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Abstract

Background: Demography and environmental adaptation can affect the global distribution of genetic variants and
possibly the distribution of disease. Population heterozygosity of single nucleotide polymorphisms has been shown
to decrease strongly with distance from Africa and this has been attributed to the effect of serial founding events
during the migration of humans out of Africa. Additionally, population allele frequencies have been shown to change
due to environmental adaptation. Here, we investigate the relationship of Qut-of-Africa migration and climatic variables
to the distribution of risk alleles for 21 diseases.

Results: For each disease, we computed the regression of average heterozygosity and average allele frequency of the
risk alleles with distance from Africa and 9 environmental variables. We compared these regressions to a null
distribution created by regressing statistics for SNPs not associated with disease on distance from Africa and
these environmental variables. Additionally, we used Bayenv 2.0 to assess the signal of environmental adaptation
associated with individual risk SNPs. For those SNPs in HGDP and HapMap that are risk alleles for type 2 diabetes,
we cannot reject that their distribution is as expected from Out-of-Africa migration. However, the allelic statistics
for many other diseases correlate more closely with environmental variables than would be expected from the
serial founder effect and show signals of environmental adaptation. We report strong environmental interactions
with several autoimmune diseases, and note a particularly strong interaction between asthma and summer humidity.
Additionally, we identified several risk genes with strong environmental associations.

Conclusions: For most diseases, migration does not explain the distribution of risk alleles and the worldwide pattern of
allele frequencies for some diseases may be better explained by environmental associations, which suggests that some

selection has acted on these diseases.

Serial founder effect
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Background

Identification of evolutionary pressures on genes associ-
ated with disease has sometimes provided information
that elucidated the etiology of the disease. Heterozygote
advantage for the hemoglobin A/S polymorphism in
resisting the malarial parasite plasmodium falciparum is
a classical example [1]. However, complex diseases are
more difficult to understand, because risk for these dis-
eases usually involves multiple loci as well as environmen-
tal factors. Genome-wide association studies (GWAS)
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usually find many genomic markers that are associated
with disease prevalence, either increasing risk for or pro-
tection against the disease. In almost all cases such
markers have small effects on the phenotype.

Although it is conceivable that such complex traits are
adaptive in some environments, there is little evidence
of fixed differences among populations in associated
markers [2, 3]. If such adaptation were to involve weak
or frequency-dependent selection for some phenotypic
optimum, associated single nucleotide polymorphisms
(SNPs) may not approach fixation [3, 4]. Signals of such
selection that maintains these polymorphisms would be
more difficult to detect than those of hard or soft sweeps.
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In this paper we focus on two factors that may con-
tribute to the distribution of genomic polymorphisms
among populations: Out-of-Africa migration and envir-
onmental adaptation. Migration can have significant ef-
fects on allele frequencies; the serial founder model
suggests that modern humans left Africa and began the
migration through Asia to the Americas over approxi-
mately 45 k years [5-7]. When a subgroup of a popula-
tion migrates to a new location, stronger genetic drift in
the subgroup is expected to cause a reduction in the
level of polymorphic variation. Thus, in the absence of
selection, genetic heterozygosity in human populations
is expected to decrease with their distance from Africa.
This has been shown for microsatellite polymorphisms
[8] and haplotype heterozygosities inferred from SNPs
[9]. It has also been shown that local environmental vari-
ation can be associated with patterns of SNPs, suggest-
ing that natural selection has played a role in
establishing these patterns (eg. [10, 11]). Environmental
variables may affect regulation of genes that contribute
to phenotypic expression, and they may also influence
the interaction of disease (or other) phenotypes with fit-
ness [12]. In either case, environmental variables might
affect frequency patterns of disease-associated SNPs.
However, recent analyses [13, 14] have shown that popu-
lations in Africa and those outside of Africa show similar
burdens of deleterious mutations, despite the differences
in demographic histories experienced by these popula-
tions. This suggests that selection during the out-of-
Africa migration process is not likely to have been due
to differences in elimination of fitness decreasing muta-
tions, and it raises the question of what kind of selection
the environmental associations might have induced.

Here we analyze relationships to nine climate vari-
ables, including latitude, longitude, temperature, precipi-
tation rate, humidity, and solar radiation flux. Several
signals of human adaptation to these climate variables
have been inferred, including in genes that are associated
with cancer and immune system diseases [10, 15]. Of
course, these climate variables are not the only ones that
could play a role in adaptation of the disease risk loci,
and other relevant variables may involve diet, subsist-
ence type, and parasite prevalence. We do not explore
the relationships of disease risk allele frequencies with
these variables in this paper.

