S4. ADP-mediated Platelet
Aggregation across Genotypes of the Two Novel Genetic Variants. Table S5.
Loci with suggestive association findings in the GWAS of ADP 2 uM-mediated
platelet aggregation in African Americans. Table S6. Loci with suggestive
association findings in the GWAS of ADP 10 uM-mediated platelet
aggregation in African Americans. Table S7. Loci with suggestive
association findings in the GWAS of arachidonic acid-mediated platelet
aggregation in African Americans. Figure S1. Study Design of the Genetic
Study of Aspirin Responsiveness (GeneSTAR) and Platelet Genetics and
Physiology (PGAP). Figure S2. Quantile-Quantile (QQ) plots with genomic
inflation factors (). Figure S3. Linkage disequilibrium plots of European
descent population (CEU) and African descent population (YRI) based on
the data from 1000 Genomes Project.
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