Genetic risk for some diseases has been studied in the
context of migration, but these studies considered only
pairwise comparisons of populations or discrete genetic
differentiation events. Chen et al. [16] studied between-
population differences in type 2 diabetes risk allele fre-
quencies and showed that this genetic risk decreases
from Africa to Asia to the Americas. They reported that
this decrease occurred along out-of-Africa migration
patterns but was more severe than would be expected by
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drift. Corona et al. [17] studied the effect of genetic dif-
ferentiation of disease risk for 21 diseases and concluded
that migration was an important factor in the worldwide
pattern of genetic risk for several diseases, although this
was not true of other diseases, such as biliary liver cir-
rhosis. They inferred the role of migration from patterns
of genetic differentiation at specific branches of a genetic
phylogenetic tree rather than from worldwide trends.

Berg and Coop [18] developed a method to identify
polygenic adaptation using weighted risk allele frequen-
cies of GWAS SNPs and controlling for population
structure. They applied their method to three diseases
and three quantitative traits and found signals of adapta-
tion to principal components of summer and winter cli-
mate for genes related to height, skin pigmentation,
ulcerative colitis, and Crohn’s disease, but not type 2 dia-
betes. Here we apply a similar analysis, but with a focus
on the effect of migration and environmental adaptation
on disease. We study 21 diseases, test each environment
separately, and include two allele frequency statistics in
searching for signals of selection on the risk SNPs.

It has been suggested [18-20] that differential positive
selection between populations may have played a role in
the distribution of disease risk alleles. We take an ap-
proach that allows us to find worldwide trends as opposed
to differentiation between individual populations. Our re-
sults confirm that the frequency pattern of type 2 diabetes
risk alleles has likely been determined by Out-of-Africa
migration, but we also find that environmental adaptation
is likely to have contributed to the worldwide frequency
distributions of risk alleles for several other diseases.

Results

Genetic disease risk for type 2 diabetes follows
Out-of-Africa migration patterns

To determine whether the worldwide distribution of risk
allele frequencies is compatible with the serial founder ef-
fect model of human migration out of Africa, we regressed
average heterozygosity and average frequency of the risk
allele on distance from Africa. Consistent with previous
analyses [16, 17], we found that type 2 diabetes had a sig-
nificant relationship with distance from Africa, with risk
decreasing as distance from Africa increases; for this dis-
ease, average heterozygosity of the 15 disease risk SNPs
regressed on distance from Addis Ababa had an R* of 0.69
and a slope of —(8.283 * 10" °)x(distance[km] from Addis
Ababa), which is slightly steeper than the R* and
slope we calculated for average heterozygosity using
all SNPs and regressed on distance from Africa
(R*=0.62, slope = —(4.268 * 107™°)). When the hetero-
zygosity is adjusted to account for the neutral expect-
ation (see “linear regressions” section), the R” is
reduced from 0.69 to 0.45 (Fig. 1). This can be com-
pared to the R” values from the regressions of the



Blair and Feldman BMC Genetics (2015) 16:81

Page 3 of 12

g | o ° 0 ° slope = -(8.283 * 10-6) x distance[km]
© ° ° o Rz = 0.69
1) ©a®
g oo e p-value < 0.01
g o S
s & "
(0]
Q
=
2 o
1%} o |
8’ (=} e
>
N
<}
2
[} [Te]
£ 8
(=)
o
[
>
< o
[
o
o
ﬁ o
o L T T T T T
5000 10000 15000 20000 25000
Distance from Addis Ababa [km]
Fig. 1 Regression of average heterozygosity of type 2 diabetes risk alleles on distance from Africa. Each point represents the average heterozygosity
for one of the 61 populations studied in this paper

average heterozygosity of the 10,000 resampled sets of
SNPs that were matched in allele frequency to the
diabetes risk SNPs, on distance from Africa, and for
which the mean R*® value was 0.33 with a standard
deviation of 0.20. The empirical p-value for compar-
ing the diabetes risk SNPs with the null distribution
of resampled sets is 0.03. (see “Null Distribution” in
the Methods section) However, when corrected for
the tests of nine environmental variables and distance,
the adjusted regression of 0.45 is not significantly dif-
ferent. The slope of the diabetes risk alleles on dis-
tance is steeper than expected for neutral alleles,
which might suggest some type of selection against
type 2 diabetes along the direction of Out-of-Africa
migration, but it is very similar to the slope that
Ramachandran et al. [8] report for 783 microsatellite
loci (slope= -7.68*10-6) and slightly less steep than
the slope Li et al. [9] report using >600,000 SNPs
(slope= -1.44*10-5). The average frequency of type 2
diabetes risk alleles had an R* of 0.57 for distance
from Africa, and, after correction for multiple tests,
was not significantly different from that obtained
from random alleles. Thus, this is a borderline case,
and we cannot make a strong case for selection on
this disease.

Other regressions on distance

For most diseases besides type 2 diabetes, the distribu-
tion of risk alleles did not show a strong correlation with
distance from Africa. Although we found a strong

relationship between heterozygosity and distance for
Crohn’s disease and Parkinson’s disease (R*> = 0.65 and
0.57, respectively), no significant relationships between
distance and heterozygosity were found for SNPs associ-
ated with any disease, including those which Corona et al.
[17] suggested showed signatures of migration (Table 1).
These discrepancies are likely due to the way in which
genetic risk scores for each population were used by
Corona et al. to construct a phylogeny of populations
from which a pattern of migration was inferred by com-
paring the observed phylogeny with randomly generated
phylogenies. In our approach, we sought an overall trend
in allele frequencies that could be compared directly to
expectations under the serial founder effect out of Africa.
As shown by the linear relationship of heterozygosity on
distance from Africa, the effect of genetic drift is constant
as populations move away from Africa. Thus, by searching
for a global pattern, we are able to identify genetic drift
caused by sequential subsampling during the migration as
opposed to genetic differentiation events that occur only
between pairs of populations. We also regressed average
frequency of the risk alleles on distance. Average
frequency of risk alleles for type 2 diabetes, systemic
sclerosis, and polycystic ovary syndrome showed the
highest correlations with distance, followed by pancreatic
cancer and alopecia areata.

No evidence for the thrifty gene hypothesis
The thrifty gene hypothesis was proposed by Neel [21]
as a possible explanation of the high prevalence of type
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Table 1 Correlation coefficient, r, between average heterozygosity and average risk allele frequency on distance from Africa, with

p-value
Disease SNPs Heterozygosity r p-value when compared Risk allele frequency r p-value when compared
with distance to null distribution with distance to null distribution
Biliary liver cirrhosis 41 -0.04 0.03* 063 03
Alopecia areata 41 -042 0.78 0.69 0.04*
Prostate cancer 39 -0.22 0.33 -046 0.31
Systemic lupus erythematosus 33 -0.37 0.75 0.60 042
Ulcerative colitis 32 -0.51 0.89 -0.26 0.18
Type 1 diabetes 27 -0.23 0.74 0.23 0.89
Celiac disease 26 -0.45 0.65 -0.08 0.62
Parkinson’s disease 25 -0.76 033 0.16 0.99
Crohn’s disease 24 -0.81 0.10 -0.29 031
Membranous nephropathy 20 -0.51 0.72 -0.31 044
Systemic sclerosis 19 -0.69 041 -0.74 0.05*
Primary biliary cirrhosis 15 -0.35 0.57 -0.33 0.72
Colorectal cancer 15 -0.64 034 -0.66 0.05
Type 2 diabetes 15 -0.83 0.03* -0.76 0.02*
Breast cancer 14 -0.65 0.35 -0.02 0.77
Melanoma 14 -0.28 0.51 -042 022
Rheumatoid arthritis 14 -0.24 0.64 043 0.56
Asthma 13 -0.10 046 -0.20 0.56
Neuroblastoma 10 -0.04 0.52 -0.32 0.58
Polycystic ovary syndrome 10 -0.32 0.94 0.76 0.03*
Pancreatic cancer 7 -0.32 0.95 -0.71 0.06

P-value was calculated by comparing the R? values of the risk alleles to the null distributions created from 10,000 resampled SNP sets (see “Null Distributions”
section in Methods). Correlation coefficient is reported instead of R? to show directionality
*These p-values are not significant when Bonferroni corrected for the ten variables for each allelic statistic or when adjusted for an FDR of 0.2

2 diabetes despite the potentially decreased reproductive fit-
ness of those who have it. He argued that genes that allow
for rapid and efficient metabolism of food due to an over-
production of insulin, and thus an increased risk for type 2
diabetes in the presence of certain diets, were likely to be
beneficial among hunter-gatherers when food was scarce.
Under the thrifty gene hypothesis, we would expect to
see positive selection of type 2 diabetes risk alleles. Be-
cause the risk alleles under positive selection would in-
crease in frequency more than expected for neutral
alleles, it is more likely that they will remain in the mi-
grating populations. Thus average heterozygosity should
not decrease in a pattern similar to that seen for micro-
satellites [8], which we consider “neutral”. In this study,
we cannot distinguish the decrease in heterozygosity of
type 2 diabetes risk alleles from the decrease that is ex-
pected due to Out-of-Africa migration. Further, under
the “thrifty late” hypothesis, where the risk alleles are
considered not to have been beneficial until humans mi-
grated out of Africa [19], we would expect to see positive
selection in the populations that are outside of Africa.

To test these hypotheses, we ran two regressions of aver-
age heterozygosity of type 2 diabetes on distance from
Africa: one excluding the 11 African populations and one
excluding all populations except the 11 African popula-
tions. In the former case, the R* was 0.78 with a slope of
—(9.598*10°°) x(distance[km] from Addis Ababa), which is
similar to that reported in our analysis using all popula-
tions, as well as those in Li et al.’s [9] analysis of haplotype
heterozygosity using SNPs and Ramachandran et al’s [8]
analysis of microsatellites. When average heterozygosity
was regressed on distance from Addis Ababa using only
the African populations, the R? was 0.05, which suggests a
random distribution of these risk alleles in Africa. The
average heterozygosity of type 2 diabetes risk alleles in
Europe, Asia, and the Americas decreases with distance
from Africa with a similar slope and R* to that of SNPs
that are not associated with disease. Although this does
not indicate positive selection on these alleles, it should be
stressed that these SNPs are not known to be causal for
type 2 diabetes and our study does not include all SNPs
known to be associated with the disease.
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Environmental variables explained more change in disease
risk allelic frequency measures than distance from Africa
For many of the diseases in this study, allelic frequency
measures correlated more closely with environmental
variables than with distance from Africa. In particular,
for neuroblastoma, the R* was 0.001 for regression of
average heterozygosity on distance, but was 0.58 for
average heterozygosity on latitude. SNP statistics for
asthma, prostate cancer, and celiac disease also showed
much higher R* values for regressions on a single envir-
onmental variable than for regressions on distance. To
determine the variation of allele frequencies that was
not due to drift, we created adjusted statistics of average
risk allele heterozygosity and average risk allele fre-
quency. For each population, we subtracted the average
heterozygosity and average allele frequency using all
SNPs from the average heterozygosity and average allele
frequency of the risk alleles. For many diseases, the re-
gression of these adjusted statistics on environmental
variables had a higher R* than the regressions of the ad-
justed statistics on distance from Africa.

Some of the environmental variables were corre-
lated with each other and with distance; the absolute
value of the correlations ranged from 0.09, between
winter solar radiation and distance, to 0.84, between
summer solar radiation and summer precipitation.
The correlation of latitude and summer radiation is
0.99, and for this reason, we only included latitude in
our analysis. Distance and longitude had a correlation
of 0.74, because most of the Out-of-Africa migration
was across longitude lines.
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Comparison with null distributions of neutral alleles showed
significant relationships for many environmental variables
To determine how our regressions for disease risk SNPs
compared to regressions of the same allelic measures for
SNPs that were not chosen because of an association
with disease, we created 10,000 sets of SNPs, matching
the number of risk-associated SNPs and allele frequen-
cies of the risk alleles. As with the disease risk alleles, we
regressed adjusted average heterozygosity and adjusted
average frequency of the resampled alleles on the nine
environmental variables. The R? of the disease risk set
was compared with the R* of the resampled sets and an
empirical p-value was created based on the percentage
of the resampled sets that had a higher R? than the dis-
ease risk set (Fig. 2). Because the null distributions for
each disease were created using different numbers of
SNPs with different global allele frequencies, we as-
sumed the diseases were independent of each other. We
applied a Bonferroni correction for the 10 variables (nine
environmental variables and distance from Africa) and
the two allelic statistics. We also report significance ad-
justed for a false discovery rate of 0.2, which gives us
more power to detect a signal. With an FDR of 0.2, we
get eight significant results, and with a Bonferroni cor-
rection for the multiple environments we get four. Al-
though we cannot infer the mechanism, our results
support some selection acting on the risk alleles that has
produced the observed relationship between an environ-
mental variable and the risk allele statistics.

Although correlations with distance from Africa were
not significant after Bonferroni or FDR adjustments for
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Fig. 2 Null Distributions. Blue histograms represent the binned R? values for each of 10,000 sets of resampled SNPs regressed on an environmental
variable. Each resampled set contains random SNPs that match the number of risk alleles and global allele frequency of the risk alleles for that disease.
Red lines indicate values of R?, adjusted as in Methods, with 045 for type 2 diabetes on distance from Africa (a) and 0.03 for celiac disease on longitude
(b). Before adjustment, the R? values were 069 for type 2 diabetes on distance from Africa and 0.13 for celiac disease on longitude. The null
distributions for these two diseases are different because each null distribution is created using resampled sets that are matched for number and
global allele frequency of the risk alleles. Our analysis included 15 risk alleles for type 2 diabetes and 26 for celiac disease
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any diseases, the R? values for the disease risk allelic sta-
tistics regressed on environmental variables were signifi-
cant when compared to the resampled sets for several
diseases (Figs. 3 and 4). Summer humidity is significant
for three diseases, and latitude, longitude, summer
temperature, and winter radiation each for one. Five of
the six diseases for which we report significant environ-
mental correlations are autoimmune diseases or other-
wise related to immune function. To identify functional
categories that are enriched in certain environments, we
ran DAVID [22, 23] to compare enrichment in the risk
genes of diseases that showed significant correlation
with an environmental variable to the enrichment in all
disease risk genes. We did not find any significant re-
sults upon using the Bonferroni correction.

Analysis using Bayenv shows environmental adaptation
for specific SNPs and diseases

We ran Bayenv 2.0 [24] to assess whether there was a
signal of local environmental adaptation on the disease
risk SNPs in our study. Many disease risk alleles were
significant with p-values <0.05 in Bayenv (Fig. 5).
Additionally, most of the disease/environmental vari-
able combinations that we found to be significant in
comparison to the null distributions (see Methods
and “Comparison with null distributions of neutral al-
leles” section) had at least one risk allele that was sig-
nificant in Bayenv. This confirms the relationships we
found between our risk allele statistics and environ-
mental variables.
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We permuted the SNP labels to determine whether
certain diseases have more SNPs that have undergone
environmental adaptation than would be expected from
a random set of the same number of SNPs (see Methods
and “Enrichment of SNPs with low Bayenv P-values”
section), and several diseases showed environmental
adaptation. Biliary liver cirrhosis, alopecia areata, ulcera-
tive colitis, Parkinson’s disease, Crohn’s disease, systemic
sclerosis, and asthma showed significant signals of envir-
onmental adaptation for at least one environmental vari-
able. Alopecia areata showed strong signals of adaptation
for the most environmental variables, including latitude,
longitude, summer temperature, winter temperature, and
summer radiation. Interestingly, most of these diseases are
autoimmune, which suggests there is a strong environ-
mental effect on immune related genes or diseases.

Identifying effects of specific environments

Berg and Coop report that Crohn’s disease and ulcera-
tive colitis show signals of adaptation to principal com-
ponents of summer and winter environmental variables.
Our analysis confirms these signals and may suggest
which environmental variables, as opposed to the principal
components, drive this adaptation. In particular, Berg and
Coop find that Crohn’s disease has a significant correlation
with their summer PC2, summer PC1 and winter PCI.
Summer PC2 is loaded strongly on precipitation, humid-
ity, and radiation, and we find strong correlations for
Crohn’s disease with summer precipitation and summer
humidity. Similarly, summer PC1 is loaded strongly on
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winter temperature, which is correlated with Crohn’s dis-
ease in our analysis. Berg and Coop find that summer PC2
is also correlated with ulcerative colitis, and in our analysis
ulcerative colitis is correlated with summer radiation.
When compared to the null distributions, none of our cor-
relations for Crohn’s disease or ulcerative colitis is

significant after FDR or Bonferroni adjustments, but our
p-values are similar to those that Berg and Coop report.

Specific genes and environmental factors
Our results for the local environmental adaptation of
disease risk SNPs led us to examine gene annotations of
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SNPs that had significant p-values from Bayenv as well
as R* values that were significantly higher than those de-
rived from the null distributions created with sets of
resampled SNPs.

Many genes that showed signals of adaptation in
Bayenv [24, 25] and our analysis, and all genes that
showed both signals with two or more environmental
variables, had functions related to the immune system.
In some cases, one SNP was associated with multiple en-
vironments and in other cases, multiple SNPs near the
same gene accounted for the environmental associations.
Genes that were significant with at least two variables
include: BTNL2 for alopecia areata, NOD2 for Crohn’s
disease, PLA2R1 for membranous neuropathy, LMO1
for neuroblastoma, and TNPO3, UBE2L3, HLA-DRA,
and HIC2 for systemic lupus erythematosus.

For asthma, several genes were significant in both
Bayenv and our analysis. SNPs located within 10 kb of the
DENNDI1B gene and SNPs within 10 kb of the CRB1 gene
were significant for summer humidity. The DENNDI1B
protein is important in the innate and adaptive immune
response to previously encountered antigens. It is part of
the signaling pathway for inflammatory response, and is
associated with moderate to severe cases of asthma [26].
SNPs within 10 kb of the RORA gene and SNPs within
10 kb of the IL2RB gene were significant for summer radi-
ation flux. SNPs near the RORA gene were also significant
for latitude, summer maximum temperature, and winter
minimum temperature. RORA is a component of the
mammalian circadian clock [27], and is involved in lipo-
protein metabolism [28] and lipid homeostasis in muscle
cells [29]. These functions could help explain the signals
of adaptation of this asthma-associated gene with summer
and winter temperature.

For prostate cancer, SNPs located within 10 kb the
KLK3 gene were significant for summer radiation flux,
winter humidity, and latitude in Bayenv. The KLK3 gene
produces prostate specific antigen (PSA), a widely used
biomarker for prostate cancer [30].

Discussion

We have explored the effect of Out-of-Africa migration
and climate variables on allele frequency statistics for
risk SNPs associated with 21 diseases. To compare the
effects on risk allele frequency statistics of Out-of-Africa
migration and environmental selection, we regressed
average heterozygosity and average risk allele frequency
on distance from Addis Ababa, which served as a proxy
for Out-of-Africa migration, and on nine environmental
variables. To determine significance, we compared these
regressions to those from 10,000 random samples. In
addition, we used the Bayenv program to search for sig-
nals of selection that could reflect environmental adapta-
tion of these risk allele SNPs. Although some methods
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weight the risk alleles by effect size (eg. [18]), we choose
not to do so, as the effect sizes are often measured in
one population and it is not clear that a SNP would have
the same effect size in other populations.

Type 2 diabetes showed the highest correlation with
accepted patterns of human migration. Average hetero-
zygosity of the 15 risk alleles decreased with distance
from Africa with an R* of 0.69, which is similar to the
regression found by Ramachandran et al. [8] using
microsatellite loci and the regression found by Li et al.
[9] using haplotype heterozygosity on Chromosome 19.
This pattern of risk allele frequencies may be due to the
risk of type 2 diabetes increasing greatly with specific
dietary customs that most probably spread after the
major Out-of-Africa migrations. In that scenario, the
risk alleles should be distributed similarly to neutral
alleles, and because the linear relation between the
average heterozygosity of the type 2 diabetes risk al-
leles and distance from Africa is similar to that of
large sets of SNPs and microsatellite loci, this explan-
ation seems plausible.

There could be selection against other SNPs that have
not yet been associated with type 2 diabetes or are not
included in our data set. These SNPs have the potential
to increase or decrease the correlation of heterozygosity
and risk allele frequency with distance from Africa and
might contribute to selection along migratory paths. It
has previously been reported that type 2 diabetes risk
alleles are more genetically differentiated across popula-
tions than expected by chance [16]. Chen et al
hypothesize that this shift in allele frequencies may be
due to the development of agricultural methods at
different times in different populations, the thrifty gene
hypothesis, or an evolutionary pressure caused by the
mismatch between genetics and the available diet, which
could occur when populations migrate. We see no
evidence for the “thrifty late” hypothesis, as average het-
erozygosity of type 2 diabetes risk alleles among popula-
tions outside of Africa shows a regression similar to that
of all populations including Africa. Another hypothesis,
the “drifty gene” hypothesis, suggests that genes that are
associated with type 2 diabetes may have been subject to
drift in human populations as the selection against obes-
ity was relaxed with the release from predatory pressure
[31]. Our results are more consistent with this hypoth-
esis. In light of the lack of signals of environmental
adaptation for the risk alleles of this disease and the
similar geographic pattern of these risk allele statistics to
that of the whole HGDP and HapMap data set, we
conclude that migration was probably important in
establishing the world wide-pattern of type 2 diabetes
risk allele frequencies. Our analysis suggests that any
selection on the type 2 diabetes risk alleles analyzed in
this study must have been weak at most.
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For most diseases in this study, however, allele fre-
quency measures did not correlate strongly with distance
from Africa, which suggests that for these diseases fac-
tors other than migration have affected the distribution
of risk alleles. Corona et al. [17] use genetic differenti-
ation between populations at individual branches of a
genetic phylogenetic tree to suggest that risks for several
diseases are associated with migration, but we conclude
here that this genetic differentiation between popula-
tions on one side of a phylogenetic tree and populations
on the other is not representative of an overall pattern
of allele frequencies that would have been due to the
serial founder effect during the Out-of-Africa migration.

Many of the diseases studied here show signals of
adaptation to one or more environmental variables, and
the relationship between environment and risk allele fre-
quency measures is much stronger than with distance
from Africa. In particular, we identified strong environ-
mental interactions with asthma risk SNPs near the
DENNDI1B and RORA genes and strong environmental
interactions with alopecia areata, Crohn’s disease, mem-
branous neuropathy, neuroblastoma, and systemic lupus
erythematosus in several immune system genes. These
gene-environment interactions are inferred from the R*
of risk allele frequency measures compared to those ob-
tained from null distributions as well as from Bayenv,
and may explain patterns of allele statistics for these dis-
eases. Additionally, summer humidity appears to have a
particularly strong interaction with asthma, as well as
rheumatoid arthritis and biliary liver cirrhosis, suggest-
ing that some form of selection on these diseases could
have produced the pattern of environmental associations
described here. We conclude that the signal from envir-
onmental variables is stronger than that from migration
for many diseases, particularly those related to immune
system function and including those that Corona et al.
[17] suggested were determined by migration patterns.
Therefore, genetic differentiation between individual
branches of the phylogenetic tree may not be sufficient
to infer that migration patterns explain the worldwide
distribution of risk alleles. We reported signals of envir-
onmental adaptation that, for the three diseases in our
study and theirs, are similar to what Berg and Coop [18]
reported, and correlations with specific environmental
variables that may explain the signals of adaptation they
inferred from principal components of summer and win-
ter climates.

It is likely that changes in population allele frequencies
in response to environmental variables have occurred
over long time spans. However, as it is difficult to esti-
mate the history of climate variables, we used current
climate data as a proxy for the environmental pressures
that may have caused selection on risk alleles. Because
the regressions of allele frequencies on environmental
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variables depend on the differences in climate variables
between populations rather absolute values, we expect
that current climate data are sufficient for our analyses.
It is also possible, however, that there have been histor-
ical environmental changes not encompassed by the var-
iables we wused that have affected the worldwide
frequencies of risk alleles.

Conclusions

In this study, we infer signals of environmental adapta-
tion for several diseases and disease risk genes, particu-
larly those related to immune system function, and
suggest that climate has had a stronger effect on disease
risk allele frequencies for some diseases than Out-of-
Africa migration. Our analysis, as in all studies using
GWAS SNPs, has limitations, including the possibility of
missing variants and incorrect estimation of causal sites,
particularly in populations in which the GWA studies
were not conducted; thus we should be careful in inter-
preting the signals of adaptation reported here, and we
cannot identify the mechanism(s) of selection that may
have acted on these SNPs and diseases. Additionally, we
note that disease prevalence can change rapidly without
genetic changes, such as the recent increases of type 2
diabetes in China and India that are likely due to non-
gene related change in behavior. Thus the environmental
associations reported here cannot be used as a predic-
tion of disease in certain populations or locations. That
said, our analysis suggests that we cannot discount the
effect of environment on the frequencies of risk loci for
the diseases studied here.

Methods

Disease risk SNPs

Disease risk SNPs and disease likelihoods were gathered
from [17] for all diseases with at least 14 risk alleles that
are polymorphic in the HGDP [9] and HapMap [32]
SNP data sets. We also included asthma, neuroblastoma,
polycystic ovary syndrome, and pancreatic cancer, which
had 13, 10, 10, and 7 disease risk alleles, respectively,
and were observed by Corona et al to show some genetic
risk differentiation among populations. From the pat-
terns of disease risk variation, the level of dependence
on migration of the geographical variation in disease risk
was inferred. All disease risk SNPs used were detected in
at least two populations and had a p-value less than 10
for association with disease. Additionally, SNPs that
were in linkage disequilibrium (R*0.2) were removed to
leave one SNP per region [17].

In the present study, population allele frequencies of
these disease risk SNPs used 564,201 SNPs from samples
of 52 Human Genome Diversity Panel (HGDP) popula-
tions and 9 HapMap populations (all except MEX and
ASW) presented by Pemberton et al. [33]. SNPs that
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were not present in both data sets were excluded from
this analysis.

Distance from Africa

Distance from Africa for each population was calculated
as in [8] using the great circle distance with waypoints.
The origin was Addis Ababa, Ethiopia, and waypoints
were Anadyr, Russia; Cairo, Egypt; Istanbul, Turkey;
Phnom Penh, Cambodia; and Prince Rupert, Canada.
Total distances were calculated as the sum of the great
circle distance from the origin to the connecting way-
point plus the great circle distance from the waypoint to
the sample location, plus the great circle distance be-
tween the waypoints if two or more connecting way-
points were needed. Geographical locations of the
samples were reported in [34] for HGDP populations
and [33] for HapMap populations.

Environmental variables

Climate data for each population included nine variables:
latitude, longitude, minimum winter temperature, max-
imum summer temperature, winter precipitation rate,
summer precipitation rate, winter radiation flux, winter
humidity, and summer humidity. Monthly averages of
these variables from 1982-2013 were obtained from
NCEP-DOE Reanalysis database [35]. Data were aver-
aged over all years and over June, July, and August for
summer variables, and December, January, and February
for the winter variables. Because latitude and summer
radiation flux had a correlation coefficient of 0.99, we in-
cluded only latitude in our analysis.

Linear regressions

For the disease risk SNPs, average heterozygosity and

average frequency of the risk allele were regressed on

distance from Africa and each of the nine climate vari-

ables as a reflection of drift or selection. For each dis-
d

ease, we define average heterozygosity as ZZPij%j/d
=1

12

d
and frequency of the risk allele as Z p;/d, where pj; is
=1
the sample allele frequency of the risk allele i in popula-
tion j, q;; =1- p;, and d is the number of risk alleles for a
disease. We regressed these two statistics for each dis-
ease on distance from Africa, which serves as a proxy
for the effects of migration and drift [8, 9].

Next, we were interested in inferring which environ-
mental variables could explain the variance in allele fre-
quencies not accounted for by drift. For each population,
we calculated the average heterozygosity and average allele
frequencies using all 564,201 SNPs, and then subtracted
that from the average heterozygosity of the risk alleles and
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average risk allele frequency, respectively. Because allelic
statistics averaged over all SNPs should be representative
of population structure due to migration out of Africa,
this subtraction leaves us with the variance not accounted
for by drift. We regressed these adjusted allelic statistics
on the nine environmental variables, separately. To test
whether unequal error variances affected our allele fre-
quency regressions, we calculated the variance of the aver-
age risk allele frequencies for each population and carried
out regressions on each environmental variable using a
weighted linear model, where the weights were the in-
verses of the population variances. We calculated the sig-
nificance of these regressions using null distributions
created from weighted regressions of the 10,000
resampled sets of alleles. The results were consistent with
the original results. That is, the environmental correla-
tions that were significant after correction for multiple
tests using the unweighted linear regression were still sig-
nificant after correction for multiple tests using the
weighted regression, and no significant relationships
were found using the weighted regression that were not
found using the unweighted linear regression (Results not
shown).

Null distributions

For each disease, we created 10,000 sets of HGDP and
HapMap SNPs from [33] that matched the set of risk
SNPs in number of SNPs and global allele frequencies.
All HGDP and HapMap SNPs were grouped into bins of
0.1 by global allele frequency. To create one resampled
set for a disease, each risk SNP was replaced by a ran-
dom SNP with a global allele frequency (averaged over
all populations) in the same bin as the global allele fre-
quency of the risk allele. For example, if disease A has
two risk alleles, rs1 and rs2, and these risk SNPs have
global allele frequencies of 0.16 and 0.34, respectively,
then a resampled set for this disease might have rs5 and
rs6 with global allele frequencies of 0.18 and 0.31, re-
spectively. In each HGDP and HapMap population, al-
lele frequencies at the SNPs that were randomly chosen
according to the disease and global frequencies were
calculated from the [33] dataset and then used to pro-
duce the adjusted average heterozygosity and adjusted
average frequency (see “Linear regressions” section) of
the resampled SNPs. These two statistics were then
regressed on distance and the environmental variables,
and an R? value was computed. The process was re-
peated 10,000 times for each disease. For each allelic
statistic for each disease, histograms of R* for the
10,000 resampled sets of SNPs were made for all vari-
ables, and these histograms functioned as null distribu-
tions. Then the estimated R* for each of the disease
risk allele statistics was compared to the appropriate
null distribution of resampled R? values. Because we
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produce the distributions for each disease using a differ-
ent number of SNPs and SNPs with different global
frequencies, we assume the null distributions for each
disease are independent from one another. But, although
the null distributions are different for each environment
as well, we cannot assume these are independent from
one another as they are created from the same resampled
set of SNPs. Thus, we use a Bonferroni correction for the
ten tested variables (nine environmental variables and
distance from Africa) and the two allelic statistics, and if
the R? for the disease risk allele statistics is in the top
0.0025 % of the latter, we infer that the variable had some
effect on the risk allele frequencies. Because the environ-
mental variables are correlated we also adjusted the
p-values using a false discovery rate of 0.2, which gave us
more power to detect effects.

We also made resampled sets by matching the
resampled alleles to the average European allele fre-
quency of the risk SNP, because GWA studies are often
done in European populations. This analysis produced
similar results.

Bayenv runs

Bayenv 2.0 ([24, 25]; see also [36]) was run using
564,201 SNPs from samples of 52 HGDP and 9 HapMap
populations [33]. Samples had been genotyped on the
[lumina 650 K array, which includes three ascertain-
ment panels (250 K, 300 K, and AFR). For each ascer-
tainment panel, a covariance matrix between the
populations was calculated using 10,000 randomly sam-
pled alleles and 100,000 MCMC iterations. Then two
runs per ascertainment panel were carried out, each
using 1,000,000 MCMC iterations, to determine the
Bayes Factor for each SNP in association with each of
the nine environmental variables included in this study.
Bayes factors were averaged over the two runs, ascer-
tainment panels were combined into one file, and ranked
p-values were calculated. These Bayes factors represent
the magnitude of environmental adaptation of a single
SNP, but because they are dependent on the null model
and may be inflated due to imperfections in the model,
ranked p-values provide a more conservative estimate of
the signal of selection. As in [10], we considered empir-
ical p-values produced from the Bayenv analysis that are
less than 0.05 to be significant and to be indicative of
signals of environmental adaptation for specific alleles.
This serves as confirmation of the high correlations of
some of the risk alleles and environmental variables re-
ported in the results.

Enrichment of SNPs with low Bayenv p-values
Enrichment of disease risk SNPs in the tail of the Bayenv
empirical p-values was calculated with the following
equation:
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where n, and n,, are the number of risk SNPs and SNPs
not associated with disease, respectively, in the 0.05 em-
pirical tail, and N, and N,,, are the number of risk SNPs
and SNPs not associated with disease, respectively,
among all tested SNPs.

To determine whether the number of risk SNPs that
had p-values less than 0.05 in Bayenv was more than ex-
pected, given the total number of risk SNPs for a dis-
ease, for each disease, we created 50,000 sets of random
SNPs that matched the total number of disease risk
SNPs. We then calculated how often the sets of random
SNPs contained more SNPs with low p-values than the
disease risk SNPs, for each variable. We applied a Bon-
ferroni correction for the multiple tests, so our cutoff for
significance was p=0.00026.

Gene annotations

A SNP was considered genic if it was within 10 kb of a
gene. Gene locations were obtained from University of
California, Santa Cruz (UCSC) refFlat mappings of RefSeq
genes to hgl8 (Build 36) (downloaded in March 2013,
http://www.genome.ucsc.edu)
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